Public Key Cryptosystem and Binary Edwards Curves on the Ring $\mathbb{F}_{22}[e], e^{2}=e$

Moha ben taleb Elhamam FSDM
Sidi Mohamed Ben Abdellah University
Fez, Morocco.
mohaelhomam@gmail.com
Abdelhakim Chillali
FP, LSI
Sidi Mohamed Ben Abdellah University
Taza, Morocco.
abdelhakim.chillal@usmba.ac.ma
Lhoussain El Fadil
FSDM
Sidi Mohamed Ben Abdellah University
Fez, Morocco.
Ihouelfadil2@gmail.com

ABSTRACT: Let $\mathbb{F}_{2^{n}}[e]$ be a finite ring of characteristic 2 , where $e^{2}=e$ and n is a positive integer. Let $(a, d) 2$ $\left(\mathbb{F}_{2^{n}}[e]\right)^{2}$, such that a and $d+a^{2}+a$ are invertible in $\mathbb{F}_{2^{n}}[e]$, we study the binary Edwards curve over this ring, denoted by $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ and we give a bijection between this curve and produces two binary Edwards curves defined on the finite field $\mathbb{F}_{2}{ }^{n}$. Afterthat we study the addition law of binary Edwards curves over the ring $\mathbb{F}_{2^{n}}[e]$. We end this work with cryptography applications, EIGamal twisted Edwards curve cryptosystem and Cramer-Shoup twisted Edwards curve cryptosystem.

Subject Categories and Descriptors: [E. 3 DATA ENCRYPTION]: Public key cryptosystems [G.1.8 Partial Differential Equations] Finite element methods

General Terms: Data Encryption, Cryptographic Systems, Finite Elements

Keywords: Binary Edwards curves, Addition law, Finite Ring, Finite Field, Local Ring, Cryptography, encryption, decryption

Received: 11 August 2021, Revised 30 November 2021, Accepted 14 December 2021

Review Metrics: Review Scale: 0-6; Review Score: 4.36; Interreviewer consistency: 72.5\%

DOI: $10.6025 / \mathrm{jdim} / 2022 / 20 / 1 / 25-30$

1. Introduction

In 2007, Edwards [1] introduced a new normal form of elliptic curves on a field K with a characteristic other than 2. Bernstein et al [2], introduces twisted Edwards curves with an equation:

$$
\left(a X^{2}+Y^{2}\right) Z^{2}=Z^{4}+d X^{2} Y^{2}
$$

For $Z \neq 0$ the homogeneous point ($X: Y: Z$) represents the affine point ($X / Z ; Y / Z$); and presented explicit formulas for addition and doubling over a finite field, the group operations on Edwards curves were faster than those of most other elliptical curve models known at the time.

In [3], M. Boudabra and A. Nitaj gived us A New Public Key Cryptosystem Based on Edwards Curves. They studied of the twisted Edwards curves on the finite field $Z=p Z$ where $p \geq 5$ is a prime number, and generalize it to the rings $Z=p^{r} Z$ and $Z=p^{r} q^{s} Z$:

In [4], D. J. Bernstein et al introduces a new shape for ordinary elliptical curves on the fields of characteristic 2 and give the first complete addition formulas for the binary elliptic curves.

In this work we study twisted Edwards curves on the ring-
$\mathbb{F}_{q}[e], e^{2}=e$. The motivation for this paper is the search for new groups of points of a binary Edwards curve over a finite ring, where the complexity of the discrete logarithm calculation is good for using in cryptography.

Let $\mathbb{F}_{2^{n}}$ be a finite field of characteristic 2 and order 2^{n} where n is a positive integer and $\frac{\mathbb{F}_{2^{n}}[X]}{\left\langle X^{2}-X\right\rangle}$ the quotient ring of the polynomial ring $\mathbb{F}_{2^{n}}[X]$ by the ideal generated by $\left(X^{2}\right.$ $-X$).

This ring can be identified to the finite ring $\mathbb{F}_{2^{n}}[e]$ where e^{2} $=e$. In this work we study binary Edwards curves on the ring $\mathbb{F}_{2^{n}}[e], e^{2}=e$, we give the relation between binary Edwards curves over a finite field and binary Edwards curves over this ring.

We started this work by studying the arithmetic of the ring $\mathbb{F}_{2^{n}}[e], e^{2}=e$ where we show a useful formulae to compute the product law. By this efficient formulae we characterize the set of invertible elements in the ring $\mathbb{F}_{2^{n}}[e], e^{2}=e$ and we show that the set of non invertible elements is the union of the two distinct ideals $\langle e\rangle$ and $\langle 1-e\rangle$, which proves that $\mathbb{F}_{2^{n}}[e]$ is not a local ring, we define the binary Edwards curves $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ over this ring and define two binary Edwards curves: $E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right)$ and $E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)$ defined over the finite field $\mathbb{F}_{2^{n}}$. In the next of this section, we present the elements of $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ and we give a bijection between the two sets: $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ and $E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right) \times E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)$, where π_{0} and π_{1} are two surjective morphisms of rings defined by:

$$
\begin{array}{rll}
\pi_{0}: & \mathbb{F}_{2^{n}}[e] & \rightarrow \mathbb{F}_{2^{n}} \\
& x_{0}+x_{1} e & \rightarrow x_{0} \\
\pi_{1}: & \mathbb{F}_{2^{n}}[e] & \rightarrow \mathbb{F}_{2^{n}} \\
& x_{0}+x_{1} e & \rightarrow x_{0}+x_{1}
\end{array}
$$

We study the addition law of binary Edwards curves over the ring $\mathbb{F}_{2^{n}}[e]$, where $e^{2}=e$. In this case, we define the additive law $P+Q$ in $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ by $P+Q=\tilde{\pi}^{-1}(\tilde{\pi}(P)+\tilde{\pi}(Q))$ for all points P and Q in $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$.

Other purpose of this paper is the applications of $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ in cryptography, we give ElGamal cryptosystem and Cramer-Shoup cryptosystem on $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$.

2. THE RING $\mathbb{F}_{2^{n}}[e], e^{2}=e$

$\mathbb{F}_{2^{n}}$ be a finite field of characteristic 2 and order 2^{n} where n is a positive integer. The ring $\mathbb{F}_{2^{n}}[e], e^{2}=e$ can be constructed as an extension of the finite field $\mathbb{F}_{2^{n}}$ by using
the quotient ring of the polynomial ring $\mathbb{F}_{2^{n}}[X]$ by the polynomial $\mathbb{F}_{2^{n}}[X]$. An element $X \in \mathbb{F}_{2^{n}}[e]$ is represented by $X=x_{0}+x_{1} e$ where $\left(x_{0}, x_{1}\right) \in\left(\mathbb{F}_{2 n}\right)^{2}$.

The arithmetic operations in $\mathbb{F}_{2^{n}}[e]$ can be decomposed into operations in $\mathbb{F}_{2^{n}}$ and they are computed as follows:

$$
X+Y=\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right) e
$$

and

$$
X . Y=\left(x_{0} y_{0}\right)+\left(x_{0} y_{1}+x_{1} y_{0}+x_{1} y_{1}\right) e,
$$

where X and Y are two elements in $\mathbb{F}_{2^{n}}[e]$ represented by $X=x_{0}+x_{1} e$ and $Y=y_{0}+y_{1} e$ with coefficients x_{0}, x_{1}, y_{0} and y_{1} are in the field $\mathbb{F}_{2^{n}}$. The following results can easily be verified:

- $\left(\mathbb{F}_{2^{n}}[e],+,.\right)$ is a finite unitary commutative ring.
- $\mathbb{F}_{2^{n}}[e]$ is a vector space over $\mathbb{F}_{2^{n}}$ of dimension 2 and $\{1, e\}$ is it's basis.
- X. $Y=\left(x_{0} y_{0}\right)+\left(\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)-x_{0} y_{0}\right) e$.
- $X^{2}=x_{0}^{2}+x_{1}^{2} e$.

$$
X^{3}=x_{0}^{3}+\left(\left(x_{0}+x_{1}\right)^{3}-x_{0}^{3}\right) e
$$

Let $X=x_{0}+x_{1} e \in \mathbb{F}_{2^{n}}[e], X$ is invertible if and only if $x_{0} \not \equiv 0 \bmod 2$ and $x_{0}+x_{1} \not \equiv 0 \bmod 2$, in this case:

- $X^{-1}=x_{0}^{-1}+\left(\left(x_{0}+x_{1}\right)^{-1}-x_{0}^{-1}\right) e$.
X is not invertible if and only if $x_{0} \equiv 0 \bmod 2$ or $x_{0}+x_{1} \equiv 0 \bmod 2$.
- $\mathbb{F}_{2^{n}}[e]$ is a non local ring.

For all $X \in \mathbb{F}_{2^{n}}$, we have:
$X=\pi_{0}(X)+\left(\pi_{1}(X)-\pi_{0}(X)\right) e, X e=\pi_{1}(X) e$ and $X(1-e)=\pi_{0}(X)(1-e):$
π_{0} and π_{1} are two surjective morphisms of rings.

3. Binary Edwards Curves Over the Ring

 $\mathbb{F}_{2^{n}}[e], e^{2}=e$Let a and d are two elements in the ring $\mathbb{F}_{2^{n}}[e]$, such that a and $d+a_{2}+a$ are invertible.

We define a binary Edwards curve over the ring $\mathbb{F}_{2^{n}}[e]$, as a affine curve, which is given by the equation:

$$
a(X+Y)+d\left(X^{2}+Y^{2}\right)=X Y+X Y(X+Y)+X^{2} Y^{2}
$$

We denote this curves by: $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$.
$E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)=\left\{(X, Y) \in\left(\mathbb{F}_{2^{n}}[e]\right)^{2} \mid a(X+Y)+d\left(X^{2}+\right.\right.$
$\left.\left.Y^{2}\right)=X Y+X Y(X+Y)+X^{2} Y^{2}\right\}$
Proposition 1: Let a and d are in the ring $\mathbb{F}_{2^{n}}[e]$ then, $d+a^{2}+a$ is invertible if and only if $d_{0} \neq a_{0}^{2}+a_{0}$ and $d_{0}+d_{1} \neq\left(a_{0}+a_{1}\right)^{2}+a_{0}+a_{1}$ in $\mathbb{F}_{2^{n}}:$

Proof. We have:

$$
\begin{aligned}
d+a^{2}+a & =d_{0}+d_{1} e+\left(a_{0}+a_{1} e\right)^{2}+a_{0}+a_{1} e \\
& =d_{0}+d_{1} e+a_{0}^{2}+a_{1}^{2} e+a_{0}+a_{1} e \\
& =d_{0}+a_{0}^{2}+a_{0}+\left(d_{1}+a_{1}^{2}+a_{1}\right) e
\end{aligned}
$$

so $d+a^{2}+a$ is invertible if and only if $d_{0} \neq a_{0}^{2}+a_{0}$ and $d_{0}+d_{1} \neq a_{0}^{2}+a_{0}+a_{1}^{2}+a_{1}$ in $\mathbb{F}_{2^{n}}$:

Corrolary 2:

a is invertible if and only if $\pi_{0}(a) \neq 0$ and $\pi_{1}(a) \neq 0$ in $\mathbb{F}_{2^{n}}$:
$d+a^{2}+a$ is invertible in $\mathbb{F}_{2^{n}}[e]$ if and only if $\pi_{0}(d)=\pi_{0}\left(a^{2}+a\right)$ and $\pi_{1}(d)=\pi_{1}\left(a^{2}+a\right)$ in $\mathbb{F}_{2^{n}}$:

Using corrolary 2 , if a and $d+a^{2}+a$ are invertible in $\mathbb{F}_{2^{n}}[e]$, then $E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right)$ and $E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)$ are two binary Edwards curves over the finite field $\mathbb{F}_{2^{n}}$, and we notice:

$$
\begin{array}{r}
E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right)=\left\{(x, y) \in \mathbb{F}_{2^{n}}^{2} \mid a_{0}(x+y)+d_{0}\left(x^{2}+\right.\right. \\
\left.\left.y^{2}\right)=x y+x y(x+y)+x^{2} y^{2}\right\}, \\
E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)=\left\{(x, y) \in \mathbb{F}_{2^{n}}^{2} \mid\left(a_{0}+a_{1}\right)(x+y)+\right. \\
\left.\left(d_{0}+d_{1}\right)\left(x^{2}+y^{2}\right)=x y+x y(x+y)+x^{2} y^{2}\right\} .
\end{array}
$$

Theorem 3: Let X, Y in $\mathbb{F}_{2^{n}}[e]$, then $(X, Y) \in E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ if and only if $\left(\pi_{i}(X), \pi_{i}(Y)\right) \in, E_{B, \pi_{i}(a), \pi_{i}(d)}\left(\mathbb{F}_{2^{n}}\right)$, for $i \in\{0,1\}$.

Proof. We have

$$
\begin{aligned}
a(X+Y)+d\left(X^{2}+Y^{2}\right) & =\left(a_{0}+a_{1} e\right)\left(x_{0}+x_{1} e+y_{0}+y_{1} e\right)+\left(d_{0}+d_{1} e\right)\left(\left(x_{0}+\right.\right. \\
& \left.\left.x_{1}\right)^{2}+\left(y_{0}+y_{1} e\right)^{2}\right) \\
& =\left(a_{0}+a_{1} e\right)\left[\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right) e\right]+\left(d_{0}+d_{1} e\right)\left[\left(x_{0}^{2}+\right.\right. \\
& \left.\left.y_{0}^{2}\right)+\left(x_{1}^{2}+y_{1}^{2}\right) e\right] \\
& =a_{0}\left(x_{0}+y_{0}\right)+\left[\left(a_{0}+a_{1}\right)\left(x_{0}+x_{1}+y_{0}+y_{1}\right)-a_{0}\left(x_{0}+\right.\right. \\
& \left.\left.y_{0}\right)\right] e+d_{0}\left(x_{0}^{2}+y_{0}^{2}\right)+\left[\left(d_{0}+d_{1}\right)\left(x_{0}^{2}+x_{1}^{2}+y_{0}^{2}+y_{1}^{2}\right)-\right. \\
& \left.d_{0}\left(x_{0}^{2}+y_{0}^{2}\right)\right] e \\
& =a_{0}\left(x_{0}+y_{0}\right)+d_{0}\left(x_{0}^{2}+y_{0}^{2}\right)+\left[(a _ { 0 } + a _ { 1 }) \left(x_{0}+x_{1}+\right.\right. \\
& \left.y_{0}+y_{1}\right)-a_{0}\left(x_{0}+y_{0}\right)+\left(d_{0}+d_{1}\right)\left(x_{0}^{2}+x_{1}^{2}+y_{0}^{2}+y_{1}^{2}\right)- \\
& \left.d_{0}\left(x_{0}^{2}+y_{0}^{2}\right)\right] e,
\end{aligned}
$$

$$
\begin{aligned}
X Y+X Y(X+Y)+X^{2} Y^{2} & \left.=\left(x_{0}+x_{1} e\right)\left(y_{0}+y_{1} e\right)+\left(x_{0}+x_{1} e\right)\left(y_{0}+y_{1}\right)\right)\left(x_{0}+\right. \\
& \left.x_{1} e+y_{0}+y_{1} e\right)+\left(x_{0}+x_{1} e\right)^{2}\left(y_{0}+y_{1} e\right)^{2} \\
& =x_{0} y_{0}+\left[\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)-x_{0} y_{0}\right] e+\left(x_{0} y_{0}+\left[\left(x_{0}+\right.\right.\right. \\
& \left.\left.\left.x_{1}\right)\left(y_{0}+y_{1}\right)-x_{0} y_{0}\right) e\right)\left[\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right)\right]+\left(x_{0}^{2}+\right. \\
& \left.x_{1}^{2} e\right)\left(y_{0}^{2}+y_{1}^{2} e\right) \\
& =x_{0} y_{0}+\left[\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)-x_{0} y_{0}\right] e+x_{0} y_{0}\left(x_{0}+\right. \\
& \left.y_{0}\right)+\left[\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)\left(x_{0}+y_{0}+x_{1}+y_{1}\right)-x_{0} y_{0}\left(x_{0}+\right.\right. \\
& \left.\left.y_{0}\right)\right] e+x_{0}^{2} y_{0}^{2}+\left[\left(x_{0}^{2}+x_{1}^{2}\right)\left(y_{0}^{2}+y_{1}^{2}\right)-x_{0}^{2} y_{0}^{2}\right] e \\
& =x_{0} y_{0}+x_{0} y_{0}\left(x_{0}+y_{0}\right)+x_{0}^{2} y_{0}^{2}+\left[\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)-\right. \\
& x_{0} y_{0}+\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)\left(x_{0}+y_{0}+x_{1}+y_{1}\right)- \\
& \left.x_{0} y_{0}\left(x_{0}+y_{0}\right)+\left(x_{0}^{2}+x_{1}^{2}\right)\left(y_{0}^{2}+y_{1}^{2}\right)-x_{0}^{2} y_{0}^{2}\right] e .
\end{aligned}
$$

Or $\{1, \mathrm{e}\}$ is a basis $\mathbb{F}_{2^{n}}$ vector space $\mathbb{F}_{2^{n}}[e]$, then, $a(X+Y)+d\left(X^{2}+Y^{2}\right)=X Y+X Y(X+Y)+X^{2} Y^{2}$ if and only if

$$
\begin{aligned}
& a_{0}\left(x_{0}+y_{0}\right)+d_{0}\left(x_{0}^{2}+y_{0}^{2}\right)=x_{0} y_{0}+x_{0} y_{0}\left(x_{0}+y_{0}\right)+x_{0}^{2} y_{0}^{2} \text {, } \\
& \text { and } \\
& \left(a_{0}+a_{1}\right)\left(x_{0}+x_{1}+y_{0}+y_{1}\right)+\left(d_{0}+d_{1}\right)\left(x_{0}^{2}+x_{1}^{2}+y_{0}^{2}+y_{1}^{2}\right)=\left(x_{0}+\right. \\
& \left.x_{1}\right)\left(y_{0}+y_{1}\right)+\left(x_{0}+x_{1}\right)\left(y_{0}+y_{1}\right)\left(x_{0}+y_{0}+x_{1}+y_{1}\right)+\left(x_{0}^{2}+x_{1}^{2}\right)\left(y_{0}^{2}+y_{1}^{2}\right) .
\end{aligned}
$$

Corrolary 4: The mappings $\tilde{\pi_{0}}$ and $\tilde{\pi_{1}}$ are well defined, where $\tilde{\pi}_{i}$ for $i \in\{0,1\}$; is given by:

$$
\begin{aligned}
& \tilde{\pi}_{i}: E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right) \rightarrow E_{B, \pi_{i}(a), \pi_{i}(d)}\left(\mathbb{F}_{2^{n}}\right) \\
&(X, Y) \mapsto \\
&\left(\pi_{i}(X), \pi_{i}(Y)\right) .
\end{aligned}
$$

Proposition 5: The $\tilde{\pi}$ mapping defined by:

$$
\begin{aligned}
\tilde{\pi}: \quad E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right) & \rightarrow & E_{E, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right) \times E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right) \\
(X, Y) & \mapsto & \left(\left(\pi_{0}(X), \pi_{0}(Y)\right),\left(\pi_{1}(X), \pi_{1}(Y)\right)\right),
\end{aligned}
$$

is a bijection.

Proof. As $\tilde{\pi_{0}}$ and $\tilde{\pi_{1}}$ are well defined, then $\tilde{\pi}$ is well defined.

- Let $\left(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)\right) \in E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right) \times E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)$, then $\left(x_{0}+\left(x_{1}-x_{0}\right) e, y_{0}+\left(y_{1}-y_{0}\right) e\right) \in E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ and it is clear that
hence $\tilde{\pi}$ is a surjective mapping.

Let (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ be elements of $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$, where $X=x_{0}+x_{1} e, Y=y_{0}+y_{1} e, X^{\prime}=x_{0}^{\prime}+x_{1}^{\prime} e$ and $Y^{\prime}=y_{0}^{\prime}+y_{1}^{\prime} e$.

If $\tilde{\pi}(X, Y)=\tilde{\pi}\left(X^{\prime}, Y^{\prime}\right)$, then
$\left\{\begin{array}{l}\left(x_{0}, y_{0}\right)=\left(x_{0}^{\prime}, y_{0}^{\prime}\right) \\ \text { and } \\ \left(x_{0}+x_{1}, y_{0}+y_{1}\right)=\left(x_{0}^{\prime}+x_{1}^{\prime}, y_{0}^{\prime}+y_{1}^{\prime}\right),\end{array}\right.$
so $x_{0}=x_{0}^{\prime}, y_{0}=y_{0}^{\prime}, x_{1}=x_{1}^{\prime}$ and $y_{1}=y_{1}^{\prime}$, so $(X, Y)=\left(X^{\prime}, Y^{\prime}\right)$, hence $\tilde{\pi}$ is an injective mapping.

We can easily show that the mapping $\tilde{\pi}^{-1}$ defined by $\tilde{\pi}^{-1}\left(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)\right)=\left(x_{0}+\left(x_{1}-x_{0}\right) e, y_{0}+\left(y_{1}-y_{0}\right) e\right)$ is the inverse of $\tilde{\pi}$.

Corrolary 6: $\tilde{\pi}_{0}$ is a surjective mapping.
Proof. For all $(x, y) \in E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right)$; we have: $(x, y)=\tilde{\pi}_{1}(x e, y e \cdot)$

Corrolary 7: $\tilde{\pi_{1}}$ is a surjective mapping.

Proof. For all $(x, y) \in E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)$; we have: $(x, y)=\tilde{\pi_{1}}(x e, y e)$:

Corrolary 8: The cardinal of the binary Edwards curve $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ is equal to the cardinal of $E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right) \times E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)$

Corrolary 9: Lets P and Q two points in the binary Edwards curve $\quad E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$, then: $\quad P=Q \Leftrightarrow \tilde{\pi}(P)=\tilde{\pi}(Q) \Leftrightarrow$ $\tilde{\pi}_{0}(P)=\tilde{\pi}_{0}(Q)$ and $\tilde{\pi}_{1}(P)=\tilde{\pi}_{1}(Q)$

4. Addition Formulas in $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right), e^{2}=e$

In [4] presents an addition law for the binary Edwards curve $E_{B, \pi_{i}(a), \pi_{i}(d)}\left(\mathbb{F}_{2^{n}}\right)$ and proves that the addition law corresponds to the usual addition law on an elliptic curve in Weierstrass form. One consequence of the proof is that the addition law on $E_{B, \pi_{i}(a), \pi_{i}(d)}\left(\mathbb{F}_{2^{n}}\right)$ is strongly unified: it can be used with two identical inputs, i.e., to double.

Given $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}) on the binary Edwards curve $E_{B, \pi_{i}(a) \pi_{i}(d)}\left(\mathbb{F}_{2^{n}}\right)$, compute the $\operatorname{sum}\left(x_{1}, y_{3}\right)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)$ if it is defined:

$$
\begin{aligned}
& x_{3}=\frac{\pi_{i}(a)\left(x_{1}+x_{2}\right)+\pi_{i}(d)\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)+\left(x_{1}+x_{1}^{2}\right)\left(x_{2}\left(y_{1}+y_{2}+1\right)+y_{1} y_{2}\right)}{\pi_{i}(a)+\left(x_{1}+x_{1}^{2}\right)\left(x_{2}+y_{2}\right)} \\
& y_{3}=\frac{\pi_{i}(a)\left(y_{1}+y_{2}\right)+\pi_{i}(d)\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)+\left(y_{1}+y_{1}^{2}\right)\left(y_{2}\left(x_{1}+x_{2}+1\right)+x_{1} x_{2}\right)}{\pi_{i}(a)+\left(y_{1}+y_{1}^{2}\right)\left(x_{2}+y_{2}\right)}
\end{aligned}
$$

If the denominators $\pi_{i}(a)+\left(x_{1}+x_{1}^{2}\right)\left(x_{2}+y_{2}\right)$ and $\pi_{i}(a)+\left(y_{1}+y_{1}^{2}\right)\left(x_{2}+y_{2}\right)$ are nonzero then the sum $\left(x_{3}, y_{3}\right)$ is a point on $E_{B, \pi_{i}(a), \pi_{i}(d)}$.

Remark 1: As $\tilde{\pi}$ is a bijection mapping between the two sets $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ and $E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right) \times E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)$, then for all points P and Q in $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$,, we define the additive law $P+Q$ in $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$: by $P+Q=\tilde{\pi}^{-1}(\tilde{\pi}(P)+\tilde{\pi}(Q))$ The following corollaries can be proved immediately:

Corrolary 10: If $E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right)$ and $E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)$ two curves complete, then $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ is a curve complete.

Corrolary 11: Lets $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ tow point in $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$, and let $\left(x_{i}, y_{i}\right)=\tilde{\pi}_{i}\left(X_{1}, Y_{1}\right)+\tilde{\pi}_{i}\left(X_{2}, Y_{2}\right)$, where $i \in\{0,1\}$, then $\left(X_{3}, Y_{3}\right)=\left(X_{1}, Y_{1}\right)+\left(X_{2}, Y_{2}\right)$ is given by:
$X_{3}=x_{0}+\left(x_{1}-x_{0}\right) e$,
$Y_{3}=y_{0}+\left(y_{1}-y_{0}\right) e$.

5. Cryptography Applications

In cryptography applications, we have:
$\operatorname{card}\left(E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)\right)$ is not a prime number, because it egals to $\operatorname{card}\left(E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right)\right) \times \operatorname{card}\left(E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)\right)$
$E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ and $E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right) \times E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)$ have the same discrete logarithm problem.

In cryptanalysis, if the discrete logarithm problem is easy in $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$, then we can easily break the discrete logarithm on $E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right)$ and $E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)$, and vice versa.

5.1. EIGamal Binary Edwards Curve Cryptosystem

The binary Edwards curve EIGamal Cryptosystem is an adapted cryptosystem for elliptic curve from the original El-Gamal cryptosystem [9]. Also can be considered as extension of Diffie-Hellman key exchange protocol and its purpose is to encrypt and decrypt messages. It is described as follows:

Suppose Ali wants to send a message to Bachir. First, Bachir has to establish his public key. He chooses an elliptic curve $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ over a finite ring $\mathbb{F}_{2^{n}}[e], e^{2}=e$, such that the discrete log problem is hard for $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$.

He also chooses a point P on $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$. He chooses a secret integer b and computes $B=b P$. The elliptic curve $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$, the finite ring $\mathbb{F}_{2^{n}}[e], e^{2}=e$, and the points

P and B are Bachir public key.

To send the message to Bachir, Ali does the following:

1. Download Bachir public key.
2. Expresses her message as a point $M=M_{2} \in$ $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$
3. Chooses a secret random integer k and computes M_{1} $=k P$:
4. Computes $M_{1}=M+k B$:
5. Sends M_{1}, M_{2} to Bachir.

Bachir decrypts by calculating $M=M_{2}-\mathrm{b} M_{1}$: Since $M_{2}-$ $\mathrm{b} M_{1}=(M+k B)-b(k P)=M+k(b P)-b k P=M$:

5.2. Cramer-Shoup binary Edwards curve cryptosystem

In [10], Cramer and Shoup gived New Public Key Cryptosystem, in this work we apply Cramer-Shoup cryptosystem for $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ consists essentially in mapping the operations customarily carried out in the multiplicative group Z_{p} to the set of points of a binary Edwards curve $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$, endowed with an additive group operation.

Alice and Bob want to communicate securely, for this they start publicly with integer b, a binary Edwards curve $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$, a point $P \in E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ of prime order n and the cyclic group $G=\langle P\rangle$. These elements are the initialization parametrs Cramer-Shoup $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ cryptosystem:

Cramer-Shoup $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ cryptosystem Key generation: The procedure to generate a public in $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ is outlined as follows:

- Bob chooses five random integer $\left(e_{1}, e_{2}, f_{1}, f_{2}, s, w\right)$ from $\{0,1, \ldots, n-1\}$
- Bob computes $Q=s P, E=e_{1} P+e_{1} Q, K=f_{1} P+f_{1} Q, T=w P$.

Then, the public key is $\{P, Q, E, K, T\}$ and the private key is $\left(e_{1}, e_{2}, f_{1}, f_{2}, s, w\right)$.

Cramer-Shoup $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ cryptosystem Encryption: The procedure to endrypt a message (m) to Bob under her public key $\{P, Q, E, K, T\}$ is outlined as follows:

- Alice converts the plaintext message m to a point P_{m} on the twisted Edwards curve $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$.
- Alice chooses a random k from $\{0,1, \ldots, n-1\}$, then calculates: $V_{1}=k P, V_{2}=k Q, u=k T+P_{m}, \alpha=\mathbb{H}\left(V_{1}, V_{2}, u\right)$, where H is a collision-resistant hash function, $R=k E+k \alpha K$.
- Bob sends the ciphertext $\left(V_{1}, V_{2}, u, R\right)$ to Alice.

Cramer-Shoup $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ cryptosystem Decryption: To decrypt this message, with Bob secret key $\left(e_{1}, e_{2}, f_{1}, f_{2}, s, w\right)$:

- Bob computes $\alpha=\mathbb{H}\left(V_{1}, V_{2}, u\right)$ and verifies that $e_{1} V_{1}+e_{2} V_{2}+\alpha\left(f_{1} V_{1}+f_{2} V_{2}\right)=R$.

If this test fails, further decryption is aborted and the outout is rejected.

- Otherwise, Bob computes $P_{m}=u-w V_{1}$:

The decryption stage correctly decrypts any properlyformed ciphertext, since
$u-w V_{1}=k T+P_{m}-w k P=k w P+P_{m}-w k P=P_{m}:$

Cramer-Shoup binary Edwards curve cryptosystem is directly based on discrete logarithm problem over (G; +) of base P.

This problem requires to find k where $Q=k P$ and points P, Q belong to a set of points G of a binary Edwards curve $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$. It is known to be computationally difficult and this can be utilized to accomplish a more elevated level pf security in cryptosystem.

6. Conclusion

In this work, we have proved the bijection between $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ and
$E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right) \times E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)$.
In cryptography applications, we deduce that the discrete logarithm problem in $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$ and $E_{B, \pi_{0}(a), \pi_{0}(d)}\left(\mathbb{F}_{2^{n}}\right) \times E_{B, \pi_{1}(a), \pi_{1}(d)}\left(\mathbb{F}_{2^{n}}\right)$ have the same discrete logarithm problem.

Furthermore, we give ElGamal cryptosystem and CramerShoup cryptosystem on $E_{B, a, d}\left(\mathbb{F}_{2^{n}}[e]\right)$.

References

[1] Harold M. Edwards. (2007). Normal form for elliptic curves. Bulletin of the American Mathematical Society, 44 (3) 393-423, April.
[2] Bernstein, D. J., Birkner, P., Joye, M., Lange, T., Peters, C. (2008). Twisted Edwards curves. In: Progress in Cryptology - AFRICACRYPT 2008, First International Conference on Cryptology in Africa, Casablanca, Morocco, June 11-14, 2008. vol. 5023 of Lecture Notes in Computer Science, 389-405. Springer Verlag.
[3] Maher Boudabra., Abderrahmane Nitaj. (2019). A New Public Key Cryptosystem Based on Edwards Curves., Journal of Applied Mathematics and Computing, Springer, 2019, 10.1007/s12190-019-01257-y. hal-02321013.
[4] Bernstein, D. J., Lange, T., Rezaeian Farashahi, R. (2008). Binary Edwards Curves. In: Oswald E., Rohatgi P. (eds) Cryptographic Hardware and Embedded Systems - CHES 2008. Lecture Notes in Computer Science, vol 5154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/ 978-3-540-85053-3-16.
[5] Ben Taleb, E.M., Chillali, A., El Fadil, L. (2020).Twisted Hessian curves over the Ring Fq[e]; $e^{2}=e$. Bol. Soc. Paran, in press, doi:10.52699/bspm.15867, (2020).
[6] Boulbot, A., Chillali, A., Mouhib, A. (2020). Elliptic Curves Over the Ring R, Bol. Soc. Paran. (2020), 38 (3) 193-201.
[7] Boulbot, A., Chillali, A., Mouhib, A. ELLIPTIC CURVES OVER THE RING Fq[e]; $\mathrm{e}^{3}=\mathrm{e}^{2}$, Gulf Journal of Mathematics, 4 (4) 123-129.
[8] Huseyin Hisil., Kenneth Koon-Ho Wong., Gary Carter., and Ed Dawson. (2008). Twisted Edwards Curves Revisited J. Pieprzyk (Ed.) In: - ASIACRYPT 2008, LNCS 5350, p. 326-343.
[9] ElGamal, Taher. (1985). A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Proceedings of CRYPTO 84 on Advances in cryptology, 10-18. Springer-Verlag New York, Inc,1985.
[10] Cramer, Ronald., Shoup, Victor. (1998). A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. Advances in Cryptology CRYPTO '98, Springer Berlin Heidelberg, 13-25.

