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ABSTRACT: Computer Vision leads to large applications for image and video classification and segmentation. It provides
the increasing focus of the community on this topic, has generated awide scope of approaches that use different kernel shapes
and techniques for executing convolutions with respect to the classic one, such as for example separable convolutions,
deformable convolutions or deconvolutions ([4, 5]), frequently used in semantic segmentation tasks ([23, 13]). It has been
found that it is common knowledge that FPGAs can be used to accelerate classic Convolutional layers in CNNs, there is
limited literature about FPGA-based accelerators supporting less regular and common processing kernels ([20]). This work
begins from the previous experience acquired developing NEURAghe, we try to improve exibility of CNN accelerators and to
study new methodologies to improve efficiency on the previously mentioned use-cases. Initially we focus on layered ap-
proaches based on 1D convolutions, that, as indicated by several recent research results, can be effectively used to classify
and segment time series and sequences, as well as in tasks involving sequence modeling. In multiple scenarios a convolution
approach applied on the time dimension, hereafter called Temporal Convolution Network (TCN) can outperform classic
strategies relying on recurrent networks in terms of accuracy and training time. We modified NEURAghe to support TCN and
validate results on an ECG-classification benchmark, achieving up to 95% efficiency in terms of GOPS/s with respect to the
accelerator peak performance.
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1. Introduction

Recent studies demonstrate the effectiveness of CNNs, already extensively used for computer vision applications, over tasks
like audio synthesis ([26]) and word-level language modeling ([6]). Moreover, among classical convolution approaches, there is
an increasing interest towards non regular kernel shapes, like those applied for separable and deformable convolutions. A
specific research work, like Bai et al. ([2]), demonstrates that the implementation of a Temporal Convolutional Neural Network
over typical sequence modeling tasks can outperform more commonly used Recurrent Neural Networks (RNN).

Nowadays also, a broad range of mono-dimensional CNNs are used for human signals analysis tasks like ECG classification ([8])
or action detection ([16]).
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The ubiquitous success of CNNs and their high demands in terms of computing power have motivated during past years a huge
outow of research aimed at developing hardware accelerators for CNN inference. Among other solution, one of the most
adopted has been exploiting the cooperation between general purpose processors and FPGAs in modern SoCs, like Xilinx Zynq,
providing an efficient implementation of MAC operations on the large amount of DSP Slices available.

Previous mentioned areas of application together with the different convolutional schemes suggest that these kind of hardware
accelerators need to be as exible as possible, supporting multiple CNN’s features.

Looking to this objective, and motivated by recent claims about the effectiveness of TCNs in different application domains, this
work explores the capabilities of a CNN inference accelerator, NEURAghe [21], over a TCN use-case. To this aim, the architecture
has been enhanced to support freely selectable kernel sizes and dilated convolutions, with freely selectable dilation rates,
providing the exibility needed in most TCN algorithms, as well as in regular CNNs.

We report a performance analysis and propose an optimization method relying on batch processing to improve efficiency.

The TCN under test with its parameters variability over layers represents a good benchmark for the architecture’s exibility
capabilities.

2. State of the Art

Convolutional Neural Networks have become the state of the art solutions in fields which concern computer vision tasks like
image recognition [11, 18, 1], face detection [25], video classification [15].

They are also used in applications requiring a mono-dimensional elaboration of data like sentence classification [17], speech
recognition [10], text understanding [28] and Natural Language Processing tasks [24].

More recent applications involves machine translation [14], audio synthesis [26] and language modeling [6].

On the other hand Recurrent Neural Network (RNN) are considered the go-to solution for sequence modeling tasks [7], although
they are difficult to train leading to commonly used architectures like LSTM [12] and GRU [3].

Nevertheless, in a recent study, Bai et al. ([2]) questioned the common association between RNN and sequence modeling. They
proposed a Temporal Convolutional Network template that outperforms recurrent architectures like LSTM and GRU in sequence
modeling benchmarks often used to evaluate RNNs.

Another type of application, recently targeted by TCNs, involves human signal analysis like ECG classification ([8],[19]) or
action detection ([16], [30], [29]).

With respect to CNN applications for Computer Vision, during years, many hardware solutions have been proposed in order to
accelerate the inference task. Among different solutions adopted, one common approach exploits modern SoCs integrating both
a general purpose processor and a programmable logic [22, 27].

Other works proposed FPGA based accelerators for LSTM RNN, like [9].

To our knowledge there are no FPGA-based architectures that specifically tackled the problem of hardware acceleration for
sequences processed by Temporal Convolutional Neural Networks.

3. TCN model

The input of the network is a continuous sequence of samples from a set of source channels. While in some use-cases input
processing can be executed o-line, multiple applications require continuous and near-real-time analysis of the input aimed at the
identification of specific events and/or at promptly taking decision on specific actions. In this case, the TCN must analyze as
soon  as possible any new input sequence sampled by the system and update at every new sample time. At every time step the
network processes a sliding window whose minimal size is known as receptive field of the network. This is the smallest amount
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Figure 1. TCN execution

of samples needed to produce an output and depends on convolutional layer parameters such as the kernel size and the dilation:

receptive field = 1 + Σ [kernel size (l) − 1] × dilation (l) (1)
L

l=1

where l ∈ 1, 2...L is a layer of the network.

Figure 1 represents a computational step of a TCN with different layer parameters. Each input or output dot must be considered
as a vector with its own dimension in terms of number of channels. The figure shows how many input samples are needed by
each layer to perform a valuable convolution and how kernel size and dilation affect the receptive field. Moreover, especially
with different dilation rates, the network can have longer memory without increasing too much the depth and the number of
parameters to train.

4. NEURAghe Architecture

The starting point for this NEURAghe architectural template has been the one described in Meloni et al. [21]. This architecture
exploits the cooperation between the ARM Cortex-A9 processing system and the programmable logic in Xilinx Zynq devices.
Communication at the PS-PL interface is guaranteed by the high performance 64 bit ports and two general purpose 32 bit ports.

The programmable logic hosts the Convolution Specific Processor (CSP) while the processing system acts as a General Purpose
Processor (GPP) dealing with tasks hardly to accelerate in the programmable logic, like fully connected layers execution. In this
work, the CSP has been enhanced with respect to the previous version to improve the accelerator’s exibility towards various
networks characteristics. In particular there has been a substantial modification of the Convolution Engine, previously charac-
terized by the so called Line Buer and a complete different SoP module model. The former, in charge to supply convolutional
windows to the SoP matrix, has been removed thanks to the new pixel fetching method, while the latter, composed by a double
trellis of pipelined DSPs, has been completely redesign. Both changes let the architecture to be more exible. Finally the transfers
capabilities are improved by doubling the Weight DMA.

4.1 Convolution Engine Organization
The Convolution Engine is the computational core of the accelerator. It is designed to execute a high number of Multiply and
Accumulate (MAC) operations in parallel, to relief the host processor from the most computational-intensive tasks of a CNN. It
is composed by a matrix of M columns by N rows of Sum of Product (SoP) units in charge to calculate the contribution of M input
features to N output features. Partial result from SoPs in each row are summed together by means of N Shift Adder modules.

In more detail, each SoP reads 4 samples=cycle and executes 4 MACs=cycle, one for each of the 4 consecutive kernel windows
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applied to an IF. In this way a SoP module produces 4 new output samples after kernel size cycles. Every output sample produced
can be sent to the Shift Adder module.

Figure 2. NEURAghe 2.0 architecture

Figure 3. Convolution Engine
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In this configuration the C.E. has a 12 ×  4 SoP matrix, therefore, every clock cycle, 4 samples of 12 input features are fetched to
SoPs from the C.E. internal memory (TCDM), by means of the Activation Source modules. Samples of every IF are sent to the 4
SoPs of a column. Whereas 12 × 4 weight kernels are independently fetched from Weight Memory banks by means of the
Weights source module.

SoP modules are built using 4 Xilinx DSP48E1 primitives configured to perform a MAC operation per cycle using the internal
loop to iterate among consecutive partial result given by a weight kernel application. This design allows the accelerator:

• To be kernel size agnostic,

• To execute convolutions with multiple stride values without performance overhead.

As the Convolution Engine works on 16-bit sample data, every SoP reads 64-bit activation data per cycle and multiplies all four
pixels for the same kernel weight. Thus each SoP needs to read only 16-bit weight data per cycle.

Shift Adder modules read 64-bit data that are 4 16-bit values resulting from the previous 12 IF contribution and produce 64-bit
data output summing together these inputs and those given by the actual 12 IF contribution.

4.2 Scheduling
As NEURAghe exploits a double buered memory policy, local memory banks are subdivided in two parts, one dedicated to the
data needed for the actual computational step, while the other allows to perform data transfers that will be used for the next
phase. This allows the accelerator to overlap transfers with computational phases aiming to reduce idles.

From the efficiency point of view, the best situation is when all transfers are overlapped by execution phases because it is
exploited all the computational power of the accelerator.

4.3 TCN Model on NEURAghe
Temporal CNN characteristics allow NEURAghe to handle samples of different layers in a specific way that slightly differs from
regular convolutions. As mentioned above, kernel size and dilation affect the receptive field of the network that defines the
number of input samples that must be processed to gain a new output. Furthermore, for every layer a specific receptive field can
be considered, given by:

Figure 4. TCN execution example on NEURAghe. Receptive field samples are loaded to C.E. memory for execution and only
new ones are stored back in memory
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1 + (kernel_size − 1) × dilation (2)

that is the minimum number of input samples per channel needed to obtain an output sample from a layer. Figure 4 shows the
memory status in different moments for two layers of an example network. In this example, layers N and N + 1 are characterized
by the same kernel size of 2 and dilation of 3 and 2 respectively. For the sake of simplicity, it is represented a single sample update
instead of the 4 processed by the accelerator.

As it can be seen, for every computational step, it is necessary to retain in memory only the samples equal to the specific
receptive field of each layer. As a consequence, every transfer concerns only this minimum amount of samples per channel.

4.4 Improving through Batch Processing
The previously mentioned approach minimizes the classification/recognition latency. It produces outputs as soon as possible
and repeats network execution every time that a new sample is available to update the input sliding window.

However, this can determine the performance of the system to be easily bandwidth limited. All the network parameters/weights
have to be loaded on the accelerator local memory and are used only for the production of one single output. This decreases
significantly the operational intensity of the application.

As an example we show a rooine model of our system in Figure 5. The leftmost red symbol indicates the performance achieved
when using the sample-by-sample processing on the use-case that will be presented in the following.

Figure 5. Use case benchmark’s Rooine Model for the Convolution Specific Processor with respect to different batch size

As it may be noticed, in this case, the system performance are definitely limited by input/output bandwidth.

If the application allows to trade-o some increase in latency to improve performance, a solution to this problem may rely on batch
processing. We can pre-buer input samples and process longer sample sequences producing more outputs with every TCN
execution. Figure 6 shows the transfer scheduling when batch size is increased.

Increasing the batch size, with the same weight transfers from DDR to local memory, we perform more computations. In this way,
it is possible to increase the operational complexity and to gain efficiency, see other red symbols in Figure 5.
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Figure 6. TCN execution with batching on NEURAghe The number of samples needed depends on the receptive field but
increased of Batch size = B samples. The C.E. produces B new samples

4.5 Resources Utilization on Target Board
The NEURAghe architecture is scalable and can be implemented in different devices like those which are part to the Xilinx Zynq-
7000 SoC family. In particular, the configuration described above is highly suitable for boards, like the Zedboard, integrating a
Xilinx Zynq Z-7020. Table 1 shows the resource occupation of the reconfigurable logic of the device.

DSP BRAM   LUTs LUTs Regs
(logic) SR

Used 192 120 47230 259 26942

Available 220 140 53200 53200 106400

% 87.27 85.71 88.78 1.49 25.32

Table 1. Resource occupation on a Xilinx Zynq Z-7020

It is worth noticing that the architecture uses 192 out of the 220 DSP blocks available in the device, so the processing power
utilization is very high. Also the Block RAM primitives are extensively used due to the particular Weights Memory implementa-
tion. The accelerator on Zedboard is clocked at 80 MHz.

5. Use case network: ECG Classification

The use case that we have chosen as benchmark is a network for ECG monitoring and classification (Goodfellow et al. [8]). It
performs a classification over single lead ECG waveforms as either Normal Sinus Rhythm, Atrial Fibrillation, or Other Rhythm
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and reaches around 90% average accuracy over targeted single lead ECG waveforms. Experimental dataset for this network are
characterized by 16 bit batches of data sampled at 300 Hz frequency. The network consists of 13 computational blocks mostly
made of a 1D Convolutional layer, a batch normalization layer, a ReLU and a dropout stage. Only 3 layer have also a Max Pooling
stage with a pooling size of 2 between ReLU and Dropout. Computational blocks have decreasing kernel sizes while dilation
parameter increases through the network. The analysis of the architecture performance has been made distinguishing three
operative modes: latency constrained network, latency unconstrained network, realtime execution. For the first one the minimum
input sized version of the network has been considered since it ensures best performance in terms of latency.

In Table 2 are shown the characteristics of convolutional layers of the network along with minimum input size required. The
latency constrained configuration provides best performance from the point of view of total elaboration time for a new output

input size IF OF kernel size dilation rate

Type 1 27 1 320 24 1

Type 2 34 320 256 16 2

Type 3 64 256 256 16 4

Type 4 32 256 128 8 4

Type 5 46 128 128 8 6

Type 6 60 128 128 8 8

Type 7 60 128 64 8 8

Type 8 60 64 64 8 8

Table 2. Convolutional Layer characteristics and minimum input sizes required by the CE

value of the network. On the other hand this configuration lacks in terms of efficiency with respect to peak GOPS = s reachable
by NEURAghe (first column of Table 3).

Low efficiency for this configuration is due to the huge weight transfer overhead with respect to the very short activation load
time and execution time. So, despite the double buered scheduling strategy, transfer and computation phases hardly overlap.

If the target application has no latency constraint it is possible to work with much more activation samples as input for every
layer. In particular when the execution time reaches and surpasses transfer times the architecture can get performances very
close to the peak, as it is shown in third column of Table 3.

As a third case it can be considered that for which the latency constraint is not as tightening as for the rst case and it is possible
to increase the efficiency without compromise performance from the point of view of the execution time.

In particular it is possible to do interesting assumption about a real time operating mode by referring to the sample rate
mentioned in the paper, that is 300 Hz.

Second column of table 3 also shows that by buering a small amount of samples, that is increasing the batch size parameter by
8 samples, before feeding the accelerator, it is possible to substantially gain in efficiency without loss in performance with
respect to the latency constrained configuration. Moreover, having an initial buering of 8 samples means that the accelerator has
a new batch every 26:67 ms which is enough to complete an end-to-end computation for this network.

6. Conclusions and Future Work

In this work has been presented an application towards Temporal Convolutional Networks of NEURAghe, an FPGA-based
hardware accelerator enhanced to be kernel and dilation rate agnostic and also to process inputs with multiple stride values,
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Batch Size = 1 Batch Size = 8 Batch Size = 348
exec: GOPs = s effic: time [ms] exec: GOPs = s effic: exec: time [ms] GOPs = s effic: time [ms]

Type 1  0.413 0.148 0.0048 0.467 0.394 0.013 2.484 2.176 0.07

Type 2 3.172 3.305 0.107 3.256 9.66 0.314 31.409 29.37 0.95

Type 3 2.64 3.17 0.103 2.755 9.13 0.297 25.644 28.78 0.937

Type 4 0.87 2.4 0.078 0.874 7.19 0.234 6.836 26.99 0.878

Type 5 0.545 1.92 0.062 0.558 5.64 0.183 3.6 25.63 0.834

Type 6 0.543 1.93 0.062 0.558 5.64 0.183 3.61 25.56 0.832

Type 7 0.38 1.38 0.044 0.385 4.08 0.132 1.96 23.54 0.766

Type 8 0.29 0.88 0.029 0.304 2.58 0.084 1.236 18.66 0.607

Table 3. Convolutional Layer performance for latency constrained, real-time execution and latency unconstrained network

without overhead. Motivated by recent claim about TCNs implementation over various applications it has been made an
explorations of the architecture’s performances with respect to convolutional layers of an use case TCN. Results showed that
the architecture has a good exibility over various layer characteristics. It has also been showed how performances improve by
changing the computational paradigm, going from a latency constrained approach to a batched approach, by agreeing with a
certain latency.

The next step can be exploring different architectural configurations suitable both for different target devices and dierent TCNs
in order to find the solution that adapt best.
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