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ABSTRACT: We present a new method for the task of detecting groups of polygons in a given geographic data set and

computing a representative polygon for each group. This task is relevant in map generalization where the aim is to

derive a less detailed map from a given map. Following a classical approach, we define the output polygons by merging

the input polygons with a set of triangles that we select from a constrained Delaunay triangulation of the input poly-

gons’ exterior. The innovation of our method is to compute the selection of triangles by solving a bicriteria optimization

problem. While on the one hand we aim at minimizing the total area of the outputs polygons, we aim on the other hand

at minimizing their total perimeter. We combine these two objectives in a weighted sum and study two computational

problems that naturally arise. In the first problem, the parameter that balances the two objectives is fixed and the aim is

to compute a single optimal solution. In the second problem, the aim is to compute a set containing an optimal solution

for every possible value of the parameter. We present efficient algorithms for these problems based on computing a

minimum cut in an appropriately defined graph. Moreover, we show how the result set of the second problem can be

approximated with few solutions. In an experimental evaluation, we finally show that the method is able to derive

settlement areas from building footprints that are similar to reference solutions.
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1. Introduction

Map generalization is the process of deriving a less detailed map from a given map. It comprises multiple sub-tasks such as

the selection, simplification, aggregation, and displacement of objects. In this paper we address the task of detecting poly-

gon groups and aggregating each group to a single polygon, which we simply refer to as aggregation of polygons. This task
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is relevant, e.g., to derive settlement areas from mutually disjoint building footprints.

A popular method for the aggregation of polygons is the adopt merge amalgamation operator proposed by Jones et al. [19],

which is based on a constrained Delaunay triangulation of the space not covered by the input polygons; see Figure 1. The

approach is to select a set T   T from the set T of triangles of the triangulation to glue together groups of input polygons.

More precisely, the connected regions in the union of the triangles in T  and the input polygons constitute the output poly-

gons. We propose a new method that follows this approach. Our focus is to find an optimal selection of triangles, whereas

Jones et al. [19] left it largely open how the selection T  of triangles is computed. They rather generally T recommended to

Figure 1. Input polygons (filled gray) aggregated to larger ones (red lines)

Figure 2. Different types of solutions and Pareto-frontier of a bicriteria optimization problem

use rules with thresholds. With our work we thus aim to overcome the issue raised by Li et al. [21], who noticed that the

aggregation of polygons has often been discussed on a general conceptual level and that difficulties arise when engineering

a method in detail. In particular, computing the set T of triangles based on rules with thresholds requires finding the right

threshold values, which is a cumbersome task.

Since setting the parameters of an algorithm is a challenge of general relevance, we do not only aim to provide a new method

for polygon aggregation but also set off to develop a generic approach for the systematic exploration of different parameter

values. Generally, map generalization aims at finding a good balance between (i) the preservation of the information given

with the input map and (ii) the legibility of the output map [7]. We will give particular consideration to setting a parameter

that balances between these two objectives.

In our method for polygon aggregation, each of the two general objectives of map generalization is implemented with one

basic quantitative measure. We consider the preservation of information by minimizing the total area of the output polygons,

meaning that only little area should be added to the input polygons when merging the selected triangles with them. Legibility

is considered by minimizing the total boundary length (or perimeter) of the output polygons, which can be considered as an

implementation of Tufte’s minimum-ink principle [38]. A parameter , which we call balance factor, is used to combine

these objectives with a weighted sum. To formalize this, we refer with A(S) to the area and with P(S) to the perimeter of the

union of all polygons in a set S, where the union can be a polygon or a multipolygon. For a single polygon p we simply refer

with A(p) and P(p) to its area and perimeter, respectively. With this we state the problem we aim to solve as follows.
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Problem 1. Given a subdivision of the plane as a set S of n simple polygons, a set B  S, and a balance factor   [0, 1], select

a subset S  with B  S   S minimizing f (S ) =  · A(S ) + (1  ) · P(S ).

In our application, B is the set of input polygons, e.g., building footprints. The set S contains all polygons of a planar parti-

tion, including the polygons in B and the triangles of a triangulation partitioning the space not covered by the input polygons.

Note that the restriction to a triangulation is not necessary, i.e., one may use any other partition of the plane instead. The

requirement B  S   S means that the input polygons have to be in the selection S . The balance factor  combines the two

objectives with a weighted sum, yielding the overall objective function f . To state that a solution to Problem 1 is optimal for

a certain balance factor , we refer to it as an -optimal solution.

Finally, with the following problem we address the challenge of setting the parameter .

Problem 2. Given a subdivision of the plane as a set S of n simple polygons and a set B  S, find a set containing for

every [0, 1] an optimal solution to Problem 1.

Figure 3. An -shape that generates a narrow bridge between two point sets

By not requiring a pre-set value for , our method becomes parameter free. However, it now returns a set of solutions

instead of a single one. This can be useful to let an expert choose from a set of alternative solutions. Moreover, the different

solutions could be evaluated automatically by comparing them with a reference solution, to infer a suitable value for .

According to the definition of Problem 2, if for a fixed  there are multiple optimal solutions, only one of them has to be

included in the result set. This corresponds to finding what is called the set of all extreme nondominated points, which

together with the nonextreme nondominated points constitute the Pareto-frontier [3]; see Figure 2.

We now summarize our contribution and give an outline of the paper.

Our Contribution

1. We show how to solve Problem 1 efficiently by computing a minimum cut in an appropriately defined graph. This approach

is inspired from image analysis, where graph cuts are commonly used for image segmentation and related problems.

2. We show that it suffices to include O(n) solutions in the result set of Problem 2 and that these solutions are geometrically

nested. The linear size of the result set implies that Problem 2 can be solved with O(n) min-cut computations via a generic

recursive algorithm. We also show how the recursive algorithm can be used to compute a small set of solutions approximat-

ing the result set of Problem 2.

3. We evaluate our method on real data showing its applicability in practice. In the following, we review related work (Sect.

2), present the three above-mentioned contributions (Sects. 3–5), and provide a conclusion and outlook on future work

(Sect. 6).

2. Related Work

Automatic map generalization remains a big challenge despite decades of research. The challenge lies on the one hand in the

complex interplay between different processes of map generalization – a way to deal with this is to use multi-agent systems for

the orchestration of multiple map generalization operators [15, 23]. On the other hand, the challenge lies in the acquisition of

cartographic knowledge in a form that can be used by a computer. Machine learning approaches have been proposed
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to solve this task, with a recent shift towards deep learning [14, 37]. While we focus on a single map generalization operator, the

aggregation of polygons, our method for exploring different parameter values can be used for automatic parameter tuning and,

thus, considered as a machine-learning contribution. Polygon aggregation is relevant when generalizing categorical coverage

maps [16, 18] or choropleth maps [27], where the polygons form a mosaic. These tasks are similar to districting tasks where the

aim is to group small areal units to form larger regions such as electoral districts or police districts [10, 20]. In this paper, however,

we deal with the aggregation of potentially non-adjacent polygons, e.g., buildings.

The aggregation of polygons is closely related to the aggregation of points. The common goal is to find a single polygon or

multiple polygons enclosing the input data. A naïve method is to compute the convex hull of all input points. However, since

this may enclose large empty regions, generalizations of the convex hull such as -shapes [13] have been developed. As an

unwanted side effect, - shapes tend to introduce narrow bridges between two nearby point sets; see Figure 3. Such a bridge

can consist of a single edge, in which case it can be easily removed [4], but handling bridges of multiple parallel edges is not

straight forward. Similar issues can arise with the concave hull introduced Moreira and Santos [26], which is based on k-

nearest neighbours clustering. In contrast, our method would never connect two polygons with a narrow bridge as the one in

Figure 3 since not selecting the bridge would yield a solution with both a smaller perimeter and less area. Note that the

parameter  of our method is different from that of -shapes. Duckham et al. [12] defined the (chi)-hull as a further

generalization of the convex hull. First, all points are triangulated using a Delaunay triangulation. Then, all boundary edges

that are longer than a threshold are removed. This procedure always returns a single polygon without holes. This may include

large empty regions and does not separate groups of points from each other. To address the latter issue, Duckham et al. [12]

suggest to identify clusters in a pre-processing step. However, this does not prevent the method from covering large empty

regions within a cluster.

With respect to the aggregation of polygons, Jones et al. [19] proposed a method for merging polygons by selecting triangles

of a constrained Delaunay triangulation, which they call adopt merge amalgamation. They do not specify the criteria for the

selection of the triangles but generally recommend to use rules based on thresholds on the triangles’ edge lengths. Using

such rules the adopt merge amalgamation operator has been implemented and experimentally evaluated by Li and Ai [22].

They showed that the method tends to generate narrow bridges that can consist of a single triangle touching an input polygon

with only one of the triangle’s vertices. The method of Li et al. [21] overcomes this deficit by selecting sequences of

triangles instead of single ones. However, the rules used to govern the selection are set up to aggregate polygons with

parallel boundaries separated by long and narrow corridors. With this the method can be used to derive built-up areas from

city blocks but not, e.g., settlement areas from footprints of detached houses. Sayidov et al. [33] compute groups of poly-

gons using a triangulation-based method and suggest to compute a representative polygon for each group in a separate

processing step. To accomplish this step, automatic typification method can be used [1, 6, 24]. Similarly, Steinger et al. [36]

suggest a method that first detects groups of islands and then generates a representative polygon for each group. They define

(a) an instance of Problem 1, where B = {p
1
,

p
6
}; red (bold) edges delineate a solution

with selection S  = {p
1
, p

3
, p

4
, p

6
}.

(b) graph G for the instance in (a); red (dashed)

edges show an s-t-cut modelling the solution S

Figure 4. Algorithmic solution of Problem 1 via a graph cut
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the groups with a subgraph of a minimum spanning tree and generate for each group the convex hull. Damen et al. [9] present an

approach for building generalization based on morphological operators. They combine multiple closing and opening operations

to simplify but also aggregate the input polygons. To retain the original rectangular geometry that is typical for buildings they

implement the closing operator with a Minkowski sum of the input polygon and a square aligned with it.

Our method for polygon aggregation computes a binary partition of the set of polygons of a planar subdivision. For computing

the binary partition we adopt a technique from computer vision based on graph cuts [5]. Graph cuts are very commonly used for

image segmentation [35, 39] or stereo matching [2]. However, most applications are concerned with raster data. An exception is

the work by Sadlacek and Zara. [34] dealing with the generation of polygonal objects from three-dimensional point clouds. With

respect to the automatic tuning of a parameter that balances two objectives, the work of Peng and Veksler [30] is most related to

ours. While they focus on the development of quality metrics for the evaluation of image segmentation solutions, they simply

use a constant step width to sample different values for the parameter of a weighted-sum model. In contrast, we focus on a more

systematic exploration of different parameter values.

3. Polygon Aggregation via Minimum Cuts

For solving Problem 1 with graph cuts, we set up an undirected weighted graph G = (V, E) modeling all feasible solutions as well

as our minimization goal. This approach is illustrated in Figure 4 and described in detail in the following.

As starting point we use the adjacency graph G  = (V , E ) of the planar subdivision given with the set S of polygons. Assuming

that the polygons are numbered in an arbitrary order as p
1
, . . . , p

n,
 we refer to the corresponding nodes in V  as v

1
, . . . , v

n
. The

edge set E  contains an edge {v
i
, v

j
} for every two polygons p

i
 and p

j
 whose boundaries share at least one line segment. We

define the node set of G as V = V {s, t}, where s is a node called source and t a node called sink. The edge set E of G contains

all edges in E  as well as, for i = 1, . . . , n, the two edges {s, v
i
} and {v

i
, t}; see Figures 4a and b. An s-t-cut in G is a set of edges

whose removal from G causes s and t to be in different connected components. We solve Problem 1 by defining an edge

weighting w: E
  0

 and computing a minimum s-t-cut in G, i.e., an s-t-cut in G of minimum total edge weight.

Formally, for any s-t-cut C  E, we define its weight as  and the graph G
C
 = (V, E \C). We call the connected

component of G
C
 containing s the source component and the connected component of G

C
 containing t the sink component of

C. Moreover, we refer to the set of polygons represented by nodes in the source component as the solution modeled by C; see

the red edges in Figures 4a and b. It remains to ensure that any solution modeled by a minimum s-t-cut in G is feasible and

optimal with respect to Problem 1. For this we define the edge weighting w as follows:

For every edge e = {v
i
, v

j
}, we set w (e) = (1 ) · l (p

i
, p

j
), where (p

i
, p

j
) is the length of the common boundary of polygons p

i
 and

p
j
.

For every node v
i
 with p

i
 B, we set w({s, v

i
}) = 0 and w ({v

i
, t}) = · A(p

i
) + (1 ) · l(p

i
), where l(p

i
) is the length of the boundary

between p
i
 and the outer face (0 if p

i
 and the outer face are not adjacent).

For every node v
i
 with p

i 
 B, we set w({s, v

i
}) =  and w({v

i
, t}) =  · A(p

i
) + (1  ) · l(p

i
). This avoids that {s, v

i
} is selected for

the cut and thus ensures that v
i
 is in the source component. (In practice, we use a floating-point number format with a special

value representing .)

For computing a minimum s-t-cut and the corresponding optimal solution to Problem 1 we then use a standard graph algorithm.

Theorem 1. The solution modeled by any minimum s-t-cut in G is an optimal solution to Problem 1. This allows Problem 1 to be

solved in O(n2/ log n) time.

Proof. We prove that (i) each selection S  with B  S   S is modeled by an s-t-cut in G whose total weight is  · A(S ) + (1 )

· P(S ) = f (S ) and (ii) each s-t-cut in G of total weight W   models a solution whose objective value measured with f  is at most

W. This together implies that any solution modeled by a minimum s-t-cut in G is an optimal solution to Problem 1.
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Figure 5. Schematic visualization of two -optimal solutions S
1
 and S

2
. The labels A

i
 refer to the areas and the labels L

ij
 refer

to the line lengths used in the proof of Lemma 2

To show (i), let S  be an arbitrary solution with B   S   S and C the cut defined as follows. For each p
i
  S , we add edge {v

i
,

t} to C, which amounts to weight  · . Moreover, we add each edge {v
i
, v

j
}  E  with

p
i
  S  and p

j
  S  to C, which amounts to weight (1 ) ·  where 

. The set C is an s-t-cut in G modeling S  because the nodes for polygons in S  plus node s constitute the source component

of C. The weight of C is

To show (ii), we consider an arbitrary s-t-cut C  in G of total weight w(C ) = W  . Let S  be the solution modeled by C . Because

of w(C )  S  satisfies B  S   S. Now, let C be the cut for S  as defined in the proof of (i). As argued before, C models S and

its weight equals the objective value of S , i.e., w(C) =  · A(S ) + (1  ) · P(S ). Moreover, the weight of C is at most the weight

W of C , since every edge in C is included in C as well, which can be seen as follows. Assume that there exists an edge e = {u,

v} with e  C and e C . Because of e C and the way we constructed C, one of the nodes u and v lies in the source component

of C and the other one in the sink component of C. Because of e C , u and v lie in the same connected component of G
C

.

This contradicts the assumption that C and C model the same solution. Therefore, the assumption e  C and e C  must have

been false. This allows us to conclude that w(C )  w(C) =  · A(S ) + (1  ) · P(S ).

The currently fastest algorithm for computing a minimum s-t-cut in a graph with O(n) edges runs in O(n2/ log n) time [29]. This

result applies to our case since G  is planar (which implies that it has O(n) edges) and since G has only two more edges for each

node of G . The running time for computing the cut dominates the running times for computing G from the input and generating

the output selection from the cut (e.g., via a depth-first search in the graph without the cut edges, starting from the source).

Hence, the overall running time for solving Problem 1 is O(n / log n).

4. Computing Solutions for Multiple Parameter Values

In this section we deal with Problem 2, which asks for a set containing an -optimal solution for every [0, 1]. First, in Sect. 4.1,

we show that a set with the required property and O(n) solutions exists. Then, in Sect. 4.2, we present an algorithm or computing

such a set or, more generally, a set containing for every   a solution that is at most a factor (1 + ) worse than an  -optimal

solution while avoiding redundancy. The latter is relevant if the aim is to approximate the output set of Problem 2 with few

solutions.
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4.1. Linear Number of Solutions

Our argument about a sufficient size for the set requested by Problem 2 is based on the following structural lemma.

Lemma 2. For an instance of Problem 1, let S
1
 be an 

1
-optimal solution and S

2
 be an 

2
-optimal solution, where 

1
 > 

2
. Then

S
1
  S

2
.

Proof. We distinguish four classes of polygons: those that are neither in S
1
 nor in S

2
; those that are only in S

1
; those that are

only in S
2
; and those that are in S

1
  S

2
. We denote these classes by T

0
 = S \ (S

1
  S

2
); T

1
 = S

1
 \ S

2
; T

2
 = S

2
 \ S

1
; and T

3
 = S

1
 

S
2
. By A

i
 we denote the area of T

i
, and by L

ij
 we denote the total length of the edges that are shared by T

i
 and T

j
; see Figure 5.

Let 
i
 be 1  

i
.

The 
1
-optimal solution S

1
 = T

1
 T

3
 is at least as good as S

1
  S

2
 = T

3
 for  = 

1
:

 
1
(A

1
 + A

3
) + 

1
 (L

01 
+ L

03
 + L

12
 + L

23
)  

1
A

3
 + 

1
(L

03 
+ L

13
 + L

23
) 

1
A

1
 + 

1
L

12
  

1
(L

13
  L

01
).  (1)

The -optimal solution S
2
 = T

2
  T

3
 is not worse than S

1
  S

2
 = T

1
  T

2
  T

3
 for  = 

2
:

2
(A

2
 + A

3
) + 

2
(L

02 
+ L

03
 + L

12
 + L

13
)  

2
(A

1
 + A

2
 + A

3
) + 

2
(L

01
 + L

02
 + L

03
)  

2
 (L

13
  L

01
) 

2
A

1
  

2
L

12
. (2)

Now suppose S
1 

 S
2
, that is, A

1
 > 0. With 

1
 >    0, Equation (1) then implies L

13
  L

01
 > 0. Since 

2
 < 

1
, we also have 

1

< 
2
.  Combining this with (1) and (2) gives:

1
A

1
 

1
A

1
 + 

1
 L

12
 

1
 (L

13
  L

01
) < 

2
(L

13 
 L

01
)  

2
A

1
 

2
L

12
  

2
A

1
.

Thus, 
1
A

1
 < 

2
A

1
. However, this contradicts the assumption 

2
 < 

1
. Therefore, the assumption S

1
S

2
 must have been

false, and we conclude S
1

S
2
.

Suppose that we continuously decrease  from 1 to 0 while maintaining an -optimal solution in a lazy fashion, meaning that we

replace the current solution only if it ceases being -optimal. At the beginning of this process we have the solution containing

only the polygons in B, since for  = 1 area is all that matters. Due to Lemma 2, whenever we have to replace the current solution,

we can define the new solution by including all the polygons selected in the current solution plus at least one additional

polygon from the set S. Since there can be at most n  1 such events, we can conclude the following lemma.

Lemma 3: There exists a set of cardinality O(n) that contains an -optimal solution for every   [0, 1].

4.2. The Search Algorithm

According to Lemma 3, a linear number of solutions suffices to have an  -optimal solution for every [0, 1] as demanded by

Problem 2. Our goal is now to find such a linear-size set efficiently within the set of all possible solutions, which has exponential

size. We do this with a classical method for multi-objective optimization [8], which in the literature is sometimes referred to as

dichotomic scheme [32] or chord algorithm [11]. In the following we describe the algorithm and how it is applied in our setting

to approximate the result set of Problem 2. For this we assume a user-specified error tolerance   0 as input. We ask for an output

set containing for every  [0, 1] a solution S  satisfying f  (S )   (1 + ) · opt, where opt is the value of f  for an -optimal

solution. Approximating for  = 0 will solve Problem 2.

Before describing the approximation algorithm we choose a geometric representation for solutions that simplifies the discus-

sion. Consider visualizing a solution S  in a diagram with  on the horizontal axis and the solution value  A(S ) + (1  )

P(S ) on the vertical axis (see Figure 6 for an illustration). Thus, the function graph of S  is a line through the points (0, P(S ))

and (1, A(S )). Now suppose we put the function graphs of all possible solutions in a single diagram. A solution S is  -

optimal if the line for S  is the first line that is hit when we shoot a vertical ray from (  , 0) upwards. Thus, to compute an 

-optimal solution for every , we need to compute the lower envelope (the piecewise minimum) of the arrangement of all

possible solutions’ lines, restricted to the  -range [0, 1]; see Figure 6a. Moreover, approximating the set of all -optimal

solutions roughly means to find a set of solutions whose lower envelope is not too far above the lower envelope of all

solutions. To solve the approximation problem, we
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(a) lower envelope (red) with approximation (blue) (b) recursive step of the algorithm

Figure 6. Geometric representation of solutions as used in the discussion of the search algorithm

use the recursive procedure Approx presented in Algorithm 1, which only considers a range [
L
, 

U
] of values for . To consider

all values for   in the range [0, 1], we proceed as follows:

1. Compute  -optimal solutions S
L
 for   = 0 and S

U
 for   = 1 using the min-cut algorithm.

2. Invoke Approx with 
L
 = 0 and 

U
 = 1: Approx(S, B, 0, 1, S

L
, S

U
, )

The solutions S
L
 and S

U
 are passed over to the procedure only to allow it to access their associated areas A(S

L
) and A(S

U
) as

well as perimeters P(S
L
) and P(S

U
). To keep the presentation simple, we refer to these as A

L
 and A

U
 as well as P

L
 and P

U
,

respectively.

The recursive procedure operates as follows. If A
L
 = A

U
 and P

L
 = P

U
 (this may happen in special cases), then the recursive

procedure returns without output (ending in a leaf of the recursion tree). Otherwise, we compute the  -value 
c
 = (P

U
P

L
)/

(A
L

A
U

+ P
U

P
L
) for which S

L
 and S

U
 are equally good. (In effect, we compute the  -coordinate of the intersection point C

of the lines representing S
L
 and S

U
). Then, we call the min-cut algorithm to obtain an 

C
-optimal solution S

C
. We compare

the objective function value for this new solution with the objective function for S
L
 (comparing to S

U
 would yield the same

result). If the new solution is substantially better (depending on the approximation factor ), then the corresponding line passes

far below the intersection point C in the diagram between 
L
 and 

U
 (refer to Figure 6b for an illustration). We then call the

procedure recursively twice: once with range (
L
, 

C
) and the solutions S

L
 and S

C
, and once with range (

C
, 

U
) and the solutions

S
C
 and S

U
. In between these two calls, we output the new solution S

C
. The described process is outlined by Algorithm 1.

For computing a complete set of solutions S
1
, ..., S

k
 representing the k linear pieces that form the lower envelope we call the

algorithm with  = 0. Correctness of the procedure can be shown by induction on the recursion tree. As for the running time,

observe that, by  Lemma 3, the number of pieces of the lower envelope k is bounded by O(n). Analysing the recursive algorithm
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         (a) 230 solutions for  = 0.0 (b) 5 solutions for  = 0.05  (c) areas and perimeters for solutions

Figure 7. Solutions obtained with Algorithm 1 for the same instance without (a) and with aapproximation (b) and their

values for the two objectives (c). Darker polygons correspond to solutions for higher  values, which consist of multiple

groups

Input: Polygon sets S, B, lower  (
L
), upper  (

U
), -optimal solutions S

L
, S

U
 for 

L
, 

U
, maximal error 

Output: Report -optimal solutions with 
L
 <  < 

U

1: procedure Approx(S, B, 
L
, 

U
, S

L
, S

U
, )

2: if A(S
L
) = A(S

U
) and P(S

L
) = P(S

U
) then return

3: 
C

 crossing(S
L
, S

U
) Compute 

C
 with f

C
(S

L
) = f

C
(S

U
)

4: S
C
  mincut(S,B, 

C
) Solve Problem 1 via graph cut

5: if f
C
(S

L
) > (1 + ) · f

C
(S

C
) then Maximal error exceeded

6: Approx(S, B, 
L
, 

C
, S

L
, S

C
, )

7: Report S
C

8: Approx(S,B, 
C
, 

U
, S

C
, S

U
, )

we see that overall at most O(n) invocations of the min-cut algorithm are performed in the worst case. This also holds for the

approximation algorithm (using > 0).

5. Experimental Evaluation

To evaluate our algorithms, we implemented them in Java and conducted tests with building footprints from OpenStreetMap

[28]. We transformed the data to UTM coordinates to accurately calculate areas and perimeters of polygons with a metric of  unit

of measurement.

To provide an overview, we first discuss a test with a smaller instance of 44 buildings; see Figure 7. The triangulation for this

instance contains 546 triangles. With this test we rather generally tried to get an idea of the kind of polygon groups and

aggregated polygons that our algorithms produce. Using the recursive algorithm to compute an -optimal solution for every 

(i.e.,  = 0.0) we obtained 230 different solutions; see Figure 7a. Some of these solutions differ by only single triangles and are

hardly distinguishable in the visualization. When using the algorithm to approximate the result set with  = 0.05, we obtained

only 5 different solutions that are substantially different from each other; see Figure 7b. One can clearly perceive the geometri-

cally nested structure of the different solutions stated in Lemma 2. Plotting the solutions by their associated perimeters and

areas yields a diagram with the extreme nondominated points; see Figure 7c. We observe that these points occur at irregular

Algorithm 1 Approximation of set of extreme nondominated points.
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Dataset IoU V
A
 V

P
 d

H
 [m]

Euskirchen 0.0048 0.8951 0.9997 0.8033 298.476

0.0064 0.8999 0.9809 0.8437 273.568

0.0073 0.8943 0.9650 0.8495 264.562

0.0109 0.8301 0.8795 0.9989 926.226

Ahrem 0.0021 0.5882 0.6973 0.9998 336.437

0.0041 0.7896 0.9685 0.9106 114.570

Table 1. Statistics for every solution that is the best for at least one evaluation metric. For the Hausdorff distance lower is

better ( ), else higher is better ( )

distances, meaning that clusters but also larger gaps exist. Nevertheless, our approximation approach yields a small and

representative set of solutions. Due to this result, we decided to focus on approximated result sets in the further experiments,

which we present in the following.

We conducted further experiments with the aim to aggregate building polygons to settlement areas as defined in the digital

landscape model DLM250 of the German “Authoritative Topographic-Cartographic Information System” (ATKIS). This corre-

sponds to a map scale 1 : 250 000. We evaluate our approach on two instances of different sizes from the building data set, each

of which roughly corresponds to one settlement polygon in the DLM250 but also includes buildings outside of the settlement;

see Figure 8. The larger instance consists of 16881 buildings and the smaller one of 853. They correspond to the town Euskirchen

and the village Ahrem, respectively. Figure 9 depicts for Ahrem the influence of  on the number of output solutions. Allowing

a maximum error of  = 0.01 = 1% already decreases the number of solutions by several orders of magnitude in comparison to an

exact solution (  = 0.0). For visualizing the aggregation results of the two instances we set  = 0.1, resulting in six solutions for

Euskirchen (see Figures. 8a and 10a) and five for Ahrem (see Figures. 8b and 10b).

To evaluate our aggregation results, we computed a rather  accurate approximation for Euskirchen ( = 10-6) and an exact solution

to Problem 2 for Ahrem. We then compared every solution in the result set with the corresponding settlement polygon in the

DLM250.

For comparing a solution S
1
 with the reference S

2
 we used the following four different metrics:

The Jaccard index, which is also known as Intersection over Union (IoU), for polygons:

The Area Similarity and Perimeter Similarity, as suggested by Podolskaya et al. [31] for quality assessment of polygon

generalization:

The discrete Hausdorff distance d
H

 of the polygons’ boundaries, whose vertex sets we denote as V (S
1
) and V (S

2
). It adds to the

other three measure that it indicates the maximum difference of the solutions with respect to the Euclidean distance d.
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The similarity measures IoU, V
A
, and V

B
 are in the range of [0, 1], where 0 represents minimum similarity and 1 represents maximum

similarity. For cases where one polygon is contained by a second polygon, V
A
 equals IoU.

An important selection criterion of the DLM250 is that all settlement areas must be larger than 40 hectares. Therefore, we

removed all polygons smaller than the threshold from a solution before computing the four metrics. The resulting metrics

for Euskirchen are shown in Fig. 11. For all  > 0.105 the solution contained no contiguous polygon reaching the 40

hectares threshold, meaning that no similarity can be found. The graph reveals a correlation of IoU and Area Similarity V
A
; in

fact they are the same for  > 0.05. The Perimeter Similarity V
P
, on the other hand, turned out to be quite meaningless as its

graph shows a rather erratic behaviour. This is because solutions for large  often contain polygons smaller than the thresh-

old, leading to a short perimeter after their removal.

For each metric we identified the value for  that yields the solution of maximum similarity or minimum Hausdorff distance; see

Table 1. For the cases where IoU, V
A
, and Hausdorff distance have their respective best values, the other metrics are similar to

their best values. At the maximum of V
P
, the other metrics are significantly away from their best values. The solutions of

minimum Hausdorff distance and maximum IoU are also depicted in Figure 8 as blue and red lines, respectively. We observe

that the shapes are indeed similar, but that the boundary of the reference solutions contain more angles close to 90o. Using

a schematization algorithm in a post-processing step might increase the similarity in this respect.

In our Java implementation, we used the Push Relabel algorithm implemented in the library JGraphT [25] to compute the

graph cuts. This algorithm can be implemented to run in the worst case in O(nmlog(n2/m)) time on a graph with n nodes and

m edges [17], but the JGraphT documentation reports a worst-case running time of O(n3). This implies that our implementa-

tion of the algorithm for Problem 1 runs in O(n3) time, where n is the number of polygons in the set S. This is substantially

higher than the sub-quadratic running time that is achievable according to Theorem 1, but sufficiently low to solve problem

instances as the ones we discussed above. Our implementation of the recursive algorithm for Problem 2 uses parallelization

      (a) Euskirchen (b) Ahrem

Figure 8. Result sets of two evaluation data sets with  = 0.1. The green outline corresponds to the ground truth polygon.

The red and blue outlines, which are mostly the same, represent the best solutions in terms of IoU and d
H
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Figure 9. Number of solutions

by  for Ahrem

Figure 10. All -optimal solutions and the approximated solutions

which are displayed in Figure 8

Figure 11. Evaluation metrics for Euskirchen shown in Figure 8a. For  > 0.105 all polygon of the result set are below the

specified minimum area

Our experiments showed that the presented algorithms are fast enough to process realistic problem instances, although we did

not use the fastest known (i.e., sub-quadratic) graph-cut algorithm in our implementation. We consider it astonishing how few

solutions were needed to approximate a set containing an optimal solution for every : For our largest instance with

for the two recursive calls, which turned out to improve the running time substantially. In particular, the running time im-

proves from 79 seconds to 12 seconds for  = 10-6 (528 solutions) on the instance of Ahrem by using parallelization.

6. Conclusion and Outlook

We have presented efficient algorithms for polygon aggregation optimizing a balance between a small total area and a short total

perimeter of the output polygons. We combined the two criteria in a weighted sum, which we parameterized with a single

parameter   [0, 1]. The first problem we studied asked for a single optimal solution for a fixed . It turned out that this problem

can be solved by computing a minimum cut in a graph. A second problem asked for an output set containing an optimal solution

for every possible value for . We showed that a linear-size set with the requested property can be efficiently computed with a

recursive algorithm that uses the graph-cut algorithm as a subroutine. Moreover, we showed how to approximate such a set

using the same recursive algorithm.
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16881 building footprints, a set of six solutions sufficed to include for every  a solution that is at most 10% worse than

optimal. Since the number of graph cuts computed by the recursive algorithm is in the order of the size of its output set, the

approximation for the above-mentioned instance was achieved relatively fast, in 20.3 seconds. Finally, our experiments

support the claim that our algorithm can aggregate building footprints to polygons that are quite similar to settlement areas

as given in an official topographic database of scale 1 : 250 000. However, experiments on a larger data basis are needed to

substantiate our finding. It would also be interesting to investigate further whether different instances can be solved with the

same  to obtain a solution similar to a reference solution.

As an idea for future research one could replace the triangulation used in our method with other partitions of the plane. For

example, one could try to preserve regularities of the input polygons by subdividing the plane with linear extensions of the

polygons’ edges. Moreover, it would be interesting to consider relaxed or more constrained versions of the aggregation

problem. For example, one could relax the requirement to include every input polygon in the output and/or introduce a hard

size constraint for the output polygons. Most importantly, however, we see our work as a step towards multi-criteria optimi-

zation in cartography. As next steps one could consider more than two criteria or look at Pareto-optimal solutions rather than

just at the extreme nondominated (i.e., -optimal) solutions.
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