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ABSTRACT: To ensure the enhanced artificial neural network applications for spatial localization stochastic EM radiation
sources, we present a system with results. We have given the stochastic sources near field representation with antenna arrays
and dipole elements. Besides, the correlation matric calculation architecture is presented. It will help to develop neural
models for the 1D and 2D DoA estimation. In addition, we have presented the environment when sources are moving towards
one direction and their corresponding position is decided by one protrusion angle with linear antenna. We have supported
the illustrations with neural model capability to the issues of the DoA calculation for the sources.
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1. Introduction

Today, there are many techniques aiming to improve the performances of different wireless communication systems. One of them
is a technique based on antenna arrays with adaptive beamforming capabilities [1,2]. It offers possibilities to minimize or even
eliminate interferences and to enhance information signals at the reception by using antennas with radiation pattern optimized
from the knowledge of interference sources positions. Location of unwanted signal sources are usually determined by employing
some of the available DoA (Direction of Arrival) estimation algorithms, e.g. MUSIC [1-3]. These algorithms are usually very
accurate but majority of them require complex and hardware- and timeconsuming mathematical operations which limit their
applications in real working environment. One possible alternative to these algorithms is based on using artificial neural networks
(ANNs) [4-16]. They provide the DoA estimation of almost same precision as e.g. MUSIC but with much faster run-time due to
avoidance of exhausting calculations.
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Authors of this paper have considered in the past the application of ANNs for the one dimensional (1D) and twodimensional (2D)
DoA estimation of deterministic electromagnetic (EM) radiation sources [4-6]. Stochastic EM sources have to be also considered
from the interference point of view [17,18] and their angular positions have been determined by using the ANN models developed
by the authors of this paper in [7-14]. In [7-12], authors have proposed the neural model for the 1D DoA estimation of moving
stochastic sources whose locations were characterized only by one angular coordinate (azimuth). In [7-9] neural models for the
DoA estimation of either single or multiple uncorrelated stochastic sources were developed while in [10] an enhancement of these
models was done in order to be able to first determine the number of sources present in the monitoring space and then perform the
DoA estimation. In [11-12] neural models for 1D DoA estimation of stochastic sources, which are mutually partially correlated,
were proposed. Also in [13,14] neural models for 2D DoA estimation were developed. In [13], the model was applied to determine
two angular spatial coordinates of one stochastic source, and in [14] for determining angular coordinates of two uncorrelated
stochastic sources moving in 2D space (plane).

2. Stochastic Source Location Based on 1D DOA ANN Modeling

2.1. Correlation Matrix  Calculation for 1D Source Movement
In [17,18], a stochastic source was modelled by a uniform antenna array with N dipole elements at mutual distance equal to the half
of the operating wavelength (Figure 1). The level of correlation between dipoles feed currents I = [I

1
, I

2
, …, I

N
]),(cI (), describing

the noisy source radiation, is of the form [17,18]:

To find the total electric field in the far-field sampling point, vector M, comprising the contribution of each antenna array element
with radiation pattern F(), is needed:

where z
0
 and k are free-space impedance and phase constant, respectively, r

1
, r

2
, ... , r

N
 are the distances between the farfield

sampling point and antenna array elements and E() is the total electric field intensity in sampling point in far-field positioned
at angle  in azimuth plane with the respect to the first element of antenna array. If there are M sampling points in the far-field,
then notation r

i,m
, representing the distance between i-th element (1  i  N) in the antenna array and m-th sampling point in the

far-field (1 m  M) (see Figure 1), can be used. Position of these points (Y, Y, ..., Y) in the far-field, is described by the azimuth

plane angles (
1
), (), ... , (

M
), determined as previously said with the respect to the first element of antenna array. The

correlation matrix of signals sampled at these points can be calculated as:

For the multiple stochastic sources in the azimuth plane, the level of EM field and the elements of correlation matrix C
E
 in

particular far-field sampling point, are calculated by the superposition of radiation field from all sources. If there are S stochastic
sorces, then the vector M has a form [8]:

 (1)

 (4)

 (5)
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Figure 1. The position of stochastic source in azimuth plane with respect to the location of EM field sampling points in the
far-field scan area [8]

where r
i
(j) is the distance between i-th element in antenna array, representing j-th stochastic source, and the sampling point in

far-field, while the feed currents vector is:

 (6)

where I
i
(j) is the feed current of i-th element in antenna array representing j-th stochastic source [8].

By using Eqs.(3-6), the EM field in the sampling point in the far-field, as well as the elements of correlation matrix C
E
 can be

obtained. In addition, if unknown, matrix cI() can be determined by measuring the electric field in the nearfield of stochastic
source [8].

2.2. Neural model for 1D DoA estimation
The Neural model, based on MLP ANN, is trained to extract information about position of S stochastic sources in azimuth plane
from the correlation matrix C

E
 [8]:

(7)

In Eq.(7), vector  is azimuthal angle vector of stochastic sources,  = [
1
, 

2
, … , 

S
], while the elevation coordinates of radiation

sources position are in this case neglected. The architecture of developed neural model is shown in Figure 2 and it can be
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represented as:

 (8)

where y
l-1

 vector describes the output of (l-1)-th hidden layer, w
l
 is a connection weight matrix among (l-1)-th and lth hidden

layer neurons and b
l
 is a vector containing biases of l-th hidden layer neurons [8].. F is the activation function of neurons in

hidden layers and in this case it is a hyperbolic tangent sigmoid transfer function:

(9)

Figure 2. Architecture of MLP neural model for 1D DOA estimation of stochastic EM source signal in azimuth plane [8]

In order to perform mapping it is sufficient to take only the first column of correlation matrix and therefore
. Also,  is given as  = w

3
y

2
 where w

3
 is a connection weight matrix

between neurons of last hidden layer and neurons in output layer [8]. The optimization of weight matrices and biases values
during the training allows ANN to approximate the mapping with the wanted accuracy. The general designation for the MLP
neural model is MLPH-N

1
- …-N

i
-…-N

H
 where H  is the total number of hidden layers used MLP network, while N

i
 is the total

number of neurons in the i-th hidden layer.

2.3. 1D DoA Estimation - Modelling Results for Uncorrelated Sources
The application of neural model for the 1D DoA estimation of uncorrelated stochastic sources will be illustrated here on the
example of two moveable sources (S=2). The training of ANN is conducted when there are four equidistant sampling points (M
= 4) in the far-field scan area, at the mutual distance d = /2, located 100 m from stochastic sources (Table 1) [8]. Angular position
in the azimuth plane of two sources at arbitrary angle distance will be determined from the correlation matrix information in the
far field scan area. Each of two stochastic sources is described by antenna array with four dipole elements (N = 4). The feed
currents of four dipole elements are mutually uncorrelated so that cI is the unit diagonal matrix. By using Eqs.(4-5) for N = 4 and
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M = 4, 861 and 276 uniformly distributed samples are generated for training and testing, respectively, in the range [-80o 80o] at the

working frequency of 7.5 GHz. Levenberg- Marquartd method with prescribed accuracy of 10-4 is used as a training algorithm.
The testing results for six MLP models with the lowest average case error are shown in Table 2, and MLP2-16-8 is chosen as
representative neural model.

Table 2. Testing Results for Six MLP Neural Models with the Best Average Errors Statistics [8]

Table 1. The Values of Parameters used in Sampling Process [8]

The neural model simulation of testing samples set shows a very good agreement between the output values of neural model
and referent azimuth values for two sources (Figure 3 and Figure 4) [8]. In addition, a good agreement with results obtained by
MUSIC algorithm can be observed.

Figure 3. Comparison of MLP2-16-8 model output 1 (azimuth of source 1) with MUSIC and referent azimuth values [8]
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Figure 4. Comparison of MLP2-16-8 model output 2 (azimuth of source 2) with MUSIC and referent azimuth values [8]

2.4. 1D DoA Estimation - Modelling Results for Partially Correlated Sources
MLP neural model, whose architecture was presented in 2.A section, can be also applied for 1D DoA estimation of partially
correlated stochastic sources. This capability will be illustrated for two EM sources (S = 2) that independently move along linear
trajectory distant r

0
 = 100 m from the antenna array, with whom the signal is sampled at frequency f = 28 GHz [11]. Each stochastic

source is represented by a dipole (N = 1) whose axis is normal on the azimuthal plane.

The scanning width of antenna array in the azimuth is [-30o 30o]. Partial correlation between sources is:

where  is in the range  [11. If sources are uncorrelated then c is equal to zero. For partially correlated
and uncorrelated cases we generated separate sample sets for network training and testing, while using common parameters of
sampling that are given in Table 3 [11].

For training and testing samples generation we use relations (4) and (5) that establish inverse mapping from that of the MLP DoA
model

Samples for neural network training and testing are given in the format , where xt is vector of

(10)

(11)
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Table 3. The Values of Parameters used in Sampling Process [11]

For neural model training and testing in the uncorrelated case the following sets were generated [11]:

TRAINING_A set (28920 samples):

(12)

TEST_A set (5050 samples):

(13)

For neural model training and testing in the partially correlated case the following sets were generated:

(14)

TRAINING_B set (29280 samples):

(15)

TEST_B set (3036 samples):

input model values , . For each element of vector xt we used

uniform distribution of samples for azimuth angles of radiation source location and correlation of the form 

and , where  and ct
 min

 represent the lowest limit of distribution,  and  represent the

highest limit of distribution, while t
step 

and ct
step 

 represent uniform sampling steps [11].
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Samples in the TRAINING_A and TEST_A sets were generated under conditions of uncorrelated radiation of two stochastic
sources while the samples in the TRAINING_B set are generated under conditions of partial correlation in the range 0.05  c
0.8. Set TEST_B contains samples that are generated also under variable radiation correlation in above range but also it has
samples that are generated under no correlation. Different number of MLP ANNs with two hidden layers (H = 2) and different
number of neurons in them (MLP2-N

1
-N

2
 , 4  N

1
, N

2 
  23were considered during the training, For the testing the values of worst

case error (WCE) and average error (ACE) [4,5] were taken into account for model accuracy estimation.

After training the MLP neural models with the set TRAINING_A, the results of the testing of the six models with lowest value
of WCE on the set TEST_A are shown in Table IV [11]. Figures. 5(a) and 5(b) [11] present a scattering diagram of MLP2-12-7
model on TEST_A set (this model has shown lowest WCE on that set). It can be seen that all six models show high accuracy in
source location estimation. But if in the network input we deliver samples that are generated with some source radiation
correlation (set TEST_B) then the models show a high WCE value or high imprecision in source location estimation. That may
be seen also in Table IV [11] also from scattering diagram of MLP2-12-7 model on TEST_B set (Figures 6(a) and 6(b)) [11].

Table 4. Testing Results for Six MLP Neural Models Trained on Training_A Set with the Best Average Errors Statistics [11]

After training MLP neural models on the set TRAINING_B, the results from testing of six models with lowest value for WCE on
set TEST_B are shown in Table V [11]. In Figs. 7(a) and 7(b) [11] we may see scattering diagram of the MLP2-22-22 model on the
set TEST_B (this model has shown lowest value of WCE on that set). It can be seen that the model MLP2-22-22 has a
satisfactory accuracy in angle position determination when we use samples for different partial correlations of sources.



                 Journal of Information & Systems Management   Volume   12   Number   2   June   2022            35

Figure 5. Scattering diagram of MLP2-12-7 model 1 output (a), and 2 output (b), on TEST_A set [11]

Table 5. Testing Results for Six MLP Neural Models Trained on Training_B Set with the Best Average Errors Statistics [11]
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Figure 6. Scattering diagram of MLP2-12-7 model 1 output (a), and 2 output (b), on TEST_B set [11]

3. Stochastic Source Location based on 2D DOA ANN Modeling

3.1. Correlation Matrix Calculation for 2D Source Movement
For 2D movement scenarios, Eqs.(2-3) have to be modified [14]:

where ri
(j) 

is the distance between i-th element in antenna array, representing j-th stochastic source, and the sampling point in
far-field. The correlation matrix of signals received in these sampling points can be obtained from the correlation matrix of
antenna elements feed currents as [14]:

Spatial angles  and  in Eqs.(16) and (17) describe stochastic source location with respect to the selected sampling point in far-
field, F(, ) is the radiation characteristic of the antenna array element and rs the distance between s-th stochastic EM source
and selected sampling point. When a rectangular antenna array of dimensions MP is used at the reception, the far-field
sampling points correspond to the positions of elements of this array and their total number will be K=M•P. In our scenario
shown in Figure 8, S stochastic sources are moving independently from each other in a plane parallel to the rectangular antenna

         (17)

(18)
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array [14]. Axes of dipoles representing stochastic sources are lying in the plane in which sources are moving and they are
parallel to the x-axis so that their radiation in the direction of sampling points can be approximated with isotropic radiation. The
distance between elements of receiving antenna array along the x-axis is dx, while the distance between elements along the y-
axis is dy. The distance between the plane of planar receiving antenna array and the plane in which stochastic sources are
moving is r

0
. When the mapping from Eq.(18) is applied separately on each of the sampling points, the appropriate

distance between s-th stochastic source and the sampling point at the position of (m,p) sensor of planar receiving array is [14]:

Figure 7. Scattering diagram of MLP2-22-22 model 1 output (a), and 2 output (b), on TEST_B set [11]
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Figure 8. The position of stochastic EM sources in x-y plane with respect to the location of sampling points in the far-field
scan area [14]

(20)

(21)

(19)

where r
0
 represents the distance between the plane of planar receiving antenna array and the plane is which S stochastic sources

are moving, while  and 
mp

(s) are spatial angles related to the position of s-th source with respect to the (m, p) sensor
position and they are [14]:

(20)

(21)
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where 
11

(s) and 
11

(s)   are spatial angles related to the position of s-th source with respect to the referent (1,) position of

antenna array (referent sensor of array). Angles 
11

(s) and 
11

(s) represent at the same time the angular (, ) position of s-th

stochastic source with respect to the planar receiving antenna array so that 
11

(s) = and 11
(s)

 = .

Correlation matrix of signals in sampling points is defined as [14]:

From Eq.(16) vector M is determined, and then according to the angular position of stochastic EM source with respect to the
sampling points, the elements of correlation matrix can be calculated using Eq.(18). Matrix elements are normalized with respect
to the first matrix element [14]

in order to obtain in our considered scenario the correlation matrix that does not depend on value r
0
. For the training of neural

network it is sufficient to use only the first row of matrix CE ([C
E11

, C
E12

 , ... , C
E1K

]) due to the fact that this row contains
sufficient information for determination of angular coordinates of stochastic sources [14].

3.2. Neural Model for 2D DoA Estimation
The neural model, based on MLP ANN, is trained to extract information about position of S stochastic sources in azimuth and
elevation planes from the correlation matrix C

E  
[14]:

(24)

where [
1


1


2


2
... 

s


s 
... 

S


S
]T = f (C

E
) is vector of spatial angles of arrival of the stochastic sources radiation. The architecture

of developed neural model is shown in Figure 9, while Eqs.(8-9) from 2.3 section are also used here.

Again as in 2.2 section, in order to perform mapping it is sufficient to take only the first column of correlation matrix and therefore
y

0
 = [Re{C

E
 [1, 1]}, [Re{C

E
 [1, K]},  ....,Im{C

E 
[1, 1]}], ...,  Im{C

E 
[1, K]}]. Also, output of the neural network model is given as

[
1


1


2


2
... 

s


s 
... 

S


S
]T = w

H +1 
y

H 
where w

H+1
 is a connection weight matrix between neurons of last hidden layer and neurons

in output layer. The optimization of weight matrices w
1
, w

2
 , ...w

H
, w

H+1
 and biases values during the training allows ANN to

approximate the mapping with the desired accuracy.

3.3. 2D DoA Estimation - Modelling Results for Uncorrelated Sources
The application of neural model for the 2D DoA estimation of uncorrelated stochastic sources will be illustrated here on the
example of one moveable sources (S = 1). Stochastic source is represented with an array of two elements (N = 2) with isotropic
characteristics and with uncorrelated currents supply so that cI is the unit diagonal matrix. Signal is sampled in the far-field in
nine points that correspond to the rectangular MP = 3  3 antenna array (K = M•P = 9) [13]. Table 6 provides the values of
parameters for the the scenarios used to generate samples for training the neural models [13]. Sets of samples for training and
testing of the MLP models were generated by using Eqs.(18) and (22). Any combination of angles and which is defined by the
distribution patterns associated with the vector of 18 elements, represents the first type of signal correlation matrix (9 elements
for the real part , and 9 elements in the imaginary part of the complex value of the first type correlation matrix).

(23)

(22)
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Figure 9. Architecture of MLP neural model for 2D DOA estimation of stochastic EM source signals in x-y plane [14]

Table 6. The Values of Parameters used in Sampling Process [13]
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Table 7. Testing results for six mlp neural models with the best average errors statistics [13]

A set of 14641 samples was created for training applying uniform distribution of and with 0.5o step in the range [- 30o 30o ] and

with a 0.5o step. Quazi-Newton method with prescribed accuracy of 10-4 is used for the training algorithm. Testing set with 7396

samples is providing with uniform distribution of and angles in the range [-30o 30o] with a 0.7o step. The testing results for six
MLP models with the lowest average (ACE) and worst case error (WCE) are shown in Table 7, and MLP2-15-11 is chosen as
representative neural model. A close agreement between the output values of neural model and referent and values can be
observed thorough the scattering diagram of testing samples set shown in Figures 10 and 11 [13].

Figure 10. Scattering diagram of MLP2-15-11 model output [13]

MLP2-15-11 model was employed to track the movement of the hypothetic stochastic source on earth's surface in a square area
in size 800800 km. The source position was varied along the test trajectory described by the function y = 3 • 10-6 • (x-105)2-3 •105

where x and y are relative latitude and longitude expressed in meters. Evaluation paths of origin was carried out by sampling in
time the correlation matrix of the 69 points shown in Figure 12 [13]. A satisfactory agreement can be observed between the values
of the source positions which war estimated by the neuron model and the referent source trajectory.
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Figure 11. Scattering diagram of MLP2-15-11 model output [13]

Figure 12.  A simulation of localization and tracking the movement of the MLP2-15-11 model [13]
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4. Conclusion

Overview of using MLP ANNs for the localization of stochastic EM sources was given in the paper. It was illustrated that the
develop neural models can be used for efficient and accurate 1D and 2D estimation of electromagnetic radiation originating from
either uncorrelated or partially correlated stochastic sources. Future research will be focused to the more general 2D DOA
estimation of multiple stochastic sources with different signal level and at arbitrary angular and radial distances from the
reception point.
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