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Optimization System for the Portfolio Risk Optimization
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ABSTRACT: We have used the mean variance optimization system in the paper to represent the portfolio risk optimization.
We have measured the optimal proportional assets in the portfolio and ensure the return of assets with no less than the given
target value. With its use we have fixed the benefits of the given target value. We have used the MATLAB solver to arrive at the
optimization calculation.
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1. Introduction

Most investors and financial economists acknowledge the investment benefits of efficient portfolio diversification. Markowitz
gave the classic definition of portfolio optimality: a portfolio is efficient if it has the highest expected (mean or estimated) return
for a given level of risk (variance) or, equivalently, least risk for a given level of expected return of all portfolios from a given
universe of securities. The portfolio optimization is a hard optimization problem in the finance area. There are developed
different single objective optimization models for different applications in this area. This problem is very important. It is
connected with the choice of a collection of assets to be held by an institution or a private individual. The choice should be done
in such a way, that the expected return (mean profit) is maximized, while the risk is to be minimized at the same time. Dependent
on users preferences, various trade-offs are usually seek.

The relatively low level of analytical sophistication in the culture of institutional equity management is one often-cited reason
for the lack of acceptance of MV optimization, along with organizational and political issues.

Formulating this problem in optimization terms, Markowitz [1] states that, ideally, the investor searches for the optimal portfolio,
i.e., the portfolio that minimizes the risk (within a defined tolerance) while maximizing the return.
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2. Problem Formulation

The assets S
1
 , S

2
, … S

n 
(n 2) with random returns are considered. Let a set of n N financial assets be given. At time t

0
  R,

each asset i has certain characteristics, describing its future payoff: Each asset i has an expected rate of return µ
i 
per monetary

unit
 
(e. g. dollars), which is paid at time t

1
  R. Let µ = [µ

1
, µ

2
,…, µ

n
]T. This means if we take a position in yR units of asset 1 at

time t
0
 our expected payoff in t

1
 will be µ

1
 y units. Let 

i
 be the standard deviation of the return of asset S

i
. For i  j, 

ij
 denotes

the correlation coefficient of the returns of asset S
i
 and S

j
. The correlation coefficient . Let be n  n symmetric

covariance matrix with  and  for i j, and i, j  {1, ..., n}. In this notation s ii is the variance of asset i-th's rate of

return and 
ii
 is the covariance between asset i-th's rate of return and asset j-th's rate of return.

A portfolio is defined by a vector , which contains the proportions x
i
  R of the total funds invested in

securities i {1, ..., n }. The expected return and the variance of the resulting portfolio x := (x
1
, ..., x

n
) can be presented (see

standard Markowitz setting [2 - 7]) as follows:

It should be noted that  for any x, since the variance is always nonnegative, i. e.  is positive semidefinite. It is

assumed here, that  is positive definite, which is equivalent to assuming that there are no redundant assets in our collection S
1
,

S
2
, …, S

n
. Further it is assumed, that the set of admissible portfolios is a nonempty polyhedral set, represented as X := {x: Ax =

b, Cx  d}, where A is an mn matrix, b is mdimensional vector, C is a pn matrix and d is a pdimensional vector. One constraint
of type linear equality in the set X in the standard problem formulations is:

(3)

Simple linear inequality constraints (lower and upper bounds) in the set X are connected with the requirement, that the propor-
tions (weights) of the portfolio should be nonnegative:

(4)

There are several different single objective model formulations of Markowitz’mean-variance optimization (MVO) problem (see [7
- 10]). One single objective MVO model is formulated as follows:

(5)

subject to: (6)

  Ax = b (7)

(8)

This model corresponds to risk minimization. In the first constraint T is a target value, where the expected return is no less than

(1)

(2)
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T. In case the problem formulation includes varying T between T
min

 and T
max

, there will be obtained efficient portfolios.

Defining Efficiency
The notion of defining an optimal set of portfolio weights to optimize risk and return is the basis of Markowitz portfolio
efficiency. The efficiency criterion states:

A portfolio P* is MV efficient if it has least risk for a given level of portfolio expected return.

The MV efficiency criterion is equivalent to maximizing expected portfolio return for a given level of portfolio risk.

A portfolio P* is MV efficient if it has the maximum expected return for a given level of portfolio risk.

Which formulation of portfolio efficiency is used is a matter of convenience.

Optimization Constraints
Linear constraints are generally included in institutional MV portfolio optimization. For example, optimizations typically assume
that portfolio weights sum to 1(budget constraint eq. 3) and are nonnegative (no-short-selling constraint eq.4). The budget
condition is a linear equality constraint on the optimization. The no-short-selling condition is a set of sign constraints or linear
inequalities (one for each asset in the optimization) and reflects avoidance of unlimited liability investment often required in
institutional contexts. In practice, optimizations often include many additional linear inequality and equality constraints, par-
ticularly for equity portfolios.

Computer Algorithms
Several algorithms are available for calculating MV efficient portfolios. Quadratic programming is the technical term for the
numerical analysis procedure used to compute MV efficient portfolio in practice. Quadratic programming algorithms allow
maximization of expected return and minimization of the variance, subject to linear equality and inequality constraints (see [11 -
13]).

Many algorithms are used for computing MV efficient portfolios. The choice may depend on convenience, computational
speed, number of assets, number and character of constraints, and required accuracy.

3. Assets Data Used

Equity portfolio optimization is typical application of MV optimization in asset management. The assets generally include broad
asset categories, such as U.S. equities and corporate and government bonds, international equities and bonds, real estate,
hedge funds, and venture capital. Sample means, variances, and correlations, based on monthly, quarterly, or annual historic
data, may serve as starting points for optimization input estimates. In this study the Markovitz’s MVO model is applied to the
problem of constructing a longonly portfolio of French stocks, US bonds and cash deposit.

Historical return data for these three asset classes are used to calculate the optimal proportions of assets, included in a portfolio,
so that the expected return of each asset is no less than in advance given target value. It should be noted that the most MVO
models combine historical data with other indicators such as earnings estimates, analyst ratings, valuation and growth metrics,
etc. This study differs from the above mentioned approaches. It is focused on the price based estimates for expositional
simplicity.

4. llustrative Example

The 10-year Treasury bond index (CBOE Interest Rate 10 Year T No (^TNX) for the returns on bonds and the EURONEXT 100
(^N100) index for the returns on stocks, are used. It is assumed that the cash is invested in a money market account whose return
is the 1% – deposit interest rate. For each asset historic data are used including the annual times series for the “Total Return”
from November 1999 through February 2018, e.g. for 220 months period (see [14, 15]).

Let the "Total Return" for asset i = 1, 2, 3; and t = 0,...,t
f 
[months], be denoted by I

it
. Here t = 0 corresponds to November 1999,
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and  t = t
f
 corresponds to February 2018. For each asset i the raw data I

it
, t = 0,...,t

f
, can be converted into rates of return r

it
, t =

0,...,t
f
 [months], by means of the formula:

 (9)

Let the random rate of return of asset i be denoted by T
i
. From the historical data we can compute the arithmetic mean rate of

return for each asset:

(10)

obtaining for the concrete example the result in Table 1:

Bonds Stocks Interest rate

Arithmetic mean r
it

 0,02024% 0,13% 0,084545%

Table 1. Arithmetic mean rate of return for each asset

Since the rates of return are multiplicative over time, it is preferred the geometric mean to be used instead of arithmetic mean. The
geometric mean is the constant monthly rate of return, that needs to be applied in months t = 0 through t = t

f
-1, in order to get

the compounded Total Return I
itf

, starting from I
i0

. The formula for the geometric mean is:

(11)

The results for the test example are presented in Table 2:

Bonds Stocks Interest rate

Geometric mean 
i

0,36% 0,0123% 0,085%

Further the covariance matrix is computed:

For the test example considered the covariance matrix is presented in Table 3:

Covariance Bonds Stocks Interest rate

Bonds 0,0076611701  -0,00011479 -0,000000115

Stocks -0,00011479 0,0023643199 0,0000000086

Interest rate -0,000000115 0,0000000086 0,0000000020

Table 3. Covariance matrix for the test example

Table 2. Geometric mean rate of return for each asset
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The volatility of the rate of return on each asset is computed:

The result is presented in Table 4:

Bonds Stocks Interest rate

Volatility 0,0875 0,0486 0,0000447

Then the correlation matrix  is also computed (see Table 5):

Using the covariance matrix from Table 3 the Quadratic Programming (QP) formulation of the portfolio optimization is:

(14)

This problem is solved 10 times, correspondingly for rate of return T = 6%, T = 6,5%, ..., T = 10,5% with increments of 0,5% by
means of fmincon solver of MATLAB “Optimization Toolbox” [16], using the Interior pint algorithm.

5. Test Results

Starting by T = 6%, after 68 iterations the result presented on Figure 1 obtained. The optimization results for all ten optimization
problems with different T-values by means of fmincon solver of MATLAB “Optimization Toolbox” are summarized in Table 6.

The curve of efficient frontier is presented on Figure 2. Every optimal portfolio calculated is presented as a triangle lying on the
efficient frontier in the standard deviation / expected return plane.

The optimization results for all ten optimization problems with different T-values by means of fmincon solver of MATLAB
“Optimization Toolbox” are summarized in Table 1 as follows:

6. Conclusion

Portfolio optimization of three classes of assets (bonds, stocks and cash deposit - interest rate) was performed. Historical return
data (220 monthly returns) for these three asset classes are used to calculate the optimal proportions of assets, included in the

Table 4. Volatility of the rate of return for each asset

Table 5. Correlation matrix for the test example

(12)
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Figure 1. Optimal portfolio for T = 6%

Table 5. Correlation matrix for the test example

portfolio, so that the expected return of each asset is no less than in advance given target value of return rate. Fig. 1. shows the
results for an optimal portfolio by expected return of 6 %. Table 1 shows simulated optimizations results from 6 to 10,5 with step
increase of 0.5% for the rate of return T. Through this simulation we get the efficient frontier for the alternative portfolios. The
efficient frontier is often helpful in understanding the investments in the portfolio. It serves as useful guidepost for comparing
the implications of different portfolios (see [17 - 19]). Fig. 2 shows the relationship between standard deviation and expected
return. Logically, as the expected return increases, the deviation increases, too. Because of accepted pessimistic (conservative)
strategy 1% positive increasing profitability for a rate of return, the obtained result is that the bank deposit option is the most
secure. We do not comment the security of investment in banks - how sure they are. Interesting investigation would be if a
negative interest rate on the bank deposit is set. Additional experiments on a representative sample of benchmark problems
should be performed for more reliable and precise conclusion about the efficiency and efficacy of the applied approach.
Hopefully the mentioned challenges and potential directions for further research will attract more scientists to work in this
fruitful area in the future.
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