
 Progress in Computing Application Volume 11 Number 1 March 2022 15

Graph Vertexes and Robot Position in Maze

Milena Karova1, Ivaylo Penev2, Mariana Todorova3, Hristiyan Bobev4, Neli Kalcheva5

1, 2, 3, 5 Technical University of Varna

1 Studentska str., Varna 9010, Bulgaria

mkarova@ieee.bg, ivailo.penev@tu-varna.bg, mgtodorova@yahoo.com, n_kalcheva@abv.bg

4Faculty of Automation and Computing at Technical University of Varna

1 Studentska str., Varna

9010, Bulgaria

hristiyan_bobev@abv.bg

ABSTRACT: Automatic agents can help to process maze for which several algorithms are developed and used. These

algorithms enable to fix issues relating to the conversion of maze into useful graphs and enable to identify the effective way

to reach the final stage of the development. In this work we took the images of the maze with the help of the readily available

image and implemented the algorithms. We did the processing of images that include the marking, beginning level and final

point in the process using the algorithms. In the next stage, we have given a bit set to develop a graph vertex and the valid

positions of the robot. We have ensured that the developed algorithm helps to reach the final point and ultimately process the

image and texts.

Keywords: Bit Set, Breadth First Search, Graph, Image, Maze, Shortest Path

Received: 4 October 2021, Revised 15 December 2021, Accepted 29 December 2021

DOI: 10.6025/pca/2022/11/1/15-22

Copyright: with Authors

1. Introduction

The movement of a robot in a maze is a problem with many applications into lots of areas. Therefore the problem is an object of

a broad research interest.

The main problems, which have to be solved, are presentation of the maze in a proper form and implementation of an algorithm

for movement of the robot from initial position to a final destination (exit) into the maze. In the existing solutions the robot

 Progress in Computing Application Volume 11 Number 1 March 2022 16

sensors or the camera of the robot are usually used [1, 3, 4]. Using these devices only a part of the maze could be shot. As a result

information for the obstacles (the walls) in the maze is obtained during the robot movement. This approach is suitable, if the

robot moves in an unknown or dynamically changing environment, but has some disadvantages:

- Requires permanent recalculation of the movement trajectory;

- Troubles the application of effective algorithms for path finding.

Various shortest path finding algorithms for robot movement in a maze have been researched. Some of the commonly used

algorithms are: Dijkstra algorithm, A* algorithm, breadth-first search (BFS), depth-first search (DFS) and etc.

Dijkstra algorithm is one of the simplest algorithms. Starting from the initial vertex where the path should start, the algorithm

marks all direct neighbors of the initial vertex with the cost to get there. It then proceeds from the vertex with the lowest cost to

all of its adjacent vertices and marks them with the cost to get to them via itself if this cost is lower. Once all neighbors of a vertex

are checked, the algorithm proceeds to the vertex with the next lowest cost [2, 5].

A* is like Dijkstras algorithm in that it can be used to find a a shortest path. A* algorithm is the most popular choice for wide

range of contexts. It is one of a family of graph search algorithms that follow the same structure. These algorithms represent the

map as a graph and then find a path in that graph. Depending on the environment, A* algorithm might Graph traversing in depth

(Breadth-First-Search or BFS) is algorithm for path searching in trees or graphs [6]. Searching starts from a given vertex in the

graph (or from the root in case of a tree) and all the unvisited neighbors are visited first. The algorithm is proposed by E. F.

Moore, who used it for finding the shortest path in a maze. The algorithm, proposed in this paper, is called AlgoHris. It solves

two main problems:

- Construction of a graph using the image of the maze, shot from above (for example by the camera of a drone);

- Finding the shortest path from an initial position to a final destination in the graph.

The AlgoHris algorithm is compared to three other algorithms: Backtracking, A* and Genetic Algorithm GAPP.

2. Algorithm AlgoHris Formulation instructions for the Authors

The AlgoHris algorithm considers an image of the maze. The image is shot from above, for example by the camera of a drone.

Thus AlgoHris is integrated into an application for shooting a maze from above, finding shortest path in the maze and moving

a robot from an initial position to a final destination in the maze (Figure 1).

Figure 1. Schema of the whole project

 Progress in Computing Application Volume 11 Number 1 March 2022 17

The proposed algorithm consists of two parts: - Construction of a graph, presenting the maze; - Finding the shortest path from

an initial position to a final destination, using the graph.

2.1. Graph Construction Age

The construction of a graph is an essential problem for the robot movement. This problem is hard due to the limited resources

of the robot platform (computing power, memory).

The proposed AlgoHris algorithm uses presentation of the maze as a set of characters 0 and 1, where 0 marks free (possible)

position for the robot movement and 1 marks busy position (i.e. an obstacle or a wall). Figure 2 presents a simplified maze and

a graph with an initial position and a final destination.

Figure 2. Construction of a graph for an example maze

The algorithm constructs unweighted, indirect graph, formed by all pixels, which could be a valid position of the robot in the

maze. A position is valid, if all pixels up, down, left and right in a distance equal to the robot size are free. Such construction of

the graph guarantees, that only the possible routes are presented in the graph. Over this graph various algorithms for path

finding could be applied.

The graph construction algorithm uses radius of the circle, described around the robot (Figure 3). This presentation is used for

checking the valid positions of the robot in horizontal and vertical direction.

Figure 3. Robot presentation, using described circle

 Progress in Computing Application Volume 11 Number 1 March 2022 18

2.2. Check for valid position in horizontal direction

The valid positions in horizontal direction are checked according to the radius of the described circle (i.e. according to the robot

size) (Figure 4).

Figure 4. Valid positions in horizontal direction

If there are no valid positions in horizontal direction, no vertex is added to the graph for these positions (Figure 5).

Figure 5. No valid positions in horizontal direction

Figure 6. Check for valid positions in vertical direction

2.3. Check For Valid Position In Vertical Direction

The valid positions of the robot in vertical direction are formed by OR operation of each pair of rows from the set, presenting the

maze (Figure 6).

 Progress in Computing Application Volume 11 Number 1 March 2022 19

If the OR operation of a pair of neighbor rows results in a character 1, then an obstacle is available on this position and the robot

could not be in the position. No vertex is added to the graph for the position (Figure 7).

Figure 7. An obstacle in vertical direction

Figure 8. Example for valid positions in vertical direction

2.4. Finding the Shortest Path

If the described graph, containing only the possible positions of movement, is available, an algorithm for finding the shortest

path could be applied over the graph. The algorithm, proposed in this paper, implements breadth first search. The algorithm finds

the shortest path between an initial and a final vertex, passing through least number of visited vertices.

The algorithm uses the following data structures:

- Queue of the graph vertices;

- List of the visited vertices;

- List of the possible paths.

 Progress in Computing Application Volume 11 Number 1 March 2022 20

Figure 9 presents the algorithm execution for an example graph.

Figure 9. Algorithm for finding the shortest path in the constructed graph

First the initial vertex is marked as visited and is added to the queue. Afterwards the neighbor vertices are traversed. If a

neighbor vertex is not visited, in the field "Previous" of the vertex the number of the previous neighbor is written. The vertex is

marked as visited and is added to the queue. The loop continues until the queue is not empty and the final vertex is not visited.

2.5. Programming Implementation

The most challenging problem in the implementation of the described algorithm is proper presentation of mazes with large

dimensions (e.g. 1600x1013 pixels). Such images have to be quickly transformed to a graph, considering the limited memory and

computing power in the selected robot platform.

In the implementation of the AlgoHris algorithm the maze is presented as a set of bits. Each bit is a structure of elements with

only 2 possible values: 0 (true) or 1 (false). A programming class is realized, emulating an array of Boolean elements. Each

element reserves only one bit, which is eight times less than the simple character data type. Each bit could be accessed

individually as in ordinary array.

3. Experimental Results

The experiments are carried out in two directions: - Comparing the times for graph construction for mazes with various dimen-

sions;

- Comparing the algorithm with three other algorithms, using the same dimensions (height and width in pixels) of the maze

Backtracking, A* and genetic algorithm GAPP.

 Progress in Computing Application Volume 11 Number 1 March 2022 21

In the first experiment the times for completing the separate steps of the whole algorithm are presented in Table I.

Table 1. Experimental Results With Images of Example Mazes with Different Resolution

The results show, that the implemented algorithm processes relatively large image (1600x1013 pixels) and finds the shortest path

for less than 160 ms.

The data, obtained by the second experiment, are presented on Figure 10. In the case of small dimensions of the maze there is no

significant difference between the times for shortest path finding. The genetic algorithm is comparatively slow and inapplicable

to large dimensions of the maze. AlgoHris achieves shorter time than the Backtracking and even than the A* algorithm when

increasing the dimensions of the maze.

Figure 10. The shortest path finding time for four different algorithms

On Fig. 11 the approximation function for AlgoHris is shown. The function is y = 23x 18.667, R2 = 0.9845

The dependence between the time for path finding and increasing the maze dimensions is proportional and the algorithm is

stable. Figure 11. Trendline correlation for AlgoHris

 Progress in Computing Application Volume 11 Number 1 March 2022 22

4. Conclusion

The proposed AlgoHris algorithm for movement of a robot in a maze has the following advantages in comparison to the existing

implementations of other algorithms:

- It uses an image of the maze, which makes possible fast processing of the pixels in the image to find a path in the maze;

- The maze is presented as a bit set, which significantly increases the graph construction, containing only the possible paths for

movement of the robot.

Although in the current implementation AlgoHris uses the breadth first search method to find the shortest path, other A*

algorithm could be effectively applied over the graph, produced by AlgoHris.

The future work will consider implementation of algorithms for finding paths in mazes, which are not shot in advance. The

camera or the sensors of the robot will be used. This way the robot will be able to move in dynamically changing environment.

References

[1] Chauhan, S., Bajpai, A. (2012). Collision Free Autonomous Robot Path Planning. International Journal of Engineering

Research & Technology, 1 (8) e-ISSN: 2278-0181.

[2] Hachour, O. (2009). The proposed path finding strategy in static unknown environments. International Journal of Systems

Applications, Engineering & Development, 4 (3).

[3] Hachour, O. (2008). Path planning of Autonomous Mobile robot. International Journal of Systems Applications, Engineer-

ing & Development, 2 (4).

[4] Sedgewick, R., Wayne, K. (2011). Algorithms, 4th Ed., ISBN-13: 978-0- 321-57351-3, Pearson Education.

[5] Naumov, V., Karova, M., Zhelyazkov, D., Todorova, M., Penev, I., Nikolov, V., Petkov, V. (2015). Robot Path Planning

Algorithm, International Journal of Computers and Communications, ISSN: 2074-1294, NAUN.

[6] Correll, N. (2014). Introduction to Autonomous Robots, 1st edition, ISBN-13:978-1493773077.

Figure 11. Trendline correlation for AlgoHris

