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ABSTRACT: We report our models for detecting age, language variety, and gender from social media data in the context of the
Arabic author profiling and deception detection shared task (APDA) [32].We build simple models based on pre-trained
bidirectional encoders from transformers (BERT). We first fine-tune the pre-trained BERT model on each of the three datasets
with shared task released data. Then we augment shared task data with in-house data for gender and dialect, showing the
utility of augmenting training data. Our best models on the shared task test data are acquired with a majority voting of various
BERT models trained under different data conditions. We acquire 54.72% accuracy for age, 93.75% for dialect, 81.67% for
gender, and 40.97% joint accuracy across the three tasks.1
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1. Introduction

The proliferation of social media has made it possible to collect user data in unprecedented ways. These data can come in the
form of usage and behavior (e.g., who likes what on Facebook), network (e.g., who follows a given user on Instagram), and
content (e.g., what people post to Twitter). Availability of such data have made it possible to make discoveries about individuals
and communities, mobilizing social and psychological research and employing natural language processing methods. In this
work, we focus on predicting social media user age, dialect, and gender based on posted language. More specifically, we use
the total of 100 tweets from each manually-labeled user to predict each of these attributes. Our dataset comes from the Arabic
author profiling and deception detection shared task (APDA) [32]. We focus on building simple models using pre-trained
bidirectional encoders from transformers (BERT) [12] under various data conditions. Our results show (1) the utility of
augmenting training data, and (2) the benefit of using majority votes from our simple classifiers.

In the rest of the paper, we introduce the dataset, followed by our experimental conditions and results. We then provide a
literature review and conclude.

2. Data

For the purpose of our experiments, we use data released by the APDA shared task organizers. The dataset is divided into train
and test by organizers. The TRAIN set is distributed with labels for the three tasks of age, dialect, and gender. Following the
standard shared tasks set up, the test set is distributed without labels and participants were expected to submit their predictions
on test. The shared task predictions are expected by organizers at the level of users. The distribution has 100 tweets for each



              Journal of E - Technology   Volume   11   Number   2   May   2020                                55

user, and so each tweet is distributed with a corresponding user id. As such, in total, the distributed training data has 2,250
users, contributing a total of 225,000 tweets. The official task test set contains 720,00 tweets posted by 720 users. For our
experiments, we split the training data released by organizers into 90% TRAIN set (202,500 tweets from 2,025 users) and
10% DEV set (22,500 tweets from 225 users). The age task labels come from the tagset {under-25, between-25 and 34,
above-35 }. For dialects, the data are labeled with 15 classes, from the set {Algeria, Egypt, Iraq, Kuwait, Lebanon-Syria,
Lybia, Morocco, Oman, Palestine-Jordan, Qatar, Saudi Arabia, Sudan, Tunisia, UAE, Yemen}. The gender task involves binary
labels from the set {male, female}.

3. Experiments

As explained earlier, the shared task is set up at the user level where the age, dialect, and gender of each user are the required
predictions. In our experiments, we first model the task at the tweet level and then port these predictions at the user level. For
our core modelling, we fine-tune BERT on the shared task data. We also introduce an additional in-house dataset labeled with
dialect and gender tags to the task as we will explain below. As a baseline, we use a small gated recurrent units (GRU) model.
We now introduce our tweet-level models.

3.1. Tweet-Level Models
Baseline GRU. Our baseline is a GRU network for each of the three tasks. We use the same network architecture across the
3 tasks. For each network, the network contains a layer unidirectional GRU, with 500 units and an output linear layer. The
network is trained end-to-end. Our input embedding layer is initialized with a standard normal distribution, with μ = 0, and σ
= 1, i.e., W ~N(0, 1). We use a maximum sequence length of 50 tokens, and choose an arbitrary vocabulary size of 100,000
types, where w e use the 100,000 most frequent words in TRAIN. To avoid over-fitting, we use dropout [43] with a rate of 0.5
on the hidden layer. For the training, we use the Adam [22] optimizer with a fixed learning rate of 1e−3. We employ batch
training with a batch size of 32 for this model. We train the network for 15 epochs and save the model at the end of each
epoch, choosing the model that performs highest accuracy on DEV as our best model. We present our best result on DEV in
Table 1. We report all our results using accuracy. Our best model obtains 42.48% for age, 37.50% for dialect, and 57.81%
for gender. All models obtain best results with 2 epochs.

BERT. For each task, we fine-tune on the BERT-Base Multilingual Cased model released by the authors [12] 2. The model
was pre-trained on Wikipedia of 104 languages (including Arabic) with 12 layer, 768 hidden units each, 12 attention heads,
and has 110M parameters in entire model. The vocabulary of the model is 119,547 shared WordPices. We fine-tune the
model with maximum sequence length of 50 tokens and a batch size of 32. We set the learning rate to 2e − 5 and train for 15
epochs. We use the same network architecture and parameters across the 3 tasks. As Table 1 shows, comparing with GRU,
BERT is 3.16% better for age, 4.85% better for dialect, and 2.45% higher for gender.

Data Augmentation. To further improve the performance of our models, we introduce in-house labeled data that we use to
fine-tune BERT. For the gender classification task, we manually label an in-house dataset of 1,100 users with gender tags,
including 550 female users, 550 male users. We obtain 162,829 tweets by crawling the 1,100 users’ timelines. We combine
this new gender dataset with the gender TRAIN data (from shared task) to obtain an extended dataset, to which we refer as
EXTENDED Gender. For the dialect identification task, we randomly sample 20,000 tweets for each class from an in-house
dataset gold labeled with the same 15 classes as the shared task. In this way, we obtain 298,929 tweets (Sudan only has
18,929 tweets). We combine this new dialect data with the shared task dialect TRAIN data to form EXTENDED Dialect. For
both the dialect and gender tasks, we fine-tune BERT on EXTENDED Dialect and EXTENDED Gender independently and
report performance on DEV. We refer to this iteration of experiments as BERT EXT. As Table 1 shows, BERT EXT is 2.18%
better than BERT for dialect and 0.75% better than BERT for gender.3

3.2. User-Level Models
Our afore-mentioned models identify user’s profiling on the tweet-level, rather than directly detecting the labels of a user.
Hence, we follow the work of Zhang & Abdul-Mageed [47] to identify user-level labels. For each of the three tasks, we use

2 https://github.com/google-research/bert/blob/master/multilingual.md
3 We note that it was not possible for us to use external age-labeled data and hence we do not report on the age task with this data
augmentation setting.
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Age Dialect Gender

GRU 42.48 37.50 57.81

BERT 45.64 42.35 60.26

BERT EXT - 44.53 61.01

Table 1. Tweet level results on DEV

tweet-level predicted labels (and associated softmax values) as a proxy for user-level labels. For each predicted label, we use
the softmax value as a threshold for including only highest confidently predicted tweets. Since in some cases softmax values
can be low, we try all values between 0.00 and 0.99 to take a softmax-based majority class as the user-level predicted label,
fine-tuning on our DEV set. Using this method, we acquire the following results at the user level: BERT models obtain an
accuracy of 55.56% for age, 96.00% for dialect, and 80.00% for gender. BERT EXT models achieve 95.56% accuracy for
dialect and 84.00% accuracy for gender.

3.3. APDA@FIRE2019 Submission
First Submission. For the shared task submission, we use the predictions of BERT EXT as out first submission for gender
and dialect, but only BERT for age (since we have no BERT EXT models for age, as explained earlier). In each case, we acquire
results at tweet-level first, then port the labels at the user level as explained in the previous section. For our second and third
submitted models, we also follow this method of going from tweet to user level.

Second Submission. We combine our DEV data with our EXTENDED Dialect and EXTENDED Gender data, for dialect and
gender respectively, and train our second submssions for the two tasks. For age second submsision, we concatenate DEV data
to TRAIN and fine-tune the BERT model. We refer to the settings for our second submission models collectively as BERT
EXT+DEV.

Third Submission. Finally, for our third submission, we use a majority vote of (1) first submission, (2) second submission,
and (3) predictions from our user-level BERT model. These majority class models (i.e., our third submission) achieve best
results on the official test data. We acquire 54.72% accuracy for age, 81.67% accuracy for gender, 93.75% accuracy for
dialect, and 40.97% joint accuracy.

Exp. Condition   Age Dialect Gender Joint

Submission 1 BERTEXT  54.72 93.33 77.08  38.75

Submission 2 BERT EXT+DEV 54.72 92.64 81.67 40.97

Submission 3 MAJ CLASS  54.72 93.75 81.67  40.97

Table 2. Results of our submissions on official test data (user level)
4. Related Works

Arabic. Arabic is a term that refers to a collection of languages, varieties, and dialects. The standard variety, Modern Standard
Arabic (MSA), is the one usually used in formal communication and educational settings. Arabic also has a wide range of under-
studied varieties and dialects that classically used to be categorized in a coarse-grained fashion (e.g., Levantine, North African)
[17, 46, 1, 13, 2]. More recent treatments focus on fine-grained categorizations such as country and city levels [25, 39, 3, 40, 31, 47].
Differences between varieties of Arabic happen at various linguistic levels, including including phonological, morphological,
lexical, and syntactic [19, 6, 27, 1].

Social Media Author Profiling. Author profiling is the term usually used to refer to detecting a host of attributes of (often
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social media) users. This include identifying attributes such as age, gender, educational level, economic class, stance or
ideology [10, 30], personality [42, 23, 7, 18], moral traits [21, 28], and other socilogical and psychological constructs. Author
profiling based on text [15, 5] is rooted in computational stylometry [16, 44] and has traces in the early work of Holmes [20].
The task of author profiling has also been approached from network perspective where cues based on friending, following,
mentioning, and commenting have been leveraged for identifying author attributes [24] for author profiling. In addition, the
PAN author profiling shared task [34, 33, 37, 36, 35] was established to advance related work. More information about PAN
can be found in [29].

Age and Gender. A number of studies have been conducted on English-based age and gender detection, including [38, 14, 8,
45, 11]. Many of these works use feature engineering such as text n-gram and topic models [42, 41]. In these works, age is
either cast as a multi-class classification task with, e.g., labels from the set {10-19, 20-29, 30-39 } or as a regression task
[26]. Other works model age with both classification and regression combined [9]. With rare exceptions [35, 4], we do not
know of work on Arabic targeting age and gender.

5. Conclusion

In this work, we described our submitted models to the Arabic author profiling and deception detection shared task (APDA)
[32]. We focused on detecting age, dialect, and gender using BERT models under various data conditions, showing the utility
of additional, in-house data on the task. We also showed that a majority vote of our models trained under different conditions
outperforms single models on the official evaluation. In the future, we will investigate automatically extending training data
for these tasks as well as better representation learning methods.
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