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Incremental Bayesian Hierarchical Clustering using Tree Proposals
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ABSTRACT: In the Bayesian non-parametric models, normalized random measures have significant yield of discrete random
measures; where some well-established processes are applied. The posterior inference models use the methods which are easy
to be applied and the convergence becomes more usable.  The incremental Bayesian hierarchical clustering is created for
NRM mixture models. While doing so it is important to consider the efficiency and application of online inferences. We in this
work have introduced a hybrid inference algorithm for the mixture models which ensures the benefits of mixture models and
Bayesian hierarchical clustering. The proposed trees are ensured for better coverage and use fast convergence to the tree
proposals. We have tested the proposal and found the better outcome based both on synthetic and real-world datasets.
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1. Introduction

Normalized random measures (NRMs) form a broad class of discrete random measures, including Dirichlet proccess (DP) [1]
normalized inverse Gaussian process [2], and normalized generalized Gamma process [3, 4]. NRM mixture (NRMM) model [5] is
a representative example where NRM is used as a prior for mixture models. Recently NRMs were extended to dependent NRMs
(DNRMs) [6, 7] to model data where exchangeability fails. The posterior analysis for NRM mixture (NRMM) models has been
developed [8, 9], yielding simple MCMC methods [10]. As in DP mixture (DPM) models [11], there are two paradigms in the
MCMC algorithms for NRMM models: (1) marginal samplers and (2) slice samplers. The marginal samplers simulate the posterior
distributions of partitions and cluster parameters given data (or just partitions given data provided that conjugate priors are
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assumed) by marginalizing out the random measures. The marginal samplers include the Gibbs sampler [10], and the split-merge
sampler [12], although it was not formally extended to NRMM models. The slice sampler [13] maintains random measures and
explicitly samples the weights and atoms of the random measures. The term ”slice” comes from the auxiliary slice variables used
to control the number of atoms to be used. The slice sampler is known to mix faster than the marginal Gibbs sampler when applied
to complicated DNRM mixture models where the evaluation of marginal distribution is costly [7].

The main drawback of MCMC methods for NRMM models is their poor scalability, due to the nature of MCMC methods.
Moreover, since the marginal Gibbs sampler and slice sampler iteratively sample the cluster assignment variable for a single data
point at a time, they easily get stuck in local optima. Split-merge sampler may resolve the local optima problem to some extent, but
is still problematic for large-scale datasets since the samples proposed by split or merge procedures are rarely accepted.
Recently, a deterministic alternative to MCMC algorithms for NRM (or DNRM) mixture models were proposed [14], extending
Bayesian hierarchical clustering (BHC) [15] which was developed as a tree-based inference for DP mixture models. The algo-
rithm, referred to as incremental BHC (IBHC) [14] builds binary trees that reflects the hierarchical cluster structures of datasets
by evaluating the approximate marginal likelihood of NRMM models, and is well suited for the incremental inferences for large-
scale or streaming datasets. The key idea of IBHC is to consider only exponentially many posterior samples (which are repre-
sented as binary trees), instead of drawing indefinite number of samples as in MCMC methods. However, IBHC depends on the
heuristics that chooses the best trees after the multiple trials, and thus is not guaranteed to converge to the true posterior
distributions.

In this paper, we propose a novel MCMC algorithm that elegantly combines IBHC and MCMC methods for NRMM models. Our
algorithm, called the tree-guided MCMC, utilizes the trees built from IBHC to proposes a good quality posterior samples
efficiently. The trees contain useful information such as dissimilarities between clusters, so the errors in cluster assignments
may be detected and corrected with less efforts. Moreover, designed as a MCMC methods, our algorithm is guaranteed to
converge to the true posterior, which was not possible for IBHC. We demonstrate the efficiency and accuracy of our algorithm
by comparing it to existing MCMC algorithms.

2. Background

Throughout this paper we use the following notations. Denote by  a set of indices and by 

a dataset. A partition  of [n] is a set of disjoint nonempty subsets of [n] whose union is [n]. Cluster c is an entry of , i.e.,

. Data points in cluster c is denoted by  for . For the sake of simplicity, we often use i to

represent a singleton {i} or . In this section, we briefly review NRMM models, existing posterior inference methods such
as MCMC and IBHC.

2.1. Normalized random measure mixture models
Let   be a homogeneous completely random measure (CRM) on measure space  with Levy intensity  and base measure

H, written as . We also assume that,

 (1)

so that  has infinitely many atoms and the total mass  is finite:   . A NRM is

then formed by normalizing  by its total mass . For each index , we draw the corresponding atoms from NRM,

. Since  is discrete, the set  naturally form a partition of [n] with respect to the assigned atoms. WeWe
write the partition as a set of sets –[n] whose elements are non-empty and non-overlapping subsets of [n], and the union of the
elements is [n]. We index the elements (clusters) of  with the symbol c, and denote the unique atom assigned to c as 

c
.

Summarizing the set  as , the posterior random measure is written as follows:

 Theorem 1. ([9]) Let  be samples drawn from  where . With an auxiliary variable
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, the posterior random measure is written as

(2)

where

(3)

Moreover, the marginal distribution is written as

(4)

where

  (5)

Using (4), the predictive distribution for the novel atom  is written as

(6)

The most general CRM may be used is the generalized Gamma [3], with Levy intensity . In

NRMM models, the observed dataset X is assusmed to be generated from a likelihood  with parameters  drawn
from NRM.We focus on the conjugate case where H is conjugate to , so that the integral

 is tractable.

2.2 MCMC Inference for NRMM models

The goal of posterior inference for NRMM models is to compute the posterior  with the marginal likeli-

hood P(dX).

Marginal Gibbs Sampler: Marginal Gibbs sampler is basesd on the predictive distribution (6). At each iteration, cluster assign-

ments for each data point is sampled, where x
i
 may join an existing cluster c with probability proportional to 

, or create a novel cluster with probability proportional to .

Slice sampler: instead of marginalizing out , slice sampler explicitly sample the atoms and weights  of . Since

maintaining infinitely many atoms is infeasible, slice variables  are introduced for each data point, and atoms with masses
larger than a threshold (usually set as ) are kept and remaining atoms are added on the fly as the threshold changes.

At each iteration, x
i
 is assigned to the jth atom with probability .

Split-merge sampler: both marginal Gibbs and slice sampler alter a single cluster assignment at a time, so are prone to the local
optima. Split-merge sampler, originally developed for DPM, is a marginal sampler that is based on (6). At each iteration, instead
of changing individual cluster assignments, split-merge sampler splits or merges clusters to propose a new partition. The split
or merged partition is proposed by a procedure called the restricted Gibbs sampling, which is Gibbs sampling restricted to the
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clusters to split or merge. The proposed partitions are accepted or rejected according to Metropolis-Hastings schemes. Split-
merge samplers are reported to mix better than marginal Gibbs sampler.

2.3 IBHC Inference for NRMM models
Bayesian hierarchical clustering (BHC, [15]) is a probabilistic model-based agglomerative clustering, where the marginal likeli-
hood of DPM is evaluated to measure the dissimilarity between nodes. Like the traditional agglomerative clustering algorithms,
BHC repeatedly merges the pair of nodes with the smallest dissimilarities, and builds binary trees embedding the hierarchical
cluster structure of datasets. BHC defines the generative probability of binary trees which is maximized during the construction
of the tree, and the generative probability provides a lower bound on the marginal likelihood of DPM. For this reason, BHC is
considered to be a posterior inference algorithm for DPM. Incremental BHC (IBHC, [14]) is an extension of BHC to (dependent)
NRMM models. Like BHC is a deterministic posterior inference algorithm for DPM, IBHC serves as a deterministic posterior
inference algorithms for NRMM models. Unlike the original BHC that greedily builds trees, IBHC sequentially insert data points
into trees, yielding scalable algorithm that is well suited for online inference. We first explain the generative model of trees, and
then explain the sequential algorithm of IBHC.

Figure 1. (Left) in IBHC, a new data point is inserted into one of the trees, or create a novel tree. (Middle) three possible
cases in SeqInsert. (Right) after the insertion, the potential funcitons for the nodes in the blue bold path should be updated.

If a updated , the tree is split at that level

IBHC aims to maximize the joint probability of the data X and the auxiliary variable u:

  (7)

Let t
c
 be a binary tree whose leaf nodes consist of the indices in c. Let l (c) and r(c) denote the left and right child of the set c in

tree, and thus the corresponding trees are denoted by t
l
(c) and t

r
(c). The generative probability of trees is described with the

potential function [14], which is the unnormalized reformulation of the original definition [15]. The potential function of the data
X

c
 given the tree t

c
 is recursively defined as follows:

  (8)

Here, h
c
 is the hypothesis that X

c
 was generated from a single cluster. The first therm  is proportional to the probability

that h
c
 is true, and came from the term inside the product of (7). The second term is proportional to the probability that X

c
 was

generated from more than two clusters embedded in the subtrees t
l
(c) and t

r
(c). The posterior probability of h

c
 is then computed

as  (9)

Where 
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 is defined to be the dissimilarity between l(c) and r(c). In the greedy construction, the pair of nodes with smallest 
are merged at each iteration. When the minimum dissimilarity exceeds one  is concluded to be false and
the construction stops. This is an important mechanism of BHC (and IBHC) that naturally selects the proper number of clusters.
In the perspective of the posterior inference, this stopping corresponds to selecting the MAP partition that maximizes

. If the tree is built and the potential function is computed for the entire dataset X, a lower bound on the joint
likelihood (7) is obtained [15, 14]:

  (10)

Now we explain the sequential tree construction of IBHC. IBHC constructs a tree in an incremental manner by inserting a new
data point into an appropriate position of the existing tree, without computing dissimilarities between every pair of nodes. The
procedure, which comprises three steps, is elucidated in Figure 1.

Step 1 (left): Given   suppose that trees are built by IBHC, yielding to a partition . When a new data point

x
i
 arrives, this step assigns x

i 
to a tree  which has the smallest distance, i.e., , or create a new tree

t
i
  if .

Step 2 (middle): Suppose that the tree chosen in Step 1 is t
c
. Then Step 2 determines an appropriate position of x

i
 when it is

inserted into the tree t
c
 , and this is done by the procedure SeqInsert(c; i). SeqInsert(c, i) chooses the position of i among three

cases (Figure 1). Case 1 elucidates an option where x
i
 is placed on the top of the tree t

c
. Case 2 and 3 show options where x

i
  is

added as a sibling of the subtree t
l
(c) or t

r
(c), respectively. Among these three cases, the one with the highest potential function

 is selected, which can easily be done by comparing d(l(c), r(c)), d(l(c), i) and d(r(c), i) [14]. If d(l(c), r(c)) is the

smallest, then Case 1 is selected and the insertion terminates. Otherwise, if d(l(c), i) is the smallest, x
i
 is inserted into t

r
(c) and

SeqInsert(l(c), i) is recursively executed. The same procedure is applied to the case where d(r(c), i) is smallest.

Figure 2. Global moves of tgMCMC. Top row explains the way of proposing split partition  from partition , and

explains the way to retain  from . Bottom row shows the same things for merge case

Step 3 (right): After Step 1 and 2 are applied, the potential functions of  should be computed again, starting from the subtree

of t
c
 to which x

i 
is inserted, to the root . During this procedure, updated d  values may exceed 1. In such a case, we split

the tree at the level where d  > 1, and re-insert all the split nodes.

After having inserted all the data points in X, the auxiliary variable u and hyperparameters for  (dw) are resampled, and the tree
is reconstructed. This procedure is repeated several times and the trees with the highest potential functions are chosen as an
output.
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3. Main results: A tree-guided MCMC procedure

IBHC should reconstruct trees from the ground whenever u and hyperparameters are resampled, and this is obviously time
consuming, and more importantly, converge is not guaranteed. Instead of completely reconstructing trees, we propose to refine
the parts of existing trees with MCMC. Our algorithm, called tree-guided MCMC (tgMCMC), is a combination of deterministic
tree-based inference and MCMC, where the trees constructed via IBHC guides MCMC to propose good-quality samples.

tgMCMC initialize a chain with a single run of IBHC. Given a current partition –[n] and trees  proposes a novel

partition  by global and local moves.

Global moves split or merges clusters to propose , and local moves alters cluster assignments of individual data points via

Gibbs sampling. We first explain the two key operations used to modify tree structures, and then explain global and local moves.
More details on the algorithm can be found in the supplementary material.

3.1 Key operations

SampleSub(c, p): given a tree t
c
, draw a subtree  with probability  is added for leaf nodes whose

, and set to the maximum  among all subtrees of tc. The drawn subtree is likely to contain errors to be corrected
by splitting. The probability of drawing  is multiplied to p, where p is usually set to transition probabilities.

 a stochastic version of IBHC. c may be inserted to  via  with probability

, or may just be put into S (create a new cluster in S) with probability . If c is inserted via

SeqInsert, the potential functions are updated accordingly, but the trees are not split even if the update dissimilarities exceed 1.
As in SampleSub, the probability is multiplied to p.

3.2 Global moves
The global moves of tgMCMC are tree-guided analogy to split-merge sampling. In split-merge sampling, a pair of data points are
randomly selected, and split partition is proposed if they belong to the same cluster, or merged partition is proposed otherwise.
Instead, tgMCMC finds the clusters that are highly likely to be split or merged using the dissimilarities between trees, which

goes as follows in detail. First, we randomly pick a tree t
c
 in uniform. Then, we compute  for  and put  in

a set M with probability (the probability of merging c and ). The transition probability  up to this step is 

. The set M contains candidate clusters to merge with c. If M is empty, which means that there are no

candidates to merge with c, we propose –  by splitting c. Otherwise, we propose  by merging c and clusters in M.

Split case: we start splitting by drawing a subtree  by 1. Then we split  to ,

destroy all the parents of  and collect the split trees into a set Q (Figure 2, top). Then we reconstruct the tree by

StocInsert  for all . After the reconstruction, S has at least two clusters since we split 

before insertion. The split partition to propose is . The reverse transition probability  is

computed as follows. To obtain  from , we must merge the clusters in  to . For this, we should pick a cluster ,

and put other clusters in S\c into M. Since we can pick any  at first, the reverse transition probability is computed as a sum of
all those possibilities:

 (11)

1Here, we restrict SampleSub to sample non-leaf nodes, since leaf nodes cannot be split.
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Merge case: suppose that we have 2. The merged partition to propose is given as ,

where . We construct the corresponding binary tree as a cascading tree, where we put  on top of c

in order (Figure 2, bottom). To compute the reverse transition probability , we should compute the probability of

splitting  back into . For this, we should first choose  and put nothing into the set M to provoke splitting.

 up to this step is . Then, we should sample the parent of c (the subtree connecting c and

c
1
) via , and this would result in  and . Finally, we insert 

into S via  for , where we select each c (i) to cre ate a new cluster in S. Cor-

responding update to  by StocInsert is,

 (12)

Once we’ve proposed  and computed both  and  is accepted with probability 

where .

Ergodicity of the global moves: to show that the global moves are ergodic, it is enough to show that we can move an arbitrary
point i from its current cluster c to any other cluster  in finite step. This can easily be done by a single split and merge moves,
so the global moves are ergodic.

Time complexity of the global moves: the time complexity of  , where h is a height of the tree
to insert c.  The total time complexity of split proposal is mainly determined by the time to execute

. This procedure is usually efficient, especially when the trees are well balanced.

The time complexity to propose merged partition is .

3.3. Local Moves
In local moves, we resample cluster assignments of individual data points via Gibbs sampling. If a leaf node i is moved from c to

2We assume that clusters are given their own indices (such as hash values) so that they can be ordered.

3We do not split even if the update dissimilarity exceed one, as in StocInsert.

Figure 3. Experimental results on toy dataset. (Top row) scatter plot of toy dataset, log-likelihoods of three samplers with DP,
log-likelihoods with NGGP, log-likelihoods of tgMCMC with varying G and varying D. (Bottom row) The statistics of three

samplers with DP and the statistics of three samplers with NGGP
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, we detach i from tc and run SeqInsert( )3. Here, instead of running Gibbs sampling for all data points, we run Gibbs
sampling for a subset of data points S, which is formed as follows. For each , we draw a subtree  by .
Then, we draw a subtree of  again by SampleSub. We repeat this subsampling for D times, and put the leaf nodes of the final
subtree into S. Smaller D would result in more data points to resample, so we can control the tradeoff between iteration time and
mixing rates.

Cycling: at each iteration of tgMCMC, we cycle the global moves and local moves, as in split-merge sampling. We first run the
global moves for G times, and run a single sweep of local moves. Setting G = 20 and D = 2 were the moderate choice for all data
we’ve tested.

Figure 4. Average log-likelihood plot and the statistics of the samplers for 10K dataset

4. Experiments

In this section, we compare marginal Gibbs sampler (Gibbs), split-merge sampler (SM) and tgMCMC on synthetic and real
datasets.

4.1. Toy dataset
We first compared the samplers on simple toy dataset that has 1,300 two-dimensional points with 13 clusters, sampled from the
mixture of Gaussians with predefined means and covariances. Since the partition found by IBHC is almost perfect for this simple
data, instead of initializing with IBHC, we initialized the binary tree (and partition) as follows. As in IBHC, we sequentially
inserted data points into existing trees with a random order. However, instead of inserting them via SeqInsert, we just put data
points on top of existing trees, so that no splitting would occur. tgMCMC was initialized with the tree constructed from this
procedure, and Gibbs and SM were initialized with corresponding partition. We assumed the Gaussian-likelihood and Gaussian-
Wishart base measure,

(13)

where  is the dimensionality, m is the sample mean and  ( is the sample covari-
ance). We compared the samplers using both DP and NGGP priors. For tgMCMC, we fixed the number of global moves G = 20
and the parameter for local moves D = 2, except for the cases where we controlled them explicitly. All the samplers were run for
10 seconds, and repeated 10 times. We compared the joint log-likelihood  of samples and the effective
sample size (ESS) of the number of clusters found. For SM and tgMCMC, we compared the average log value of the acceptance
ratio r. The results are summarized in Figure 3. As shown in the log-likelihood trace plot, tgMCMC quickly converged to the
ground truth solution for both DP and NGGP cases. Also, tgMCMC mixed better than other two samplers in terms of ESS.
Comparing the average log r values of SM and tgMCMC, we can see that the partitions proposed by tgMCMC is more often
accepted. We also controlled the parameter G and D; as expected, higher G resulted in faster convergence. However, smaller D
(more data points involved in local moves) did not necessarily mean faster convergence.
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the log-likelihood trace plot, tgMCMC quickly converged to the ground truth solution for both DP and NGGP cases. Also,
tgMCMC mixed better than other two samplers in terms of ESS. Comparing the average log r values of SM and tgMCMC, we can
see that the partitions proposed by tgMCMC is more often accepted. We also controlled the parameter G and D; as expected,
higher G resulted in faster convergence. However, smaller D (more data points involved in local moves) did not necessarily mean
faster convergence.

4.2. Large-scale Synthetic Dataset
We also compared the three samplers on larger dataset containing 10,000 points, which we will call as 10K dataset, generated
from six-dimensional mixture of Gaussians with labels drawn from PY(3; 0:8). We used the same base measure and initialization
with those of the toy datasets, and used the NGGP prior, We ran the samplers for 1,000 seconds and repeated 10 times. Gibbs and
SM were too slow, so the number of samples produced in 1,000 seconds were too small. Hence, we also compared Gibbs sub and
SM sub, where we uniformly sampled the subset of data points and ran Gibbs sweep only for those sampled points. We
controlled the subset size to make their running time similar to that of  tgMCMC. The results are summarized in Figure 4. Again,
tgMCMC outperformed other samplers both in terms of the log-likelihoods and ESS. Interestingly, SM was even worse than
Gibbs, since most of the samples proposed by split or merge proposal were rejected. Gibbs sub and SM sub were better than
Gibbs and SM, but still failed to reach the best state found by  tgMCMC.

4.3 NIPS Corpus
We also compared the samplers on NIPS corpus4, containing 1,500 documents with 12,419 words. We used the multinomial
likelihood and symmetric Dirichlet base measure Dir(0:1), used NGGP prior, and initialized the samplers with normal IBHC. As for
the 10K dataset, we compared Gibbs sub and SM sub along. We ran the samplers for 10,000 seconds and repeated 10 times. The
results are summarized in Figure 5. tgMCMC outperformed other samplers in terms of the loglikelihood; all the other samplers
were trapped in local optima and failed to reach the states found by tgMCMC. However, ESS for tgMCMC were the lowest,
meaning the poor mixing rates. We still argue that tgMCMC is a better option for this dataset, since we think that finding the
better log-likelihood states is more important than mixing rates.

5. Conclusion

In this paper we have presented a novel inference algorithm for NRMM models. Our sampler, called tgMCMC, utilized the binary
trees constructed by IBHC to propose good quality samples. tgMCMC explored the space of partitions via global and local
moves which were guided by the potential functions of trees. tgMCMC was demonstrated to be outperform existing samplers
in both synthetic and real world datasets.
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