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ABSTRACT: The modular expansion has clear impact on the speed of the public key cryptosystems. The modular multiplica-
tions determine the measurement of modular exponentiation. Lower end platforms depend on the optimized algorithms. The
algorithms will be more effective and take very less resources only. The algorithms are generated by less precomputation with
modular exponentiation. This process will result in the development of computational efficiency of the public key cryptosystems
modular exponentiation.
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1. Introduction

The word cryptography comes from the Greek words crypto (hidden) and graphy (writing), hence cryptography is the art of
secret writing. More formally cryptography is the study of mathematical techniques related to the security services of informa-
tion security. The ITU-T X.800 standard defines the security services provided by a system to give a specific kind of protection
to system resources. The standard divides security services into the following four categories:

- Confidentiality is a service used to keep the content of information accessible to only those authorized to have it. This service
includes both of protection of all user data transmitted between two points over a period of time as well as protection of traffic
flow from analysis.

- Integrity is a service that requires that computer system assets and transmitted information be capable of modification only by
authorized users. Modification includes writing, changing, changing the status, deleting, creating, and the delaying or replaying
of transmitted messages. It is important to point out that integrity relates to active attacks and therefore, it is concerned with
detection rather than prevention. Moreover, integrity can be provided with or without recovery, the first option being the more
attractive alternative.
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- Authentication is a service that is concerned with assuring that the origin of a message is correctly identified. That is,
information delivered over a channel should be authenticated as to the origin, date of origin, data content, time sent, etc. For
these reasons this service is subdivided into two major classes: entity authentication and data origin authentication. Notice that
the second class of authentication implicitly provides data integrity. An important part of almost all modern security protocols
is public-key algorithms.

- Non-repudiation is a service which prevents both the sender and the receiver of a transmission from denying previous
commitments or actions. When disputes arise due to an entity denying that certain actions were taken, a means to resolve the
situation is necessary. A procedure involving a trusted third party is needed to resolve the dispute.

Specifically, unauthorized access to information must be prevented, privacy must be protected, and the authenticity of elec-
tronic documents must be established. Cryptography, or the art and science of keeping messages secure, allows us to solve
these problems.

These security services are provided by using cryptographic algorithms. There are two major classes of algorithms in cryptog-
raphy: Symmetric algorithms and Public-Key algorithms.

Symmetric algorithms are algorithms where the encryption and decryption key are the same, or where the decryption key can
easily be calculated from the encryption key. The main function of these algorithms, which are also called secret-key algorithms,
is encryption of data, often at high speeds. Private-key algorithms require the sender and the receiver to agree on the key prior
to the communication taking place. The security of private-key algorithms rests in the key; divulging the key means that anyone
can encrypt and decrypt messages. Therefore, as long as the communication needs to remain secret, the key must remain secret.
There are two types of symmetric-key algorithms: block ciphers and stream ciphers. Block ciphers are a function which maps n-
bit plaintext to n-bit ciphertext blocks (n is called the block length). The most used secret-key algorithms are DES, 3DES, AES,
RC5 etc. Stream ciphers operate on a single bit of plaintext at a time. They are useful because the encryption transformation can
change for each symbol of the message being encrypted. They can be used when the data must be processed one symbol at a
time because of lack of equipment memory or limited buffering.

One of the major issues with symmetric key systems is the need to find an efficient method to agree on and exchange the secret
keys securely. This is known as the key distribution problem.

A major advance in cryptography came in 1976 with the publication by Diffie and Hellman (New Directions of Cryptography) [1]
of a new concept of cryptography. This new concept was called public-key cryptography. Public-Key Cryptography (PKC) is
based on the idea of separating the key used to encrypt a message from the one used to decrypt it. Pair of matched keys is used,
termed “public” and “private”  keys. Anyone that wants to send a message to party A can encrypt that message using A's public
key but only A can decrypt the message using her private key. In implementing a public-key cryptosystem, it is understood that
A's private key should be kept secret at all times. Furthermore, even though A's public key is publicly available to everyone,
including A's adversaries, it is impossible for anyone, except A, to derive the private key.

In general, one can divide practical public-key algorithms into three families [2]:

- Algorithms based on the integer factorization problem: given a positive integer n, find its prime factorization. RSA [3], the most
widely used public-key encryption algorithm, is based on the difficulty of solving this problem. RSA problem: given a positive
integer that is a two distinct odd primes p and q, a positive integer such that gcd (e,(p -1)(q-1)) = 1, and an integer c, find an
integer m, such that mod .

- Algorithms based on the discrete logarithm problem: given  and find the integer x such that  mod p. The Diffie-

Hellman key exchange protocol is based on this problem: given a prime p, a generator  and elements  mod p and  mod ,

find  mod p.

- Algorithms based on Elliptic Curves. Elliptic curve cryptosystems are the most recent family of practical publickey algorithms,
but are rapidly gaining acceptance. Due to their reduced processing needs, elliptic curves are especially attractive for embedded
applications. Despite the differences between these mathematical problems, all three algorithm families have something in
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common: they all perform complex operations on very large numbers, typically 1024 bits in length for the RSA and discrete
logarithm systems or 160 bits in length for the elliptic curve systems.

2. Overview of Algorithms for Modular Reduction and Exponentiation

The most common operation performed in public-key schemes is modular exponentiation, i.e., the operation A mod M. Perform-
ing computation of numbers of this large size (e.g., 2048 bit) with multiple precisions is not easy or fast to implement. Modular
exponentiations are typically calculated using repeated square-and-multiply algorithms with modular reductions in between. In
[2] this method is called binary exponentiation. A similar algorithm is also used for point multiplication in ECC. The basic idea of
binary method is to compute modular exponentiation using the binary expression of exponent. The exponentiation operation is
broken into a series of squaring and multiplication operations by the use of the binary method. There are two variations of the
algorithm: left to right (LRB) and right to left binary exponentiation (RLB). LRB algorithm computes the exponentiation starting
from the most significant bit position of the exponent and proceeding to the right, which is depicted as follows.

Input: integers A, M, E = 

Output: X = AE  mod M

1. X  1
2. for i = n to 0 do

 mod M

If e
i
 = 1 , then X  X. A mod M

3. Return (X)

Let n + 1 be the bitlength of the binary representation of E, and let w(e) be the number of 1’s in this representation.

Algorithm LRB performs t + 1 modular squarings and w(e) 1 modular multiplications by A. Different from the LRB , the RLB
algorithm computes the exponentiation starting from the last significant bit position of the exponent E and proceeding to the
left. Each multiplication (or squaring) operation requires a large number of clock cycles due to the long operand length depend-
ing on the implementation. The binary method is frequently used in smartcards and embedded devices, due to its simplicity and
low resource consumption.

Mostly mentioned are various windowing techniques as a generalization of the basic algorithm in which more than one bit of the
exponent is processed per iteration. The basic idea is as follows: the exponent is divided into digits (windows). Algorithm LRB
can thus be considered as a special case where the window size is equal to 1.

The k-ary method (fixed window) is an optimization of the binary method. Bits of the exponent are scanned in groups as against
the binary method in which a bit is scanned per iteration. The algorithm for this technique is shown below.

Input: Integers A, M, E =  where b = 2k for 

Output:  mod M

1. precomputation
2.  

 for i = 1 to -1 do : .A mod M
 X  1
for i = n down to 0 do

 mod M

3.  mod M

4. return (X)
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Most methods rely on modular reduction algorithm functions to reduce the size and complexity of the required arithmetic
operations to carry out their public-key cryptosystem implementations more efficiently [4] [ 5].

The Classical, Barrett, and Montgomery algorithms are wellknown modular reduction algorithms for large integers used in
public-key cryptosystems.

Montgomery Reduction can be implemented in two ways: word-serial and bit-serial. For a software implementation, the bit-serial
algorithm becomes too slow because the processor is built on word-level arithmetic. Therefore, software implementations
typically utilize the word-level Montgomery Reduction algorithm. If we assume a word-level length of n, to reduce a 2n-bit
number to an n-bit number, 2 full multiplications and 2 full addition operations are required. Thus, a full modular multiplication
requires 3 multiplication and 2 addition operations [2]. This also applies to large digit approaches such as ours, where the
multiplication/addition operations on large digits are further decomposed into wordsize operations. The approach of Montgom-
ery avoids the time consuming trial division that is the common bottleneck of other algorithms. His method is proven to be very
efficient and is the basis of many implementations of modular multiplication in hardware as well as software such as highradix
design [6][7], scalable design [8], parallel calculation quotient and partial result and signed-digit recoding [9].

The notation is as follows: MONT(X, Y) = XY R-1 mod N For a word base b = 2a, R is usually chosen such that R = 2r = (2a)1 > N.

To compute Z = xyRmodN, one first has to compute the Montgomery function of x and R2 modM to get Z ' = xR modM. Mont(Z’,
y) gives the desired result. When computing the Montgomery product T = XY R 1 modM, the following procedure was proposed:

INPUT: Integers M(odd), x  [0, M - 1], y  [0,M - 1], R = 2r, and M ' = - M -1 mod 2r

OUTPUT: xyR-1 modM

1. T  0

2. For i from 0 to (l -1) do:

2.1   mod 2a

2.2  

3. If T  M, then T  T M

4. Return (T)

An architecture based on Montgomery’s algorithm[10] is probably the best studied architecture in hardware. Differences
appeared because of a different approach for avoiding long carry chains.

The Barrett reduction [11] requires the pre-computation of one parameter, , where M is the modulus of the multiplication

operation. Since this is a parameter that only depends on the modulus, it remains unchanged throughout the entire exponentia-
tion operation, thus the calculation time of this parameter is not significant. If the number to be reduced is N, the reduction then
takes the form . by integer division which requires two n-bit multiplies and one n-bit subtract, leaving the total
at three multiplications and one subtraction. In [12], the authors proposed a method called folding to reduce the amount of
computations for a Barrett’s reduction scheme.Their method relies on the precomputation of the constant  mod M.

3. Proposed Algorithm

The algorithm proposed related to computing AE mod M uses a combination between sliding windows exponentiation and an
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improvement of the reduction method for moduli of special form bn – c [2] [13]. By reduction method for moduli of special form

bn – c [2][13]. By reduction method for moduli of special form the time of execution depends on the value of the radix. Before
involution the radix is being checked first. If A>M/2, the modular operation calculates by

(M-A)I mod M. (M-A)2 mod M = = M2  mod M – 2M.Amod M + A2 mod M = A2 mod M (1)

Equation (1) is valid for all the even powers

(M-A)2n mod M = A2n mod M for n  1.

By odd powers a correction

(M-A)2n + 1 mod M = M - A2n + 1 mod M (2)

(1) and (2) could be used by modular multiplication of two integers : AB mod M.

By A>M/2 and B>M/2 (M-A)(M-B) mod M = AB mod M.

By A>M/2 and B<M/2 (M-A) B mod M = M-AB mod M.

The modular squaring algorithm is described in Algorithm 1.

Algorithm 1. EXPMOD(A, M)
Input : Integers A, M = (m1 … m 1 m 0 ), m 1 =1

Output: Y=A 2 mod M

1. if A > M/2 then A  M - A

2. P  2n  -M, Y A 2

3. while Q > 0 do

Q  

Y  Q.P + Y mod 2n

4. if Y  M then X  Y-M n

5. Return (Y)

The modular multiplication algorithm is presented in Algorithm 2.

Algorithm 2 . MULMOD(A, B, M)

Input: Integers A, B, M = (m
n-1 

… m
n
 m

0
 ), m

n - 1 
= 1

Output: Y = ABmod M

1. 0  j if A > M/2 then A  M-A, j   j+1

if B > M/2 then A  M-B, j  j + 1
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2. P , - M, Y   A.B

3. while Q > 0 do

a. 

b. X  Q.P + Y mod 2

4. if Y  M then Y   Y - M

5. if j = 1 them X  M-Y

6. Return (Y)

For the sliding window algorithm the window size may be of variable length and hence the partitioning may be performed so that
the number of zero-windows is as large as possible, thus reducing the number of modular multiplication necessary in the
squaring and multiplication phases.

Furthermore, as all possible partitions have to start (i.e. in the right side) with digit 1, the pre-processing step needs to be
performed for odd values only.

Algorithm 3. Sliding window with EXPMOD and MULMOD

Input: Integers 

k is called window size

Output: X = AE mod M

1. Precomputation: Compute and store A
i

for  do MULMOD  for i = 0 to p, decompose E into

zero and nonzero windows f 
i 
of length L(f 

i
)  k

2. 

3. for i = p -1 down to 0 do

for j =1 to L(f 
i
) do EXPMOD(X, M),  if  then MULMOD 

4. Return (X)

4. Conclusion

Modular exponentiation is the main operation to RS Abased public-key cryptosystems. It is performed using uccessive modular
multiplications. This operation is time consuming for large operands, which is always the case in cryptography. For software or
hardware fast cryptosystems, one needs thus reducing the total number of modular multiplications required. The proposed
algorithm for modular exponentiation is effective by transmission of short messages. It is faster then the classical algorithm why
because it does not use integer division. The check in step 1 of EXPMOD and MULMOD reduces the execution time, because

always A < M/2. The execution time for step 3 is less, as smaller is the value of . With multiplicity of the modulus

different than 8 is selected n=8k and step 2 is being executed while P < M. This permit canceling of rotation within steps 3.1 
3.2 and operating with bytes only.
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