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ABSTRACT: Navigating in indoor environments requires identifying shortest paths or routes which require extensive

algorithms deployment. To fix the best shortest route, theories and heuristics based on cost, efforts and other functions

need to be used. For path planning, we have used many surveys and parameters outlined in literature. We convert the

cost, efforts and other functions while determining routes to metrics that help to generate weights for each parameter.

The weight assigning activity is based on grid search. Guiding algorithms are used to find plan routes and accepted by

humans. We have used eleven parameters which were used in the earlier research to improve the path finding algo-

rithms. The algorithms that is generated has listed all parameters to find the shortest route. This algorithm permitted to

use quantitative variables for assessing factors and their impact. For deriving shortest path, we have considered doors,

entry ways, heights and elevation, streets and other factors for deriving the best paths. Navigation bends and a few

more factors have impact while developing algorithms.
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1. Introduction

Finding a way through their immediate environment to reach a sought destination is a task highly relevant to humans since

they see themselves confronted with it regularly. Due to the available options of traveling and visiting unfamiliar cities in

foreign countries, the cultural differences as well as the possible language barrier may further complicate wayfinding tasks.

Being able to facilitate situations like these, location-based navigation services, particularly those intended for car naviga-

tion, enjoy great popularity and have established themselves as indispensable supporting tools for navigation in the modern

world, as indicated by the high usage of Google Maps [17].

Although still overshadowed by the ubiquity of outdoor navigation systems, indoor wayfinding is not anymore an obscure

area of research and it might be that in this setting navigational support might be needed most. Wayfinding, meaning the goal-
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oriented process of a person finding a predefined destination [2], often involving navigation through large areas without

initial perception of the target location [27], is deemed a cognitive challenging task requiring a variety of mental resources

[35].

In addition, indoor spaces exhibit structural attributes, such as the additional dimensionality inherent in multi-storied build-

ings [18] or the lack of reliable methods for localization [42], which give rise to further difficulties and require current

systems to be adapted to this navigational context.

This likewise concerns the pathfinding algorithm: due to the current lack of geospatial research regarding this setting, em-

ployed algorithms have shown little to no deviation from optimizing only in regard to the route’s efficiency disregarding

human preference. Previous studies, as discussed in subsections 2.2, 2.3, and 3.3, have determined a multitude of diverse

criteria as influential to people’s path choices, yet quantification of their impact and applicability in indoor environments

remain to be studied.

2. Related Work

2.1 Difficulties of Indoor Navigation

The reasons for which indoor navigation systems lack the popularity and widespread use their outdoor counterparts are

enjoying are twofold.

Firstly, there exist additional difficulties regarding the implementation of indoor navigation systems. The additional third

dimension, the height, inherent in multi-level buildings creates challenges regarding a suitable design for the visual projec-

tion onto the small two-dimensional screens of smartphones [5]. This is important for providing easily comprehensible and

unambiguous instructions to the user to direct them to the correct floor. Hence, conventional visualizations and user inter-

faces of map-based applications are not predestined for wayfinding support inside buildings.

Yet the most crucial obstacle to overcome is likely the absence of a reliable method of localization. Whereas the vast

majority of outdoor navigation systems make use of Global Positioning System (GPS) signals [42], this does not constitute

a viable option indoors. These signals manage to pass through the walls and ceilings of buildings only sporadically, rendering

it an unsatisfactory solution for optimal navigational support [42]. Although numerous alternatives, including WiFi, Bluetooth,

and Infrared, have been proposed, these too entail drawbacks regarding performance, cost, or reliability. [42]

Furthermore, human orientation may also prove more challenging in this setting. The third dimension, i.e. multiple stories

inside buildings, creates challenges not only for the system’s ability to display information but for human wayfinding as well.

Staircases have been identified as the location where mistakes are being made most frequently during a wayfinding task [18];

other research supports the idea that people struggle with vertical, rather than horizontal, movement, which might be ex-

plained by the mistaken assumption that a building’s layout is identical across floors [43]. A restricted field of vision due to

walls and corners makes the usage of landmarks as points of reference only possible if they are local or in direct line of view,

whereas in outdoor spaces global landmarks, such as towers or the city skyline, can also support wayfinding. [52].

2.2 Influential Factors

There is reason to contest and doubt that humans’ behavior is purely rational and can be explained with conscious and delib-

erate reasoning alone for we are susceptible to numerous biases in our ways of thinking and decision making [23].

The same holds for wayfinding behavior: while the most logical path to the desired destination would generally be the

shortest or least time consuming one, this does not align with actual human conduct or preference [3, 14, 3, 54].

Afyouni, Ray, and Claramunt [1] suggest a classification of the context in which decision making takes place that can also be

applied to wayfinding tasks. The user-centered context takes into account the navigator’s profile, such as mental capabilities

f visualization [44] or rotation of objects [32], their age [45] and gender [28], or cultural background [20]. The context of

execution, on the other hand, describes qualities of the information systems which aid the user; the representation of maps

and real-world references used by mobile applications [38] has been found to impact navigational success, and so do conven-

tional means of support, such as signs and paper maps to varying degrees.
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What is most relevant for the adjustment of the pathfinding algorithm, however, can be described by the environmental

context.

According to Lynch [29], the components most crucial for the formation of mental maps are paths, edges, districts, and

landmarks, which, belonging to the same mental models, exist in connection and mutual interference. This concept fits well

into the research conducted, which suggests that humans mentally visualize their environment as being structurally equiva-

lent to a network of streets and paths [13, 27, 33].

In this sense, the definition of a path’s complexity contrived by Golledge [14] and since adopted into the work of many others

[11, 19, 40] is to consider the number of streets or turns connecting them.

Alternative approaches [4, 12, 16, 40, 51] of achieving simplicity take into account the number of decision points, i.e.

intersections of multiple streets, or their branching factor. It is defined by the number of streets meeting, thus considered a

measure of difficulty or complexity of a decision point [37] and increasing the possibility of losing one’s way [2].

Rather than the number of branches, Dalton [8] found a preference for choosing the maximum, rather than mean or minimum,

angles of paths available at decision points, meaning that people were more likely to choose the way that was aligned most

with from where they were coming, presumably as a complexity-minimizing strategy. Further observations support the idea

of people’s predilection towards maintaining linearity in their routes [7, 34, 41, 53].

Similarly, another study points towards a human preference of decreasing the angular distance to the destination (Turner,

2009) at decision points, favoring this over a reduction of the Manhattan distance.

Other than a preference for simple paths, the absence or presence of certain path entities could serve as a decisive factor.

Landmarks, defined by their conspicuity and recognizability [6, 29] commonly function as points of reference and may help

reduce cognitive load for orientation [15]. For staircases, both a preference [24] and avoidance [24, 26] have been identified.

2.3 Alternatives to the Shortest Path

Variants for the cost function in path planning have been proposed with different objectives in mind. Grum [16] describes a

way of extending the Dijkstra algorithm so that it incorporates a weight for the risk of making a wrong decision at an

intersection proportional to the distance of the mistakenly chosen path, assuming that the navigator notices their mistake at

the next decision point and retraces their way. In this manner, not the shortest path, but the one with the least danger of getting

lost is computed. Yet, the question remains open how the risk for wrong decisions may be estimated for arbitrary environ-

ments.

Duckham and Kulik [11] proposed a way of calculating the simplest path, using solely a measure for ease of navigation by

weighting route instructions without taking distance into account at all. Instructions needed to navigate decision points were

penalized according to adjusted slot values for turns and branches as proposed by Mark [31], yielding the sought-after advan-

tages.

Physically constrained people constitute a group of users which might benefit immensely from adjustments to conventional

navigation systems. A proposed way of achieving this is by taking into account edge weights other than distances, thus

considering specific user preferences such as avoiding stairs or minimizing turns which can be input directly by the user

[30].

In contrast, introducing a measure of beauty as a way of suggesting short routes that are perceived to be emotionally pleasant

was accomplished by crowdsourcing of people’s judgments of places along the dimensions beautiful, quiet, and happy, mak-

ing use of pictures from Google Street View or taken by volunteers [39]. Such an aesthetic criterion has not been considered

by the persons who provided us with their preferred routes, because they tried to reach their destination as quickly and easily

as possible. However, [22] report that minimizing the number of turns is a key criterion for route planning in outdoor

environments. Such routes seems to be more easily perceivable and cognitively less demanding.

In our study we evaluate, whether this result can be transferred to indoor environments and whether other criteria (e.g. level
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changes or use of elevators) that result from indoor architectural constraints also influence human decision making for

route planning

3. Route Calculation

To operationalize the above research question, we make use of the indoor navigation system URWalking [36, 49]

(urwalking.ur.de). It implements Dijkstra’s algorithm [10] to determine the shortest path in terms of the distance between

starting point and destination in meters.

3.1 User Preferred Routes

Our empirical study is based on a data set of 221 routes, collected both during the summer (100 paths) and winter semester

(121 paths) at the University of Regensburg, thus accommodating for differences in weather and temperature. All partici-

pants, 129 of which were male, stated to be highly familiar with the environment and ranged in age from 19 to 33 (mean age

= 22.93, SD = 2.67). As means for data collection, participants were asked to walk and describe their daily route on the

campus. The university campus spans over an expanse of 1 km2 and includes 16 buildings with a sum of 86 individual floors

and 5228 rooms, encompassing both paths indoors and outdoors [36].

The aim of the data collection was to find out whether modifications of URWalking’s path planning algorithm could lead to

routes users enjoy taking, so as to find a compromise between the theoretically minimal walking distance and the distance of

preferred paths (i.e. can we approximately simulate human decision making using Dijkstra’s efficient algorithm?). For the

envisioned modifications, we identified criteria in research literature that are argued to impact human decision making

during wayfinding tasks.

3.2 Criteria

The criteria that will be described in the following were chosen due to the extent of the research they are supported by and

applied in, and also based on the feasibility of their incorporation into the Dijkstra algorithm. The scope of literature on the

measurement of path complexity suggests that there is no agreed-upon answer as to how to define it. Although a few studies

have suggested more elaborate ways of ruling how complex a path is, a few elementary classifications resurface frequently

across research papers. We identified 11 factors:

A straightforward way to determine complexity is by considering the (1) number of turns a route contains. Regarding the

definition of what constitutes a turn in navigation the answers once again are ambiguous. According to the Cambridge Dictio-

nary [47], a turn can be considered “a change in the direction in which you are moving or facing”. Although in some studies a

sufficient change in directions achieved only when the angle between two path segments is smaller or equal to 90 degrees

[19, 50], others interpret every branch at a decision point to count as a turn [11, 25].

A related factor influential to wayfinding is the (2) number of streets, meaning the path segments separated by decision

points or turns of any kind [19]. Considering only turns up to a maximum angle of 90 degrees would not account for the

number of streets whereas disregarding the angle entirely would run the risk of accounting for turns that might not be

perceived as such due to their small deviation from a linear path. For these reasons, both of the definitions of what consti-

tutes a turn were examined: weighting turns regardless of their angle will acknowledge the number of streets more com-

pletely, and following the definition in accordance with [19] comprises a more traditional way of regarding turns and assess-

ing their impact independently.

The (3) number of decision points themselves was considered for route calculation as well. Since the number of paths at a

junction demanding a decision is two in addition to the path the navigator came from, a decision point in this study was

defined as an intersection of three or more paths; their exact number was disregarded and every path located at a point which

fits this definition was penalized in the same way.

The (4) branching factor, meaning the number of intersecting paths, was regarded separately. To weigh the paths propor-

tionally to their quantity, every path at a decision point received the additional weight times the number of intersecting paths.

These weights were taken into account only at places that qualify as decision points corresponding to the aforementioned

definition.
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The findings on which paths at intersections constitute the most likely choice are ambiguous, which is why two divergent

findings were considered. One is the preference for selecting the path which most closely aligns with the global direction of

the destination [48], being equal to the avoidance of all paths other than the one with the (5) minimum deviation angle.

Alternatively, a preference for (6) linearity [7] might influence the person navigating to continue their route along the most

linear path, i.e. the path with the largest angle (between 0 and 180 degrees) in regard to the direction from which the navigator

arrived. For this, all except the most linear branch at a decision point were penalized, allowing for the option of exempting

two branches in case of identical largest angles. To keep with the definition of linearity as well as Dalton’s study [8], the

condition was added that the largest angle had to span 150 degrees or more. If there was no such angle, e.g. in a T-crossing, no

weighting was carried out.

Due to the contradictory nature of the literature regarding the preference for (7) staircases in routes, both a preference for

and avoidance of stairs were considered. (8) Elevators constituted the only alternative for changing floors at the university;

hence the avoidance of stairs, being equal to a preference for elevators, was implemented by adding weights for every

staircase and vice versa.

Another element to be taken into consideration for indoor environments exclusively is doors. The path network used for

calculating routes includes different types of nodes that differentiate between (9) doorways, (10) entrances to closed

premises such as offices or lecture halls, termed entryways, and (11) revolving doors. Since it has been found that doors

take on the function of important landmarks in indoor spaces, and serve as transitions between separate spaces [46], the

effect of doors, with the above-mentioned differentiation, will be included in the analysis.

We modified the original URWalking path finding algorithm such as to separately take the 11 above factors into account and

to identify their optimal weights for calculating optimal routes. This constitutes a method of path calculation that, while still

maintaining the objective of minimizing distance, can easily integrate different factors and assign them distinct levels of

importance.

Algorithm 1 Dijkstra’s algorithm (source: Wikipedia).

Result: Shortest paths to all nodes starting from source create vertex set Q;

for each vertex v in Graph do

dist[v] ← INFINITY;

prev[v] ← UNDEFINED;

add v to Q;

dist[source] ← 0;

end

while Q is not empty do

u ← vertex in Q with min dist[u];

remove u from Q;

for each neighbor v of u do

alt ← dist[u] + wlength(u, v);

if alt < dist[v] then

dist[v] ← alt;

prev[v] ← u;

end

end

end

return dist[], prev[];
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The standard shortest path definition of wlength(x, y) is the metric distance length(x, y) between two nodes x and y con-

nected by an edge. The operationalization of the identified factors is quite straightforward: we simply modified the cost

function used by Dijkstra’s algorithm (see Algorithm 1). The key to taking the factors into account is a modification of the

function length(x, y) for the cost of edges in the graph. In the standard version, the function computes the distance between

x and y in meters. In our modifications, we add artificial, heuristic costs to length(x, y). We apply the idea that a factor can be

accounted for by extending the distance between x and y, i.e. by making artificially the edge (x, y) more expensive. For each

factor, a particular criterion determines whether it actually applies for an edge currently considered by Dijkstra’s algorithm:

1. Number of turns:

wlength(x, y,w) =

2. Number of streets:

wlength(x, y,w) =

 length(x, y) + w angle(x, y) ≤ 90

length(x, y) otherwise

length(x, y) + w angle(x, y) ≤ 180 (route does not continue straight on after y)

length(x, y) otherwise

3. Number of decision points:

wlength(x, y, w) =

4. Branching factor:

wlength(x, y, w) =

5. Minimum deviation angle:

length(x, y) + w x has at least three neighbours

length(x, y) otherwise

length(x, y) + n.weight x has exactly n neighbours and n ≥ 3

length(x, y) otherwise

6. linearity:

wlength(x, y, w) =

7. staircases:

wlength(x, y,w) =

length(x, y) + w  x has at least three neighbours and y ≠  argmax
z

angle(x, z) and max
z

angle(x, z) ≥

150

length(x, y) otherwise

length(x, y) + w y is an edge of type staircase

length(x, y) otherwise

wlength(x, y,w) =
length(x, y) + w x has at least three neighbours and y ≠ argmin

z
angle(x, z)

length(x, y) otherwise
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8. elevators:

wlength(x, y,w) =

9. doorways:

wlength(x, y,w) =

10. entrances:

wlength(x, y,w) =

11. revolving doors:

wlength(x, y,w) =

length(x, y) + w y is an edge of type elevator

length(x, y) otherwise

length(x, y) + w y is of type doorway

length(x, y) otherwise

length(x, y) + w y is of type entrance

length(x, y) otherwise

length(x, y) + w  y is of type revolving-door

length(x, y) otherwise

In these definition w is a constant whose value determines by how many meters the length of an edge between x and y is

extended. Consequentially, the shortest path gets “longer” the more instances of the respective considered factor it includes.

With this model, our main task is now to determine values of w for each factor that maximizes the similarity between routes

calculated by URWalking and those chosen by the participants of our study.

3.3 Systematic Search for Optimal Weights

Our intuition is that a meaningful assessment of similarity between two routes r
1
 and r

2
 reflects the length of shared path

segments, i.e. edges in r
1
 and r

2
:

with length (r) = Σ
e∈r

 length(e) for any route r and length(e) = length (x, y) with x being the source node and y the sink node

of any edge e.

In other words, the calculated Similarity Score similarity(r
1
, r

2
) was defined as the sum of the distances belonging to shared

edges divided by the length of the shorter path (analogous to [21]). Following Delling et al.’s [9] approach, the mean of the

similarity scores across all path comparisons was then considered for assessment of the algorithm, i.e. each factor’s indi-

vidual impact on wayfinding.

To identify an optimal weight w for each factor, we performed a systematic grid search for this one-dimensional parameter.

Overall, we performed 11 independent searches considering a different factor in each search.

In such a search, we first set w = 0 to identify the shortest path in terms of the metric distance between a fixed start and

destination. Then we iterated over w and incremented it by 1 in each iteration. As the cost function wlength(x, y, w) computes

costs in meters,  incrementing w by 1 adds one meter to the physical distance between x and y allowing a detour of 1 meter

for a path still to be identified as the shortest path, this time however taking one of the identified factors into account. After

having calculated this shortest path for a fixed w we computed the similarity score to preferred routes in our data set with

identical start and destination resulting in a list of similarity scores for which we could easily calculate a mean similarity. We

repeated this process for all pairs (start, destination) in our data set and calculated a mean similarity score for the fixed w.
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We proceeded in the same way for each value of w in the interval of [0, 25] (see Figure 1). For 25 < w ≤ 100 we changed the

step size to 10. Should a higher similarity be observed here than was calculated for weights in range 0 to 25, the scope of

weights that are sampled in intervals of 1 was extended. This served to ascertain that the best possible results did not lie

beyond the boundary that was established.

The maximum detour from the shortest path in order to satisfy user preferences that would still be considered acceptable

amounted to w = 100 meters. However, as can be seen in Figures 1 and 2 the similarity between calculated paths and user

preferred routes was maximal for w < 25 for each of the factors considered.

4. Results

The work was conducted to find answers to the following questions, the answers to which are laid out in corresponding

subchapters:

1. Does the consideration of the individual criteria, which were found to be influential to human wayfinding in previous work,

lead to a higher similarity to paths that align with human preferences compared to the shortest path? And if so, to what extent?

2. Assuming independence, how does a combination of all criteria with their respective optimal weights impact path similar-

ity?

3. How do the criteria found to be influential compare to one another regarding their impact on human path selection?

4.1 Individual Evaluation

As described in the preceding chapter, for each factor, the average Similarity score was calculated in dependence on its

weighting in order to determine which weight would lead to the best possible average approximation of the entire set of 221

user paths. Starting off the weighting with an increase of 1 in the range of 0 to 25, or if needed higher, provided the weight

which leads to the optimum result. The unaltered shortest path displayed a similarity of 50% to the user paths.

As shown in the following figure, not all factors led to an increase in similarity regardless of the added weight. This proved

to be the case for the following factors: decision points, branching factors, doorways, staircases, minimum angle to the

destination, and linearity at decision points. For the 5 Results 28 sake of a uniform presentation, all plots encompass a

sampling of weights in the range of 0 to 25.

An improvement of the similarity means was therefore reached for all the other inspected criteria, which were turns, streets,

entryways, revolving doors, and elevators. The plots depicted in the plots figure 2 visualize the relation between the weights

and their improvement, a perpendicular red line marking the weight belonging to the corresponding maximum similarity

score.

                          (a) Similarity Scores of Angles                                      (b) Similarity Scores of Branching Factor
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     (c) Similarity Scores of Decision Pointa                       (d) Similarity Scores of Doorways

             (e) Similarity Scores of Linearity    (f) Similarity Scores of Staircases

4.2 Combination

Assuming independence, all criteria that have been found to bring about a positive change in similarity score in the preceding

section were then combined into one algorithm, each with their established best weight.

Due to the complementary nature of the factors turns and streets, which both penalize slightly altered variations of a devia-

tion from a straight path and are thus evidently not independent from each other, taking into account both of them would lead

to duplicate weights being added for some edges; only turns were therefore considered in this step since a bigger increase in

similarity was observed. With an absolute similarity score of 52.30%, this combination of criteria also resulted in a better

approximation of user paths.

Figure 1. Similarity Scores of Noninfluential Criteria
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(a) Similarity Scores of Elevators (b) Similarity Scores of Entryways

             (c) Similarity Scores of Streets                          (d) Similarity Scores of Revolving Doors

(e) Similarity Scores of Turns

Figure 2. Similarity Scores of Influential Criteria
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4.3. Comparison

Table 1 lists the results for each factor and their combination in descending order of resemblance to the user paths measure

by similarity score. Additionally, the percentage of affected paths is displayed.

The greatest increase in similarity measured 2.43% and was achieved by turns, i.e. a reduction in the number of turns span-

ning 90 degrees or less, followed by the combination of criteria with 2.26%. The avoidance of revolving doors produced the

smallest improvement of 0.28%.

Factors Weight Similarity Score Difference to SP Impacted Paths

Turns 1 52.47% 2.43% 19.91%

Combination varied 52.30% 2.26% 32.58%

Streets 1 51.48% 1.38% 19.46%

Elevator 17 50.85% 0.81% 8.60%

Entryway 16+ 50.55% 0.51% 11.76%

Revolving Door 25 50.32% 0.28% 2.26%

Table 1. Sorted Table of Criteria with Scores and Percentage of Impacted Paths

5. Discussion

In consideration of the individual factors, one must retain that not in each case it was a higher number of occurrences that

increased or decreased the assessed similarity to user paths. Following the elaboration of the criteria’s specific implemen-

tation in 4.3, it was their avoidance instead that was implied.

Many of the considered influential factors, previously found to be impactful, did not lead to the computation of paths that

were more similar to those people prefer. This was the case for paths that integrated the avoidance of decision points, their

reduced branching factors, the avoidance of entrances to rooms, as well as staircases, and a preference for choosing paths

that either minimized the global angular distance to the destination’s location or aligned with the most linear path selection

option. Consequently, all other factors – the avoidance of elevators, entryways, revolving doors, turns, and streets – pro-

duced an increase in similarity.

A comparison shows that not only did the criteria’s impact on the similarity to user paths vary, but so did the number of

affected paths: the differences between the “best” factor (turns) and “worst” one (revolving doors) are almost ten-fold

regarding both similarity (2.43% vs. 0.28%) as well as impacted paths (19.91% vs. 2.26%). This certainly may be explained

by the frequency with which each factor or entity occurs, for to produce significant changes it has to be present in the paths

initially suggested by the shortest path algorithm.

A preference for the most impactful factor can be reinforced by the finding that with an increasing number of turns included

in a route, the likelihood of making a mistake while navigating, and thus the time needed for task completion, increases [37].

The erroneous perception that routes containing more turns are longer than routes with fewer turns despite being equal in

length (Dalton, 2003), might further explain our results.

In the cases of revolving doors, elevators, and entryways a boundless increase of their weights lead to an improvement

(Figures X), signifying that the banishing of all occurring entities would be in the interest of users. Unsurprisingly, since a

study conducted on part of the same data set already discovered a significant decline in the number of entryways in preferred

routes [36], it was found that adding weights for all occurring entryways would improve the similarity.
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The absence of entryways in the favored paths can be understood by considering the inconvenience this would imply, for

taking a shortcut through lecture halls would generally only serve as an option during breaks, or passing through shops or

offices would be equally unreasonable. A case against revolving doors can be made by considering that these types of doors

are generally not barrier-free and users of wheelchairs would naturally avoid them.

The avoidance of choosing elevators as a means of transitioning to other floors implies that people favored the alternative

option of taking stairs, which also concurs with previous findings [24, 36].

The results found are much the same for turns and streets, which can be explained with the apparent similarities of the

factors. Since turns only penalized right-angled deviations, and reducing the number of streets happened by penalizing all

deviations from a straight path, reducing the number of streets can be viewed as an extension of turns since above 90 degrees

(excluding 180 degrees) were also included.

Despite apparent similarities, a preference for linearity was not found and neither was a preference for minimizing the

angular distance. These results could be attributed to decision points, which by themselves, and consequently their branching

factor as well, were found ineffective. In addition, although such preferences have formerly been identified [8, 48], the

environments in which the studies took place differed greatly from navigating a university campus.

To find the optimal integration of multiple criteria into one algorithm, their specific weights would need to be identified

anew. As was expected given the incorrectly assumed independence of the variables, the results fell short of reducing the

number of turns alone. For taking dependencies between the factors into account, as a next step, we will train a predictor for

wlength(x, y) – i.e. a neural network that allows non-linear function approximation.

Given all these limitations and observations from our analyses, we can still claim that our algorithm finds a good compro-

mise between shortest paths and user  preferred routes: The objective of minimizing path distance, which was evident in

every route calculation performed, achieved conformity with the user paths of 50% on average without further augmentation,

and can therefore attest to align with human preferences. The overall results are encouraging for the incorporation of the

criteria, which were found to lead to an increase of the similarity score, to create an algorithm able to suggest paths that

humans like to follow.

6. Conclusion

This work aimed to acknowledge users as the focal point of navigational support systems and therefore suggest paths that

match with their preferences. To quantify the extent to which this is accomplished, a set of paths, which people take in their

daily lives, was considered representative of human preferences, and similarity to these paths was treated as a measure of

accomplishment. The assumption that people enjoy being suggested the same routes that they take in well-known environ-

ments might be flawed, since aspects regarding the navigation app, such as the ease with which instructions can be displayed

and comprehended, are disregarded. Some of the factors were not found to be influential in an indoor environment specifi-

cally, but rather in settings whose similarity to the one considered here seems dubious. Narrowing down the findings of

previous studies to research applicable to an indoor setting might help identify influential factors more successfully. On the

upside, putting these findings into a different context sheds light on their transferability and may offer insights into why they

have been found to impact wayfinding decisions. Future research might proceed by taking criteria into consideration that

have not been discussed and considered here, including not only environmental factors but more subjective criteria which

might be more difficult to assess. Lastly, shedding more light on the interrelations of influential factors might be necessary

for the conception of an ideal algorithm that can consider more than one element at a time.

As far as the comparison between indoor and outdoor environments is concerned, our study reproduces the results reported

in [22] for indoor environments: user prefer routes with a small number of turns. However, as indoor environments are more

complex that streets outside, also other criteria are influential. It is an interesting challenge for future work whether a

transformation of a graph in which nodes actually represent actual distances physical properties of the environment to

another model in which nodes represent inevitable choices (such as taking a turn) is feasible if multiple criteria have to be

considered simultaneously.
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