Repair of Convolutional Neural Networks using Convex Optimization: Preliminary
Experiments

Dario Guidotti', Francesco Leofante'> / ?ﬁ/
! University of Genoa, Genoa, Italy P

2RWTH Aachen University, Aachen, Germany

3 University of Sassari, Sassari, Italy
{fdario.guidotti@edu.unige.it} {francesco.leofanteg@edu.unige.it}

ABSTRACT: Recent public calls for the development of explainable and variable Artificial Intelligence (Al) led to a growing
interest in formal verification and repair of machine-learned models. Despite the impressive progress that the learning
community has made, models such as deep neural networks remain vulnerable to adversarial attacks, and their sheer size
represents a major obstacle to formal analysis and implementation. In this paper, we present our current efforts to tackle
repair of deep convolutional neural networks using ideas borrowed from Transfer Learning. Using results obtained on
popular MNIST and CIFARI0 datasets, we show that models of deep convolutional neural networks can be transformed into
simpler ones preserving their accuracy, and we discuss how formal repair through convex programming techniques could
benefit from this process.

Keywords: Transfer Learning, Network Repair, Convex Optimization

Received: 19 October 2019, Revised 2 February 2020, Accepted 19 February 2020
DOI: 10.6025/jdp/2020/10/2/62-70

Copyright: with Authors

1. Introduction

The need for the development of explainable and variable Al has been put forward in a number of public events, e.g., the
Workshop on Explainable Al held at IJCAI 2017*, and research programs, e.g., the DARPA program on Explainable Artificial
Intelligence.’ These “calls to arms” did not go unanswered, originating several related research streams. Among them, particu-
larly vibrant is the one concerned with automated verification and repair of Deep Neural Networks (DNNs).

“http://home.earthlink.net/ dwaha/research/meetings/ijcail 7-xai/
3 https://www.darpa.mil/program/explainable-articial-intelligence

62 Journal of Data Processing Volume 10 Number 2 June 2020

Despite the impressive progress that the learning community has made in the field, it is well known — see, e.g., [16, 3] — that DNNs
can be vulnerable to adversarial perturbations, i.e., minimal changes to correctly classified input data that cause a network to
respond in unexpected and incorrect ways. Independently from the accuracy of a network, the vulnerability to adversarial
attacks calls for techniques to improve robustness and guarantee desired properties. Repair [12, 4, 5] is one such technique,
whereby we seek to adjust the parameters of the network in order to formally guarantee that the network will respond correctly
even in the presence of adversarial perturbations. In practice, the sheer size of these models still represents a major obstacle to
formal analysis of any kind. Typical state of the art neural networks for tasks like image classification have more than a hundred
millions of parameters [15], which makes o-the-shelf techniques hardly applicable.

In this paper we focus on the repair of Convolutional Neural Networks (CNNs), a type of DNN mainly used in computer vision
—see [8] for a survey related to DNN architectures and their applications. In particular, we discuss our current efforts to repair
CNNs using convex programming and ideas borrowed from Transfer Learning (TL) [18]. As posited in [14], the idea is to keep
the convolutional part of the network as a learned feature extractor, and replace the final classification layer with one featuring
less parameters and/or a smaller model complexity. Noticeably, the replacement may yield networks whose accuracy is compa-
rable with the one of the original DNNs, yet more amenable to formal analysis.

More specifically, we contribute an experimental analysis based on the popular MNIST® and CIFAR 107 datasets. The first step
is to train CNN’s on both datasets and to replace their final fully-connected layer with linear support vector machines. This step
reduces by orders of magnitude the number of free parameters, e.g., from 4.7 million to 65 thousand in the case of CIFAR10, while
preserving accuracy. We discover adversarial attacks on such “hybrid” models using the Fast Gradient Sign Method described
in [3]. Since we replace nonlinear layers with linear ones, we are able to define a repair procedure as a convex optimization
problem | as done in [4] for kernel-based learning models. The resulting problem can be solved with o-the-shelf tools — cvxopt®
in our case. The results we obtain are still preliminary, but show some promise as far as scaling to networks of larger size is
concerned. However, the repair procedure is not yet general enough to make the networks immune to perturbations other than
those considered by the repair procedure. While this might not be a strong limitation when considering real-world instead of
artificial adversaries — see [2] further investigations are needed to confirm whether our method could be effective for practical
applications.

To the extent of our knowledge, this is the rst time that TL is leveraged in order to repair a CNN through convex programming
techniques. The idea of replacing parts of a CNN to improve its performances is not new, as it has been explored in [14] and [17],
among others. However, the focus of these contributions is to improve the accuracy of the network, rather than providing
models whose properties can be certified more easily than the original one. Trying to apply formal verification techniques to
networks of size smaller than the original could be done following alternative paths. For instance, in [1] the authors show that

~

-

input layer

hidden layer 1 hidden layer 2 hidden layer 3

input neurons
00000, first hidden layer

o
output layer 00000

%

Figure 1. Generic architecture of a fully connected DNN with 3 hidden layers (left) and graphics representation of a local
receptive field (right). The images are taken from [9]

® http://yann.lecun.com/exdb/mnist/
" https://www.cs.toronto.edu/ kriz/cifar.html
8 https://cvxopt.org/index.html

Journal of Data Processing Volume 10 Number 2 June 2020 63

it is possible to find small-sized subnetworks in CNNs which prove to be remarkably accurate on some datasets including
MNIST and CIFAR10. These subnetworks could be extracted and certified considering our approach or other state-of-the-art
tools like Marabou [6]. Finally, the aim of obtaining networks robust to adversarial examples, but not necessarily smaller than the
original ones, can be pursued using results in robust training: recent results - see, e.g., [19] - seem to open this possibility also
for CNNs of considerable size.

2. Preliminaries

2.1 Convolutional Neural Networks

According to [7], representation learning “is a set of methods that allows a machine to be fed with raw data and to automatically
discover the representations needed for detection of classification”. DNNs are representation learning models characterized by
multiple levels of representation, obtained by composing several non-linear modules. Each module transforms the representa-
tion at one level (starting with raw input) into the next, more abstract, representation. At the heart of every DNN lie the
“classical” neural network modules as shown in Figure 1 (left) whose mathematical formulation can be expressed in a recursive
form as:

KD = @O (D 5+ p0)

@
HD=p® (VV([). B0 4 b(i))

where @ is the activation function, W € R%*4~! s a matrix of weights and »"? € R% is the vector of the biases of the i-th layer.

19 e R corresponds to the output of the i-th layer and the range of i depends on the number of layers. A module like this is said
to be fully connected, because the weighted sum of the outputs of each neuron in level i is fed to every neuron in level i + 1,
creating the topology shown in Figure 1 (left). CNNs are a specific kind of DNNs, typically adopted in computer vision
applications, characterized by one or more convolutional modules. The distinctive element of such modules is that they feature
connections for small, localized regions of the input vector, i.e., each neuron of the hidden layer is connected only to a small
subset of the input neurons. This subset of the input neurons is called local receptive field of the hidden neuron. A graphical
example of a local receptive is depicted in Figure 1 (right). Another important feature of convolutional modules is that all the local
receptive fields share the same weights and bias reducing the overall number of weights substantially. In practice, each local
receptive eld is trained to detect a specific feature in the input image, i.e., distinctive elements of input portions. As a conse-
quence, in a specific hidden layer, dierent sets of shared weights are used: each of these sets is trained to detect specific feature
in the image. Usually each convolutional module is followed by a pooling layer, which simplies the information received. For
instance, each unit of a pooling layer could take a subset of neurons from the previous module and select their maximum
activation — an operation called max-pooling. Since our experiments are about image classification, in the following we consider
a CNN arrangement widely adopted for this task, i.e., a series of convolutional modules and pooling layers followed by fully
connected modules. The rst part of the network can be seen as an application of a (learned) kernel to the original input whereas
the second part can be seen as the actual classier. For a more detailed study on Convolutional Neural Networks we refer to [9].

2.2 Transfer Learning

As mentioned in [18], TL is “the improvement of learning in a new task through the transfer of knowledge from a related task that
has already been learned”. TL has been suggested in the context of deep learning applications — see, e.g., [14] — where pre-
trained models are used as starting points for computer vision or natural language tasks. Since the training of DNNs requires
substantial computational resources, it is often the case that reusing (parts of) pre-trained models enables applications which
would not be feasible otherwise. For instance, in [14], a pre-trained convolutional module is extracted from a CNN and then
applied as a feature extractor in the context of an object recognition task where the paucity of training samples would make
training of the full CNN untenable. On the other hand, combining the pre-trained convolutional module with a newly trained
classier, makes for an eective combination, enabling to solve classification tasks that were not within the reach of the original
CNN. TL and its applications suggest the possibility of replacing some modules of a DNN which are hardly analyzable with
formal methods, with others that are more amenable to such analysis. As long as the accuracy of the resulting network, which
we call hybrid network in the following, is close to the original DNN, one may (i) replace the original network with the hybrid one
and (ii) x the hybrid one instead of the original network, should adversarial examples be found also for the hybrid network. In
particular, we build hybrid networks by collating the convolutional module of a CNN followed by a linear Support Vector
Machine (ISVM), i.e., a classier based on separating hyper-planes in which the distance of the hyper-plane from the nearest

64 Journal of Data Processing Volume 10 Number 2 June 2020

samples of both classes is maximized. In our experiments we consider multiclass ISVMs, i.e., in order to discriminate among &
classes we compute & different separating hyper-planes each one discriminating among one class and the remaining k£ — 1. The
input-output relation of a multiclass ISVM is defined as follows:

fx)=W.x+b
y = argmax (f(x))

@

where x € R?is the vector of the inputs, b € R¥is the vector of the biases, W € R¥“is the matrix of the weights corresponding
to £ ISVMs, each working to detect one of the & classes. The function f'(x) is the decision function corresponding to the input
x. It contains the signed distances of the input x from each decision hyper-plane. From the definition of the decision function we
can derive the correct class y for an input x.

3. Repair of Hybrid Networks

3.1 Hybrid Networks

For the sake of our experiments, we have developed two CNNs and two corresponding hybrid networks for each dataset
considered. Given the preliminary nature of this work the datasets considered are CIFAR10 and MNIST, two of the most famous
basic datasets for image classification. The MNIST dataset contains 60000 black-and-white images of handwritten digits
whereas the CIFAR10 dataset contains 60000 color images in 10 different mutually exclusive classes: both datasets are divided
in a training set of 50000 images and a test set of 10000 images.

The network considered for the MNIST dataset (MNIST-NN) is a CNN with 2 convolutional layers, 2 max-pooling layers and 2
fully connected layers. The convolutional layers have kernel size equal to 5 x 5 and stride length equal to 1, the max-pooling
layers have kernel size equal to 2 x 2. The two fully connected layers have 500 and 10 hidden neurons respectively and the
inputs of the first layer are the value generated from 800 neurons of the second max-pooling layer. The activation functions are
all ReLU. The total number of parameters of the network is 407330 and 99.5% of them are part of the fully connected layers.

The network developed for the CIFAR10 dataset (CIFAR10-NN) is a CNN with 6 convolutional layers, 3 max-pooling layer and
3 fully connected layers. The convolutional layers have kernel size equal to 3 x 3, stride length equal to 1, padding equal to 1 and
present respectively 32, 64, 128, 128, 256 and 256 different kernels, the max-pooling layers has kernel size equal to 2 x 2. There
is a max pooling layer every 2 convolutional layer. The three fully connected layers have 1024, 512 and 10 hidden neurons
respectively and the inputs of the first layer are the values generated from 4096 neurons of the third max-pooling layer. The
activation functions are all ReLU. The total number of parameters is 4747904 and 99.5% of them are part of the fully connected
layers. The network considered is similar to the Conv-6 network presented in [1], but our network features a first convolutional
layer with 32 kernels whereas the corresponding layer of the Conv-6 network has 64 kernels.

In this work we have used PyTorch [10] for the implementation and training of all the networks. The hybrid networks consist of
the union of the convolutional and max-pooling layers of the original networks with ISVM multiclass classifiers: in this work we
have used o-of-the-shelf implementations provided by scikit-learn [11]. In particular, both for MNIST-NN and for CIFAR10-NN,
we have designed corresponding linear and non-linear hybrids: the non-linear hybrids use as kernel the standard radial basis
function. We identify the linear hybrids as MNIST-LH and CIFAR10-LH and the non-linear hybrids as MNIST-KH and CIFAR10-
KH. All networks are trained using standard training parameters recommended respectively from PyTorch and scikit-learn
documentation.

As a preliminary experiment we have analyzed the accuracy gap between the hybrid models and the corresponding neural
networks: for CIFAR10 models our results are 85.4% (NN), 85.51% (KH) and 85.6% (LH). The accuracies of the MNIST models
are 97.12% (NN), 98.86% (KH) and 98.72% (LH). All the accuracies were computed as the number of correctly classified images
against all the images of the test sets provided by the MNIST and CIFAR10 repositories. These figures tell us that, for the
MNIST dataset, hybrid models can be more accurate than the corresponding CNN, with the kernel-based hybrid being slightly
more accurate than the linear one. CIFAR10 is more complex than MNIST, nevertheless the results still hold.

3.2 Repair
The main idea behind our repair approach is to circumvent the repair of CNNs and attempt to repair the corresponding hybrid

Journal of Data Processing Volume 10 Number 2 June 2020 65

networks instead. To repair hybrid networks, we generate adversarial examples for them, and then we solve an optimization
problem in the space of the network’s parameter, with the objective to reduce as much as possible the impact of the adversaries.
In order to make the optimization problem computationally feasible, we consider the convolutional modules of our hybrid
models as a fixed feature map and we do not include their parameters into the optimization problem, but we concentrate on the
final layers instead. In practice, this corresponds to analyzing the network in feature space, instead of input space — as done in
[4]. Owing to this, and to the fact that fully connected layers of the CNN are substituted by (I) SVMs in our hybrid networks, the
number of free variables for the convex optimization problem is drastically reduced. For example, in the case of the MNIST
models, we managed to reduce the number of variables from 405510 to approximately 8000.

In this first stage of our work, we decided to further simplify the problem considered by excluding KH models: in this way it is
possible to limit the convex optimization problem to piece-wise linearity — because of absolute values — eliminating the need of
a non-linear solver or abstraction techniques to manage the radial basis function kernels. In equation (3) we present the
mathematical definition of our optimization problem: parameters ¢ and d are the number of possible classes and the number of
features of the adversarial sample in the feature space, respectively; parameters v, are the modification on the weights W, of the
ISVM model; the variables &, are slack variable necessary to keep the problem solvable at the price of some error on the
prediction of the decision function for the adversarial sample of interest; finally, y, are the correct values of the decision function

of the ISVM classier for the adversarial sample and X are the features of the adversarial sample of interest in the feature space.
All the variable considered take real values. '

min =3 sl + 3o
g =il =l:
©)
Zw”+’y” -Syi+5i Vi=1,...,c

5 >0 Vi=1,...c

In this case we consider only one adversarial, but the extension of the problem to the case in which more than one adversarial
sample is considered is trivial. The cost function seeks to minimize the (absolute) variation of the weights of the ISVM, while
satisfying the constraint of bringing the prediction of the decision function of the adversarial example as close as possible to the
correct decision function. In the case of the CIFAR10 model we need a further simplification: even with the replacement of the
fully connected layers the number of variables in the convex optimization problem is 40960 and the optimization procedure is not
able to solve the problem. Therefore we decided to apply a feature-selection procedure on the output of the convolutional layers
of our model. For each feature we consider two set of samples: the first one taken from the original inputs and the second one
taken from the adversarial inputs. We compare the sets of samples using the Wilcoxon Signed Rank test against the null
hypothesis that the two sets come from the same distribution. The procedure computes the p-values of the test for each feature
and selects the ones which present a p-value below a given threshold: in our experiments we choose a threshold value of 0.1.
The rationale of our procedure is to retain only the features which are affected significantly by the adversarial inputs and change
only the corresponding weights in the SVM. After feature selection we manage to reduce the number of variables of the convex
optimization problem below 6000, therefore making the problem manageable for the solver.

4. Experimental Results

We test our repair procedure on both the MNIST and CIFAR 10 datasets, using the Fast Sign Gradient Method [3] as adversarial
attack of choice. In order to generate adversarial samples for our models we utilize FoolBox [13] which provides a number of
ready-made adversarial attacks. Another advantage of FoolBox is that it accepts as model to be attacked every valid PyTorch
model, which allows us to attack also our hybrid models without complex workarounds. In our tests, firstly we analyze the loss
of accuracy of our models corresponding to increasing magnitudes of the adversarial attack. We call the parameter which control
this magnitude &, and we show our results in figure 2.

As it can be expected the accuracies of both the MNIST and CIFAR 10 models drop for increasing values of € and in general the
LH models seem to be more vulnerable to this kind of adversarial attack. Given that our aim is to repair the LH models, this is not
a limitation for our approach. As it can be observed in Figure 2 for ¢=0.15 the adversarial perturbation for the MNIST images is

66 Journal of Data Processing Volume 10 Number 2 June 2020

\

9->5 5->3 4->6 1->8 7->9

0.4

Eps: 0.1

&
MNIST S
1.0 2
P —#*— NN vs NADV =
0.91 - LH vs HADV it el st 420 5~
&
0.74 2->3 4->9 459 753 FisTa
“\\ E " .
0 0.6 \ S | i
o Ao i)
3 & |
50 8->3 4->0 5->3 7->3 7->3
o \
1%} N\
o E . E .
0.3 N\ ' ; : ;

4->9 7->2 5->3 =g 6->5
L d]12]3]71s
0.1 & '
6->5 4->9 3->5 3->1 1->8
0.0 T T T T T T 0 1
0.025 0.050 0.075 0.100 0.125 0.150 s
Epsilon a G
CIFAR1O bird cat
0.8 LY
—#— NN vs NADV) .
0.7 1 LH vs HADV
0.6
airplane
0.5 1
n
i}
©
C 0.4
-
o
Q
<
0.3 1
0.2 4 q
°
0.1 4 T
0.0 : &

0.001 0.005 0.010 0.015 0.020 0.025

\\ Epsilon /

Figure 2. Accuracies of MNIST-NN, MNIST-LH (above) and CIFAR10-NN, CIFAR10- LH (below) as ¢ increases (left) and
graphics representation of some adversarial examples (right)

clearly recognizable even if it would not fool a human observer. For the CIFAR10 dataset we consider smaller adversarial
perturbations: as can be seen in Figure 2 for £ = 0.025 the models accuracy is already below the baseline.

In our main experiment we analyzed the behavior of MNIST-LH and of its repaired version (MNIST-RLH) for £=[0.025, 0.05,
0.075,0.1,0.125, 0.15] and the behavior of CIFAR10-LH and of its repaired version (CIFAR10-RLH) for e=[.001, .005, .01, .015,
0.02, 0.025]. More specifically, for each &, we compute the accuracies of the LH, NN and RLH models on the following test sets:
MNIST/CIFARIO test set (Data), MNIST/CIFAR10 test sets in which all the images for which we found a corresponding
adversarial example have been replaced with the adversarial example. Since the adversarial attack is model-dependent, the latter
test set corresponds to three different sets computed on MNIST/CIFAR10-NN (NADV), MNIST/CIFAR10-LH (HADV) and
MNIST/CIFAR10-RLH (RHADV).

In figure 3 (left) it is possible to see how repair affects the accuracy of the models both with respect to adversarial samples only
(ADV) and with respect to the original test set (Data). In the case of MNIST, even considering only one adversarial in the

Journal of Data Processing Volume 10 Number 2 June 2020 67

/ MNIST MNIST \

1.0 4 G i 1.0 1
0.9 \/ 0.9
0.8 1 0.8 -
0.7 4 0.7 4
@ 061 —#— LH vs ADV $ 0.6
B o5 o —#— RLH vs ADV S
5 o —— LH vs Data 305
£o04ad —— RLH vs Data &
: 0.4 4
0.3 1 \\ 0.3
" : NN vs NADV
0.2 1 - 02— LHvsHADV
014 " | —®— LH vs RHADV
’ 0.1 4 —— RLH vs HADV
0.0 —— RLH vs RHADV
T T T T T r 0.0 +— T T T T T
0.025 0.050 0.075 0.100 0.125 0.150 0.025 0.050 0.075 0.100 0.125 0.150
Epsilon Epsilon
CIFAR10 CIFAR10
0.9 0.8
—_———— —*— NN vs NADV
0.8 074 —o— LH vs HADV
' —8— LH vs RHADV
0.7 1 —+— RLH vs HADV
0.6 —— RLH vs RHADV
0.6
0.5
3 0.5 —#— LH vs ADV]
8 RLH vs ADV 804
2 0.4 —+— LH vs Data o
£ —— RLH vs Data £
0.3 0.3
0.2 0.2 4
0.1 ‘:&\\; A —_ P
' N » T—— 0.14
N
0.0 * b 4 i P 2
v : ' v : v 0.04 T v : v r
0.001 0.005 0.010 0.015 0.020 0.025 0.001 0.005 0.010 0.015 0.020 0.025
Epsilon Epsilon

- /

Figure 3. Accuracies of the NN, LH and RLH models computed on different test sets of interest (MNIST above, CIFAR10
below). All the accuracies are computed for increasing values of &

optimization problem (3), the resulting model (MNIST- RLH) manages to generalize also on other adversarial examples, e.g. it
manages to classify correctly at least 20% of the adversarial examples. In the case of CIFAR10, even if the repaired model is more
accurate than the original one with respect to the adversarial samples the improvement is not substantial; in our opinion this is
due to the fact that both the model and the dataset are more complex than the ones in MNIST. In figure 3 (right) it is also possible
to see how the accuracy of the RLH models compares with the accuracies of the LH and NN ones with respect to the datasets
NADYV and HADV: from the images on the right it is clear that, while the repaired model is more robust to the adversarial sample
computed on the non-repaired model, it has not acquired robustness against adversarial attacks in general. Moreover, it appears
clear that the original model (NN) is still more robust to adversarial attacks. From the same images it is also possible to see that,
as the RLH models are somewhat robust with respect to the adversarial example computed on the LH ones, so the LH models are
somewhat robust with respect to the adversarial example computed on the RLH ones. This result suggests that the adversarial
examples computed on the LH and RLH models belong to different categories of adversarial examples. This phenomenon
requires further investigation to be confirmed.

5. Conclusions and Future Work

The main idea presented in this paper is to study the safety of DNNs in a “modular” fashion using techniques adopted from

68 Journal of Data Processing Volume 10 Number 2 June 2020

transfer learning. In particular, we consider how the properties of CNNs change if we swap the fully connected module with
ISVMs obtaining hybrid networks. Our results confirm that such swap does not impact on the accuracy in a relevant manner,
while making repair of hybrid networks feasible using a relatively simple encoding in a convex optimization problem. Adversarial
examples can be found on hybrid networks more easily than on the original network: this result conforms to the hypothesis
about the nature of adversarial examples presented in [3]. Our experimental results on MNIST show that, even using very few
adversaries, the repair procedures manage to provide a model which presents an acceptable generalization on all the adversaries
computed using the original hybrid model. On the other hand, our results on CIFAR10 show a more intricate picture, one in
which the repaired network can be made robust against specific adversaries but generalization is still not completely achieved.

Given the results obtained from this work, our future lines of research will concentrate on understanding the properties of
categories of adversarial samples in hybrid convolutional-ISVM networks and adding verification-driven kernels to our SVMs
in order to obtain robust hybrid convolutional-SVM networks. More-over, we will try to extend our work in order to repair CNNs
without swapping away the fully connected modules and to explain how adversarial attacks affect the convolutional part of the
networks and therefore the input in the feature space.

References

[1] Frankle, J., Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635.

[2] Gilmer, J., Adams, R. P., Goodfellow, L., Andersen, D., Dahl, G. E. (2018). Motivating the rules of the game for adversarial
example research. arXiv preprint arXiv:1807.06732.

[3] Goodfellow, I. J., Shlens, J., Szegedy, C. (2015). Explaining and harnessing adversarial examples. /n: ICLR.

[4] Guidotti, D., Leofante, F., Castellini, C., Tacchella, A. (2019). Repairing learned controllers with convex optimization: A case
study. /n: CPAIOR. p. 364-373.

[5] Guidotti, D., Leofante, F., Tacchella, A., Castellini, C. (2019). Improving reliability of myocontrol using formal verication. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 27 (4) 564-571.

[6] Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S., Wu, H., Zeljic, A., Dill, D. L.,
Kochenderfer, M. J., Barrett, C. W. (2019). The marabou framework for verication and analysis of deep neural networks. /n: CAV.
p-443-452.

[7]LeCun, Y., Bengio, Y., Hinton, G. E. (2015). Deep learning. Nature 521(7553), 436-444.

[8] Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F. E. (2017). A survey of deep neural network architectures and their
applications. Neurocomputing 234, 11-26.

[9] Nielsen, M. A. (2015). Neural networks and deep learning, vol. 25. Determination press San Francisco, CA, USA.

[10] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A. (2017).
Automatic dierentiation in pytorch.

[11] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12,2825-2830.

[12] Pulina, L., Tacchella, A. (2010). An abstraction-renement approach to verication of articial neural networks. In: CAV. p. 243-
257.

[13] Rauber, J., Brendel, W., Bethge, M. (2017). Foolbox: A python toolbox to benchmark the robustness of machine learning
models. arXiv preprint arXiv:1707.04131 (2017), http://arxiv.org/abs/1707.0413 1

[14] Schwarz, M., Schulz, H., Behnke, S. (2015). Rgb-d object recognition and pose estimation based on pre-trained convolu-
tional neural network features. /n: ICRA. p. 1329-1335.

[15] Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

[16] Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan, D., Goodfellow, L. J., Fergus, R. (2014). Intriguing properties of

Journal of Data Processing Volume 10 Number 2 June 2020 69

neural networks. /n: ICLR.

[17] Tang, Y. (2013). Deep learning using linear support vector machines. arXiv preprint arXiv:1306.0239.

[18] Torrey, L., Shavlik, J. (2010). Transfer learning. In: Handbook of research on machine learning applications and trends:
algorithms, methods, and techniques, p. 242-264. IGI Global.

[19] Wong, E., Schmidt, F., Metzen, J. H., Kolter, J. Z. (2018). Scaling provable adversarial defenses. /n: NeurIPS. p. 8400-8409.

70 Journal of Data Processing Volume 10 Number 2 June 2020

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

