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ABSTRACT: Let F2n[€] be a finite ring of characteristic
2, where & = e and n is a positive integer. Let (a, d) 2
(F2nle] )2, such that a and d + o + a are invertible in

Fan [e] , we study the binary Edwards curve over this ring,
denoted by Eg. . q(Fan[e]) and we give a bijection be-
tween this curve and produces two binary Edwards curves
defined on the finite field F2~ . Afterthat we study the ad-
dition law of binary Edwards curves over the ring Fan [e] .
We end this work with cryptography applications, EIGamal
twisted Edwards curve cryptosystem and Cramer-Shoup
twisted Edwards curve cryptosystem.
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1. Introduction

In 2007, Edwards [1] introduced a new normal form of
elliptic curves on a field K with a characteristic other than
2. Bernstein et al [2], introduces twisted Edwards curves
with an equation:

(aX*+Y?) 2% = 74 + dX*Y2

For Z+0the homogeneous point (X : Y Z) represents the
affine point (X/Z; Y/Z); and presented explicit formulas for
addition and doubling over a finite field, the group opera-
tions on Edwards curves were faster than those of most
other elliptical curve models known at the time.

In [3], M. Boudabra and A. Nitaj gived us A New Public
Key Cryptosystem Based on Edwards Curves. They stud-
ied of the twisted Edwards curves on the finite field Z=pZ
where p > 5 is a prime number, and generalize it to the

ringsZ=p'Zand Z=p'q°Z:

In [4], D. J. Bernstein et al introduces a new shape for
ordinary elliptical curves on the fields of characteristic 2
and give the first complete addition formulas for the bi-
nary elliptic curves.

In this work we study twisted Edwards curves on the ring-
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Fylel, ¢ = e. The motivation for this paper is the search

for new groups of points of a binary Edwards curve over a
finite ring, where the complexity of the discrete logarithm
calculation is good for using in cryptography.

Let Fa» be a finite field of characteristic 2 and order 2"

where 7 is a positive integer and <£Z"£X)](> the quotient ring

of the polynomial ring F..[X] by the ideal generated by (X*
-X).

This ring can be identified to the finite ring Fy.[¢] where ¢
= e. In this work we study binary Edwards curves on the
ring Fan[e],e? = e, we give the relation between binary

Edwards curves over a finite field and binary Edwards
curves over this ring.

We started this work by studying the arithmetic of the
rng Fai.[e], e> = ¢ Where we show a useful formulae to
compute the product law. By this efficient formulae we
characterize the set of invertible elements in the ring
Fyle], e =e and we show that the set of non
invertible elements is the union of the two distinct ideals
(e) and (1 —¢), Which proves that F,.[e] is not a local
ring, we define the binary Edwards curves £ , 4(Fy:[¢]) OvVer
this ring and define two binary Edwards curves:
BB ro(a),mo(d)(F2r) @Nd Ep 1 (4) 7, () (F2») defined over the finite
field Fon .In the next of this section, we present the
elements of FEg,q(Fmle]) and we give a
bijection between the two sets:
Ep.a,a(Fanle]) and Ep o) n(@(Far) X Egrya),m(0(F), Wwhere g
and 7y are two surjective morphisms of rings defined by:

T - Fon [6] —>' Fon
To+ 2T — X
M Fonle] —  Fon
To+rT1E — X9+ T

and

We study the addition law of binary Edwards curves over
the ring Fs.[e], where ¢*= e. In this case, we define the
additive law P + Q in Epai(Fa[e]) by P+Q =71 (7(P)+#(Q)) for
all points P and Qin Ep 4 4(Fan[e]).

Other purpose of this paper is the applications of
Epad(Fanle]) in cryptography, we give ElGamal
cryptosystem and Cramer-Shoup cryptosystem on
Epq,da(Fanle]).

2. THERING Fa.[e],e? = e
F,. be a finite field of characteristic 2 and order 2" where n

is a positive integer. The ring Fafe],e> =e can be con-
structed as an extension of the finite field F.» by using

the quotient ring of the polynomial ring F2-[X] by the poly-
nomial F:[X]. An element X € Fa[e] is represented by
X = x9+ z1e where (zg, 1) € (ngv)z.

The arithmetic operations in F2»[e] can be decomposed

into operations in F2» and they are computed as follows:
X +Y = (o +y0) + (21 +y1)e

and
XY = (zoy0) + (zoyr + 2130 + 2191 )e,

where X and Y are two elements in Fi»[e] represented by
X =zo+ze and Y =y, + y e with coefficients o, 21, Yo

and y, are in the field Fy. . The following results can easily
be verified:

o (Fan[e], +,.) is a finite unitary commutative ring.
* FF2n[e] is a vector space over [y, of dimension 2 and
{1,e} is it's basis.

*X.Y = (zoy0) + ((xo + 21)(yo + 1) — Toyoe.
*Xl=gf +ms

X® =25+ l{zg + 2 )2 — D)o
Let X = zo +x1e € Fanle], X is invertible if and only if
29 Z 0 mod 2 and zo+21% 0mod 2,, in this case:

o Xl =a3" 4 ((mo +21)t — 25 Y)e.

X is not invertible if and only if 2= 0mod2 or
zo+x1= 0mod 2 .

* Fynle]is @ non local ring.

For all X € Fy., we have:

X = m(X) + (m(X) - mo(X))e, Xe = m(X)e @and X(1—e) = m(X)(1—e):
n,and 7 are two surjective morphisms of rings.

3. Binary Edwards Curves Over the Ring
Fanle],e® = e

Let a and d are two elements in the ring Fan [e] , such

that a and d + a,+aare invertible.

We define a binary Edwards curve over the ring Fa- [e],
as a affine curve , which is given by the equation:

WX +Y)+dX24+Y) = XY + XY(X +Y) + X272

We denote this curves by: Ep,q,d(Fan[e]),
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Ep,qd(F2nle]) = {(X,Y) € (Fan[e])? | a(X +7) +d(X? +
YY) =XY +XY(X+Y)+X%?)
Proposition 1: Let a and d are in the ring Fa-[e] then,

d + a2 + a isinvertibleifand onlyif dy # a2 + ao and
do+ di # (ap + CL1)2 + ag + ay in ]ani

Proof. We have:

d+a®+a=dy+die+ (ao + are)’ + ag + are
=dy + die +af +afe +ap + aze
=do+ a2 +ag+ (di +a? + ar)e,

SO d + a2 + a isinvertibleifand onlyif dg # a2 + ao and
do+ dy # af + ap +af +ay in Faon :

Corrolary 2:
a is invertible

m1(a) # 0 in Fan :

if and only if mo(a) #0 and

d+a®+a is invertible in Fy.[e] if and only if

mo(d)=m0(a® + a) and m1(d) = m(a® + @) in Fyu:

Using corrolary 2, if a and d + a® + a are invertible in
Fanle], then Ep xy(a)mo(a)(F2n) and Epz (o) m(a)(F2) are two

binary Edwards curves over the finite field F2», and we
notice:

EB,vro(a),ﬂo(d)(F2”) = {(xay) = an ‘ ao(m+y)—|—d0(332—|—
y?) = zy+y(e +y) + 2%},

Ep ry().m (@) F2r) = {(2,9) € F3n | (a0 + a1)(z +y) +
(do+dh)(2* +97) = 2y +2y(z +y) + 2%},

Theorem 3: Let X, Yin Fan[e], then (X,Y)€Ep ,.4(Fa[e]) if and
only if (m(X),m(Y)) €, Ep,x;(a)mi(a)(Fan), for i € {0,1}.

Proof. We have

a(X +Y) +d(X* +Y%) = (a0 + ar€)(z0 + 21 + 30 + y1€) + (do + due) (a0t
z€)’ + (o +ye)’)
= (ag + a16)[(z0 +30) + (21 + 1)) + (do + dre)](ah+
o)+ (] +13)e]
= ag(2o +y0) + [(a0 + a1)(zo + 21 4 Yo + 1) - ao(z0+
vo)le +dofaf +u5) +1(do + ) (o + 23 + 95 +43) -
do(z) + 5 e
=ag(zo +y0) + do(wg + y§) + (a0 + a1)(zo + 214
o-+91) - ao(ao +0) + (do + do)(a +37 +45 +43)-
do(z + g e,

XY + XY(X +Y)+ XY? = (0 + 21¢) (40 + y1€) + (20 + 216) (40 + 11620+
zie+yo +y1e) + (2o +21€) (yo + yre)’
= z0y0 + [(z0 +21) (30 + y1) — zoyole + (zoyo + [(zo+
21)(0 + 1) - zoyole)[(zo + o) + (21 +1)e] + (zp+
Zie)(w; +vie)
= 20y0 + [(@o +21)(y0 + y1) — zoyole + zoyo(zo+
y0) + [(wo + 1) (yo + 1) (20 + yo + 21 +91) — zoyo(o+
wo)le +zgys + (a5 +23)(vg +v) - wguple
= oyo + Toyo(20 + ¥o) + 2gyp + (20 +21)(¥0 + 11)-
zoyo + (w0 +21) (Yo + y1)(zo + yo + 21 +91)-
20¥0(20 +90) + (25 +23) (86 +33) — 5y le.

Or {1, e} is a basis F,. vector space Fa|e|, then,
a(X+Y)+d(X*+Y?) = XY + XY (X +Y)+X*V? if and only if
ao(z0 +y0) + do(zf +3) = zoyo + oyo(zo + vo) + 2343,
and

(a0 +a1)(zo + 21+ y0+y1) + (do + d1) (a2 + 2 +y§ +12) = (zo +
o1) (Yo +y1)+(z0+21) (o +y1) (o +yo a1 +y1)+ (25 +22) (Y2 +42).

Corrolary 4: The mappings 7o and 77; are well defined,
where 7; for i € {0,1}; is given by:

T EB,a,d(FZ"[e]) = EB,m(a),m(d)(F2”)
(X,Y) B (m(X),m(Y).

Proposition 5: The T mapping defined by:

7 Epad(fanlel) = Egry(a)mo(d)(Fan) X BBy (a),m (d) (Fan)
(X,Y) - ((mo(X), mo(Y)), (w1 (X), 71 (Y))),

is a bijection.

Proof. As 7y, and m; are well defined, then 7t is well
defined.

« Let ((20,%0), (21,91)) € EB o (a),mo (d) F2r )X BBy ()1 (2) (Fan )
then (zo+ (21 —20)e, %o+ (11 —Wo)e) € Ep,a,a(Farle]) and it is
clear that

hence 7 is a surjective mapping.

Let (X, Y) and (X', Y') be elements of Ep, 4(Fsne]), where
X=xg+ze,Y=y+ye X' =a5+2ie and Y' =y, +yie.

If 7(X,Y) =7(X",Y"), then

and
(o + 21,90 +y1) = (x5 + 21, 40 + ¥1);

{ (z0,90) = (25, %0)

SO xp = 1’6, Yo = y6, 1 = I’l and = yiv S0 <X7Y) = (XY,
hence 7 is an injective mapping.
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We can easily show that the mapping 7! defined by
7 (w0, 0), (21,11)) = (20 + (1 — 2o)e, 0 + (41 — o)e) is the inverse of 7T .

Corrolary 6: 7 is a surjective mapping.

Proof. For all (2,9) € Egrya)m@2r); we have:
(.TC, y) = (1‘67 y(’)

Corrolary 7: 7, is a surjective mapping.

Proof. For all (.9 €Epn@mwFr); we have:

(z,y) = m1(ze,ye):

Corrolary 8: The cardinal of the binary Edwards curve
Epaa(Fanle]) is equal to the cardinal of
Ep rofa)mo(@) F2r) X BBz, (@) my(d) (P}

Corrolary 9: Lets P and Q two points in the binary Edwards
curve Ep a,a(Fane]), then: P=Q&7P)=7Q) &
wo(P)=m(Q) and 71(P)=71(Q}

4. Addition Formulas in Ep  (Fy[e]),¢* =e

In [4] presents an addition law for the binary Edwards
curve Ez ().~ ) (F2») and proves that the addition law cor-
responds to the usual addition law on an elliptic curve in
Weierstrass form. One consequence of the proof is that

the addition law on E z,().~. (F2») is strongly unified: it can
be used with two identical inputs, i.e., to double.

Given (x,, y,) and (x,, y,) on the binary Edwards curve
Ep s (a),m(0)(F2 ), cOmpute the sum (x, y,) = (x,, »,) + (x,, »,) if it
is defined:

mi(a)(eg +a9) + mi(d) (e +v1)(eg +v2) + (21 + D) (2a(yy +v2 +1) + v199)’
7i(a) + (21 +23)(ag + v3)

1’3:

7i(a)(y1 + ) +7i(d) (@1 +1)(2g +v2) + (v + 99 (va(eg + 29 +1) +2129)
mi(a) + (u1 +v3) (g + v2)

3 =

If the denominators ma) + (1 +2)(1, +1») and

2
nl0)+n 421 are nonzero then the sum (z3,y3) is @
point on EB x;(a),mi(d) -

Remark 1: As 7 is a bijection mapping between the two
sets EB«,ﬂqd(]FQ” [6}) and EB,m,(a),m)(d)(]FZ")XEB,m(a),m(d)<F2”):
then for all points P and Q in Eg 4 4(F2-[e])., we define the
additive law P + Qin Ep 4 4(Fan[e]), by P+ Q = 77} (7(P) + 7(Q))
The following corollaries can be proved immediately:

Corrolary 10: If B ()n(0(F2r) @and Epz,(a)m(@)(F2r) two
curves complete, then Eg , 4(Fan[e]) is @ curve complete.

Corrolary 11: Lets (XI, Yl) and (Xz, Yz) tow point in
EB,a,d(]FQ”[e]), and |et (I[,yi):ﬁ'[(Xl,Yi)-l-ﬁ'i(Xg,Yg), Where
i € {0,1}, then X, ¥) =X, Y) +(X,)) is given by:

X3 =19+ (z1 — mo)e,
Y3 =yo+ (y1 — po)e.

5. Cryptography Applications
In cryptography applications, we have:

card(Ep,q.q(F2»[e])) is not a prime number, because it egals to
C(I’V‘d(EBJm(a)ﬂ“(d)(]ﬁ‘gn )) X C(lT‘d(Eva(a)‘m(d)(]an))

EB,n,d(FZ" [e]) and EB,WU(”)JYU(")(IF?”)XEB.m(a),m(
discrete logarithm problem.

+(F2n) have the same

In cryptanalysis, if the discrete logarithm problem is easy
in Ep.q(Fn[e]), then we can easily break the discrete loga-
rithm on Es.m(w.x@ () and P @~ F2r) , and vice versa.

5.1. EIGamal Binary Edwards Curve Cryptosystem
The binary Edwards curve ElIGamal Cryptosystem is an
adapted cryptosystem for elliptic curve from the original
El-Gamal cryptosystem [9]. Also can be considered as
extension of Diffie-Hellman key exchange protocol and
its purpose is to encrypt and decrypt messages. It is
described as follows:

Suppose Ali wants to send a message to Bachir. First,
Bachir has to establish his public key. He chooses an
elliptic curve Ej , 4(Fq.[¢]) Over afinite ring Fan[e],¢* = ¢, such
that the discrete log problem is hard for Eg qq(Fa[e]).

He also chooses a point P on Ep . 4(F2-[e]). He chooses a
secret integer » and computes B = bP. The elliptic curve
Ep q,i(Fare]), the finite ring Fy.[e],e? = ¢, and the points

P and B are Bachir public key.
To send the message to Bachir, Ali does the following:

1. Download Bachir public key.

2. Expresses her message as a point M = M, e
EB,a_d(]an[e])

3. Chooses a secret random integer k and computes M|
= kP:

4. Computes M, = M +kB:
5. Sends M, M,to Bachir.

Bachir decrypts by calculating M = M, — bM : Since M, —
bM, = (M +kB) — b (kP) = M + k(bP) — bkP = M:
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5.2. Cramer-Shoup binary Edwards curve
cryptosystem

In [10], Cramer and Shoup gived New Public Key
Cryptosystem, in this work we apply Cramer-Shoup

cryptosystem for Ep,q.a(Fan[e]) consists essentially in
mapping the operations customarily carried out in the
multiplicative group Zp to the set of points of a binary
Edwards curve Ep qq(F2n[e]), endowed with an additive
group operation.

Alice and Bob want to communicate securely, for this
they start publicly with integer b, a binary Edwards curve

Ep.a.4(Fanle]), a point P € Ep,q(Fx[e]) of prime order » and
the cyclic group G=< P >. These elements are the initial-
ization parametrs Cramer-Shoup Es...q(F[¢]) cryptosystem:

Cramer-Shoup Es.q(F2[e]) cryptosystem Key genera-

tion: The procedure to generate a public in Eg qq(Fan[e]) is
outlined as follows:

- Bob chooses five random integer (e, ez, f1, f2.5,w) from
{0311'“171 - 1}

- Bob computes Q=sP, E=e¢;P+e,Q, K = iP+£Q, T = wP.

Then, the public key is {P, Q, E, K, T} and the private key
is (e ey Sy fy s W).

Cramer-Shoup Ez.q(F:[c]) cryptosystem Encryption:
The procedure to endrypt a message (m) to Bob under her
public key {P,. O, E, K, T} is outlined as follows:

- Alice converts the plaintext message m to a point 2, on
the twisted Edwards curve Eg . 4(Fz[e]).

- Alice chooses a random k from {0,1,....,n — 1}, then
calculates: V; =kP,Vo=kQ, u=kT+ P, a =H(V, Vs, u), Where
H is a collision-resistant hash function, R = kE + kaK .

- Bob sends the ciphertext (11, V2,u, R) to Alice.
Cramer-Shoup E .,q4(F2n[¢]) cryptosystem Decryption:
To decrypt this message, with Bob secret key

(617627f1vf2757w):

- Bob computes a=H(V;,V,,u) and verifies that
aVit+elh+a(iVi+filh) =R

If this test fails, further decryption is aborted and the outout
is rejected.

- Otherwise, Bob computes P = u — wVi:

The decryption stage correctly decrypts any properly-
formed ciphertext, since

u-wV; =kT+ P, — wkP = kwP + P,, —wkP = P,, :

Cramer-Shoup binary Edwards curve cryptosystem is di-
rectly based on discrete logarithm problem over (G; +) of
base P.

This problem requires to find k where Q = kP and points
P, Q belong to a set of points G of a binary Edwards curve
Ep.q,a(F2n[e]). Itis known to be computationally difficult

and this can be utilized to accomplish a more elevated
level pf security in cryptosystem.

6. Conclusion

In this work, we have proved the bijection between
EB,a,a(Fan[e]) and

EB ro(a),mo(d) Fan ) X EB x (a),m (d) Fan).

In cryptography applications, we deduce that the discrete
logarithm problem in FEpgq(Fanle]) and

EB ro(a),mo(d)(F2n) X Eg x,(a),m (a)(F2n) have the same
discrete logarithm problem.

Furthermore, we give EIGamal cryptosystem and Cramer-
Shoup cryptosystem on £5,q,q(F2-[€]) .
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