
 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 11

Software Modelling for Partied Scheduling and Real-time Protocols

Bohua Zhan
State Key Lab. of Computer Science, Institute of Software
Chinese Academy of Sciences, Beijing, China

Yi Lv
State Key Lab. of Computer Science, Institute of Software
Chinese Academy of Sciences, Beijing, China

Shuling Wang
State Key Lab. of Computer Science, Institute of Software
Chinese Academy of Sciences, Beijing, China

Gehang Zhao
School of Mathematical Sciences, Peking University, Beijing, China

Jifeng Hao
Aeronautics Computing Technique Research Institute, Xi’an, China

Hong Ye
Aeronautics Computing Technique Research Institute, Xi’an, China

Bican Xia
School of Mathematical Sciences, Peking University, Beijing, China

ABSTRACT: A software system normally has several units that have relations with each other. Identifying and measuring
such relations is a challenge and a few models have been proposed to do it. Asynchronous models have been used and are
executed to using responses. In the current work, we have advocated event-based design for execution. We have listed and
explained the event systems and provide calculus for reasoning. The proposed design is applied and used in models in the
areas of distributed computing, partition scheduling and real-time operations and protocols.

Keywords: Hoare Logic, Compositional Verification, Events

Received: 22 September 2022, Revised 20 December 2022, Accepted 26 December 2022

DOI: 10.6025/jcl/2023/14/1/11-29

Copyright: with authors

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 12

1. Introduction

In the verification of large-scale computer programs and systems, a major challenge is modular verification: how to verify
components of a system independently, and then compose results from verification of each component into an overall correct-
ness result for the entire system. Sometimes, only part of the system is available or needs to be verified, and the question arises
of how to properly model the interaction points between the parts to be verified and the rest of the system.

Interaction between components of a computer system comes in many types. The simplest is when one component of the
system makes function calls to another component. In this case, if the callee is completely verified, or at least if an abstraction
of its behavior is available, then the caller can be verified in terms of the verified or assumed behavior of the callee. Somewhat
more complicated is the situation where two or more components make function calls on each other. Verification approaches
designed for such situations include assume-guarantee reasoning [1], where during the verification of each component, we
make assumptions on the behavior of the components it relies on, and prove guarantees of its own behavior under these
assumptions. Correctness of the composed system is then proved by showing that the guarantees of the components entail all
of the assumptions.

Another way to describe interactions between components of a system or with the environment is via effects and effect
handlers. There is a long line of work on the modeling and verification of effects and effect handlers [4, 24, 30], which will be
reviewed in more detail in Section 6. The main idea is to model each interaction as an uninterpreted event that returns a result,
and provide a continuation for each possible value of the result, hence modeling the program as an interaction tree [21, 34]. This
technique has been applied successfully to the verification of swap servers [21] and an HTTP Key-Value Server [36].

In many applications, interactions between components are of a special kind, where each component sends out events without
requiring an immediate response in order to continue with its execution. This can be used, for example, to model asynchronous
function calls, commands to other components to carry out some action, or outputs to the environment.

In such cases, interactions can be modeled by lists of output events, together with handlers for such events, which can result
in change of state in other components as well as possibly further events. In situations where such a modeling technique is
applicable, it provides a simpler and sometimes more accurate way of modeling interaction between components.

In this paper, we propose a framework for modeling and verifying components with such asynchronous interactions, by
defining event monads and event systems, as well as a Hoare logic-style calculus for reasoning about them. Using several case
studies, we demonstrate that this framework can be applied to a wide range of situations, allowing verification of functional
properties in a clear and modular way.

The main motivation for the current work comes from a project for verification of partition scheduling in a commercial real-time
operating system implemented following the ARINC 653 standard. The standard requires that the physical resources of the
computer are divided into several partitions, and the operating system enforces strong spatial and temporal separation between
the partitions. To achieve this, scheduling between partitions is strictly deterministic, based on pre-specified time tables (which
however can be switched at run time in response to specific events). As partition scheduling is critical to ensure temporal
separation as well as real-time properties of the entire system, it is of strong interest to verify its correctness and precision.

While the scheduling policy based on time tables is itself quite simple, its actual implementation is complicated due to efficiency
considerations and the need to support switching between time tables. The implementation involves two components, the
scheduler and the watchdog, that interact with each other as well as with other parts of the system. The scheduler adds new
tasks with deadlines to the watchdog, and the watchdog invokes the dispatch function of the scheduler when the deadline is
reached. The scheduler also receives calls to switch time tables from the environment, and emits calls to change the partition.
Likewise, the watchdog must handle tasks with deadlines from other modules. We show that the framework based on event
monads can be used to model such bi-directional interactions as well as interactions with the environment, resulting in the
modular verification of correctness of partition scheduling based on time tables. The verification is at design-level, with parts of
the model closely following the C implementation.

In addition to the application to partition scheduling in real-time operating systems, we also present two smaller case studies,

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 13

demonstrating the applicability of the framework to other situations. First, we verify a model of distributed computing based on
MapReduce. In this model, the client divides a large computing task into several parts, with each part sent to a different server.
Each server asynchronously returns the result of the corresponding task after some time. The client then obtains the final result
of computation by adding up the answers. Verification of the model requires reasoning about the bi-directional interaction
between the client and the servers. Second, we verify a model of cache-coherence protocol.

The protocol to be verified is first proposed by Steven German, and is widely used as a test case in parameterized verification
(e.g. in the work of Chou et al. [6]). It involves a number of clients that can obtain either exclusive or shared access to some data,
by interacting with the server through request and invalidate messages. We model such interactions using the event monad,
and prove that the entire system does guarantee exclusive access when required.

1.1. Implementation in Isabelle/HOL
The work described in this paper is implemented1 in Isabelle/HOL [29]. We base the implementation on the AutoCorres library
[12], mainly to take advantage of its wp tactic for verification condition generation. The development of event monads in Isabelle
is inspired by, but does not depend logically on the development of nondeterministic state monads in AutoCorres [7]. Nor do we
make use of its translation facility from C code.

The rest of this paper will make free use of Isabelle notation. We will just review some frequently-used symbols. ’a × ’b denotes
the product of two types, with elements in the form (a, b). Functions fst and snd return the first and second component of a pair.
f ‘ S denotes the image of function f on the set S. The symbols @ and # denote append and cons operations on lists, and xs ! i
denotes taking the ith element of a list. We will also make frequent use of inductive predicates, using the keyword inductive in
Isabelle/HOL, or the version generating sets using inductive_set.

1.2. Outline of the Paper
In Section 2, we motivate the theory in this paper using the example of partition scheduling based on time tables. In Section 3,
we define event monads and its associated Hoare logic.

In Section 4, we describe how to combine different components into a single event system, and additional rules for reasoning
about event systems. In Section 5, we demonstrate the framework on two smaller examples: MapReduce and cache-coherence
protocol, as well as the main application on partition scheduling. We discuss related work in Section 6 and finally conclude in
Section 7.

2. Motivation: Partition Scheduling

In this section, we describe the motivating example of this paper: scheduling for a partitioned real-time operating system
implementing the ARINC 653 standard.

ARINC 653 is an international standard for real-time operating systems in the aerospace industry [2]. The standard specifies that
computing resources are divided into several partitions, with each task running in a single partition. Strong spatial and temporal
separation are enforced between partitions, so that failure in one partition will not propagate to affect tasks in other partitions.
Part of the mechanism for enforcing temporal separation is a strictly deterministic scheduling policy between partitions based on
time tables. A time table specifies the order and allotted time of partition executions in each major time frame. Here time is given
in units of ticks. For example, the following time table has a major time frame of 160 ticks and consists of four windows, where
partition A executes for the first 40 ticks, partition B executes for the next 60 ticks, partition A executes again for the next 40 ticks,
and finally partition C executes for the remaining 20 ticks.

A secondary feature of the scheduling module is the support for switching between time tables. Switching to a new time table
can be requested at any time, but is not carried out immediately. Instead the time when the actual switch occurs depends on the
switch mode. There are three possible modes: next tick, next window, and next frame. Their meanings are straightforward, and are
illustrated in the following diagram.

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 14

While the functionality described above is relatively simple, its actual implementation is more complex. This is mainly due to
efficiency considerations. Within the operating system, there are many modules that require keeping time. It would be costly to
invoke each module that requires time-keeping at every clock tick. Instead, time-keeping is centralized in a single module called
the watchdog. Each module can register tasks on the watchdog, each with a specified deadline in the number of ticks. The
watchdog will then dispatch each task exactly at its deadline.

Hence, we can consider partition scheduling as an interaction between two components: the scheduler and the watchdog. At
initialization, the scheduler sets the partition to that of the first window in the time table, and registers a task to the watchdog
with the number of ticks in the first window as deadline. When the task is dispatched, the scheduler sets the partition to that of
the next window, and registers a new task to be dispatched after the number of ticks in the next window. This pattern continues,
rotating to the first window after reaching the end of the frame. For the time table switch requests, the switch mode and the ID
of the next time table are immediately recorded. The switch mode is checked at every dispatch, which will correctly handle the
next window and next frame requests. A special check is needed at every clock tick in order to handle the next tick request.

While the scheduler and the watchdog can be viewed as independent modules, there are interactions between them in both
directions: the scheduler sends requests to add tasks to the watchdog, while the watchdog dispatches functions in the
scheduler. Moreover, both the scheduler and the watchdog interact with other parts of the system: the scheduler receives switch
requests, and invokes change of partition. The watchdog receives clock ticks, and may dispatch tasks for other modules. These
are illustrated in the following diagram.

All these interactions are of asynchronous nature: they do not require an immediate response in order to continue with the
execution. Instead, we can accurately model the system as emitting all interaction events at the end of each function.

As illustration, we give the definition of events in this case study. First, we define some basic datatypes:

type_synonym partition = nat
type_synonym ttbl_id = nat
type_synonym task_id = nat
datatype switch_mode = NO_SWITCH | NEXT_TICK | NEXT_WINDOW | NEXT_FRAME | ONGOING

The datatype of events is given by

datatype event = TICK | DISPATCH nat | SWITCH ttbl_id switch_mode | PARTITION parti-
tion | WATCHDOG_ADD task_id × nat | WATCHDOG_TICK | WATCHDOG_REMOVE task_id

Here TICK is the global tick operation, which calls on WATCHDOG_TICK as well as checks whether the current switching mode
is next tick. DISPATCH i dispatches the task with index i on the watchdog. We assume this dispatches the scheduler task if i =
0. SWITCH tid mode requests a switch to time table tid under switch mode mode. PARTITION p denotes change of partition to
p. The events WATCHDOG_ADD, WATCHDOG_TICK and WATCHDOG_REMOVE corresponds to adding a task, time incre-
ment, and removing a task on the watchdog, respectively. The scheduling component handles events DISPATCH 0 and
SWITCH, and outputs events PARTITION and WATCHDOG_ADD. The watchdog component handles events

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 15

WATCHDOG_ADD, WATCHDOG_TICK and WATCHDOG_REMOVE, and sends DISPATCH events. The environment pro-
vides implementation of the TICK events, which may output WATCHDOG_TICK, WATCHDOG_REMOVE, and DISPATCH
events.

The overall approach is a compositional verification of the system. First, implementations of the scheduler and the watchdog are
specified independently, and we verify their properties (as refinements of functional specifications, including the trace of
interaction events). Then, the combined system is specified, and its property (a refinement of an overall functional specification)
is verified using results proved about the two components.

3. Event Monad

3.1 Definitions of Event Monads
First, we review the concept of (nondeterministic) state monads, as formalized in Isabelle by Cock et al. in [7]. A state monad over
a state of type ’s and returning a value of type ’a is given by the type . Given an input state s, it
returns a pair (rs, b), where rs is a set of possible pairs of return value and output state, and b is a failure flag indicating whether
it is possible for the computation to fail (including non-termination). The bind operation f >>= g executes f first, then executes g
applied to the return value of f. It can fail if either f or g can fail.

The event monad is an extension of the state monad, where we also record a trace of events produced by the program. The
formalism is parameterized over a type ’s of states and a type ’e of events. Then the event monad with return type ’a is defined
as follows.

Given an input state s, the function returns a pair (rs, b), where rs is now a set of triples of return value, output state, and trace
of interaction events. The meaning of the second component b is the same as before.

We begin by defining some basic event monads: skip does nothing, return returns the given value, and signal raises the given
event:

The behavior of bind is similar to that of usual state monads, except the trace of events produced by g is appended to
the trace produced by f to give the overall trace of events. The formal definition is as follows. As preparation, we define
prepend_event for prepending onto the event trace, and bind_cont for applying monad g to an intermediate result of computa-
tion:

Then we define:

Next, we define event monads for retrieving the state, setting the state to s, and modifying the state using a function f. They are
similar to the analogous definitions for state monads.

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 16

The while loop is defined similarly as in the state monad. Given a loop condition C of type , and a loop body

of type , the expression event_monad. Given
an initial value r of type ’r and state s, it repeatedly executes the loop body B until the condition C becomes false, using the
return value of B to reset the value of r after each iteration. In addition, the traces of events produced by C at every iteration are
appended in sequence to give the overall trace of events.

Finally, we give the definition of non-deterministic choice between two monads:

3.2 Hoare Logic for Event Monads
We now present a Hoare logic for reasoning about event monads. It will turn out that the definition of Hoare triples as well as the
Hoare rules are very similar to that for nondeterministic state monads in [7]. For reference, we repeat these definitions here.

For the extension to event monads, the main decision that needs to be made is where to include the dependence on the trace of
events. We choose to allow both the precondition and postcondition to depend on traces. The definition for partial correctness
in event monads is as follows, and the definition for total correctness is the same as before.

In words, given an initial state s and trace es1 satisfying precondition P, if the execution of f gives return value r, final state s' and
trace es2, then the triple r, s' and es1 @ es2 satisfies the postcondition Q. In a sense the trace is viewed as part of the state, with
each signal operation appending onto it. The Hoare logic rules have mostly the same form as before. The only new rule is that
for signal:

As another example, we show the total correctness Hoare triple for the while loop. Note the invariant is a function of the state
s and the value r of variables modified at each iteration of the loop, as well as the current trace es, while the loop condition cannot
depend on the current trace. Here wf R means R is a well-founded relation.

What distinguishes event monads and its Hoare logic from simply recording the trace within the state is a frame rule, which
reflects the fact that the trace of events can only be appended onto, not removed or modified. This rule allows us to show for
each function only the Hoare triple where the precondition requires the trace to be empty, using the frame rule to cover other
cases when necessary.

First, we define the nil and chop assertions on events

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 17

The frame rule is then as follows.

An alternative form of the frame rule, more convenient when the list of output events is a function of the initial state, is given as
follows.

The form of definitions of nil and chop, and the naming of the frame rule will remind the reader of separation logic [31]. However,
there are some essential differences: compared to separating conjunction, the chop operator represents joining in the temporal
rather than the spatial dimension. It should also be noted that the chop operator is not commutative. In fact our setting is closer
to that of interval temporal logic [15] and duration calculus [5].

Remark 1. Another possible choice is to always assume the trace to be empty in the precondition, and allow only the
postcondition to depend on the trace, perhaps also separating it into two assertions, on the state and trace respectively.
However, with this choice, the Hoare rules will no longer be in weakest precondition form, making verification condition
generation more difficult. We also note that our approach allows postconditions to state relationships between the final state
and the trace (e.g. there exists n such that the value of variable x is n and the additional trace contains exactly n events).

4. Event System

With event monads, we can specify and verify properties of programs that produce a trace of events. However, what makes
events truly useful is in combination with event handlers. In this section, we define the concept of event system as a model of
reactive system consisting of event monads, and a Hoare logic-style calculus for reasoning about event systems.

4.1. Definition of Event System
An event system models a reactive system as a partial mapping from events to their handlers, which take the form of event
monads with the same event type, and no return value:

We now define the execution of an event e in event system sys. The intuitive idea is as follows. If e is not handled by sys, then
it is simply output to the environment. Otherwise, the event monad handling e is executed. Suppose the resulting trace of events
is es, then each event in es is recursively executed in sequence.

The formal definition is given by two inductive predicates defined by mutual recursion. The predicate reachable sys e s (s’, es’)
means starting from state s, executing event e can reach state s’ and output event trace es’ to the environment. The predicate
reachable_list sys es s (s’, es’) is similar, except es is a list of events to be executed in sequence. Note the output trace es’ does
not include events that are handled within the system.

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 18

We also define (by a similar induction) the concept of guaranteed termination when executing an event e or a sequence of events
es starting from state s. These are written as terminates sys e s and terminates_list sys es s.

4.2 Hoare Logic for Event Systems
Based on the Hoare logic for event monads, we present a Hoare logic-style calculus for reasoning about event systems. Since
handlers for events are assumed to have no return values, both pre- and post-conditions are predicates on the pair of state and
event trace only. We define partial and total correctness of an event system for a single event and a sequence of events as
follows.

We now state rules for deriving Hoare triples for event systems. The rules are stated for total correctness only, with the partial
correctness case being similar. First, if an event e is not handled by the system, it just appends to the trace:

The central rule concerns the case where e is handled by the system. It makes use of the Hoare triple for the corresponding event
monad c. To show the overall postcondition R, we need to show for each intermediate state s and event trace es that is allowed
by the postcondition of c, that R is satisfied after executing es starting from s. This is expressed in the following:

This rule only considers the case where the initial trace is empty. The frame rule (to be described below) is then used for the
general case.

The two rules for event lists are mostly straightforward:

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 19

We can then prove Hoare triples for general lists of events using induction rules in Isabelle.

For example, the following rule is proved by induction on the length of es, for the case where none of the events in es is handled
by the system:

Another useful rule concerns append of event lists, stated simply as follows:

In addition to the above rules, there are also the usual rules for weakening the precondition, strengthening the postcondition,
and dealing with the logical operations. We omit the details here.

Both partial and total correctness Hoare triples for event systems satisfy frame rules. Here we give the rules for total correctness
and a single event. The rules for partial correctness and for a sequence of events are similar.

To verify properties of an event system, we first prove appropriate Hoare triples for each event handler as event monads. Then,
these results are composed together using the above rules. Often, there is a logical order among events handled by the system,
so that for each event handler, any output event that is handled occurs earlier in the order. In this case, the sValid and sValidNF
statements can be proved in sequence following this logical order. This will be demonstrated in Section 5.3.2 (where the order is
WATCHDOG_ADD, DISPATCH 0, WATCHDOG_TICK). In more general cases induction techniques would be needed to show
several sValid and sValidNF statements at the same time.

4.3 Composition of Event Systems
Usually, event systems are composed of multiple subsystems, with most of the events acting on some of the subsystems only.
In the case studies in Section 5, we will compose subsystems by pairing, as well as using parameterized array of subsystems. We
provide support for this by defining functions that automatically transform monads acting on subsystems to monads acting on
the entire state, as well as Hoare rules for dealing with monads defined in this way.

First, we consider composition of subsystems by pairing. Given two subsystems with state ’s and ’t respectively, we can form
a new system with state ’s × ’t. Monads acting on ’s and ’t can be transformed into monads acting on the global system using
the following functions:

Given a Hoare triple for program c, we automatically get a Hoare triple for program apply_fst c or apply_snd c, using the
following Hoare rules (the rules for apply_snd and for total correctness are similar).

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 20

Another common way of composing systems is via parameterized array. This is used in both case studies on MapReduce and
cache-coherence protocols. We begin by defining a function to transform a monad to apply on the ith index of an array:

For reasoning rules about apply_idx c i, we provide two versions. The first version is well-suited to the case where the behavior
of c is deterministic, giving by some function f. Then the behavior of apply_idx c is simply applying f to the ith index of the array:

The second version is better suited to the case where c is characterized by properties on the initial and final states, and there is
a certain uniformity between properties satisfied by s ! i for each index i. This is used, for example, in the verification of
MapReduce, where each server satisfies some uniform property parameterized by the data it contains.

5. Case Study

In this section, we present three case studies applying the above framework to different scenarios. Two smaller case studies
concern distributed computing based on MapReduce, and a cache-coherence protocol proposed by Steven German. The main
case study concerns partition scheduling using time tables in a real-time operating system. In all of the case studies, we show
that the use of event monads allow us to separately specify and verify each component of the system. The specifications can
then be composed together to form an overall correctness result.

5.1 MapReduce
MapReduce is a method of distributed computing proposed by Dean and Ghemawat in [8]. The idea is to divide a large
computation task into several smaller portions, each portion consisting of applying some function f (the map stage). The results
are then combined together by applying another function g onto the initial value and each returned result in sequence (the
reduce stage). We demonstrate the verification of MapReduce using a simple example, which nevertheless contains the main
ingredients, including asynchronous communication and nondeterminism in the time when each machine returns its result.

Given a number N and a list of lists of numbers data of length N, we need to compute the total sum of numbers in data. This is
done using N servers, where each server i computes the sum of data ! i. The results are then collected together in a client.

The state of each server is as follows:

Here input is the list of numbers whose sum is to be computed. index indicates the current progress of computation, and
cursum records the sum of numbers between 0 and index - 1. Finally, returned indicates whether the computation is
complete, with sum already returned to the client.

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 21

The state of the (unique) client is as follows:

Here num_received indicates the number of returned results received from the servers. acc is the accumulated value of the
sum, and alldone indicates whether the entire computation has finished. Note the client does not record which servers it has
received results from (hence it does not know the sum of which lists the value acc corresponds to), which presents additional
challenges to verifying correctness of the system.

The events of the system are defined using the following datatype.

Handlers of the events are as follows. QUERY is handled by the server, and initializes its state:

The event TICK applies the following monad to each server node. As long as the node has not returned its answer, it
nondeterministically chooses to perform a step, which amounts to either progress the computation by one index, or returning
the result when reaching the end.

Response is handled by the client, and applies the following monad. It updates the number of received answers and the
currently accumulated sum. Moreover, if the number of received answers reaches N, it sets the alldone flag.

Finally, we define the event system with global state given by server list × client as follows:

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 22

The condition on the initial state is:

We prove the correctness result that starting from the state satisfying init_state, after performing one INIT and any number of
TICK events, if the client has set the alldone flag, then the value of acc in the client must be the total sum of data. This is stated
formally as follows:

Since whether a step is performed is nondeterministic according to the definition of tick_node_impl, it is impossible to
predict how many TICKs are needed for the alldone flag to be set. The same property would hold if a more detailed specification
about when to perform a step is used. The main idea of the proof is to verify that TICK preserves an invariant of the system,
stating that each server node has either returned or is in progress of computing the sum, and the values of num_received and
acc in the client correctly keeps track of the number and total sum of the returned answers. The proof makes key use of the
second rule for apply_idx given in Section 4.3, lifting the property for each server to a property for the collection of servers.

5.2 Cache-Coherence Protocol
Our second example concerns a cache-coherence protocol proposed by Steven German, which has been widely used as a test
case for parameterized verification [6]. The protocol consists of one server and multiple client nodes, and is intended to enforce
either exclusive or shared access to some data. If a client node requires exclusive (resp. shared) access, it sends a ReqE (resp.
ReqS) message to the server. On receiving a ReqE message, the server sends invalidation messages Inv to all client nodes that
currently have exclusive or shared access. On receiving an invalidation message, the client sets its own state to Invalid and
returns an InvAck message back to the server. On receiving InvAck messages from all clients with access, the server sends an
SendE message to the client node that initially requested access. On receiving an SendE message, the client knows that it now
has exclusive access, and sets its own state to Exclusive. The handling of ReqS is similar, except there is no need to send
invalidation messages if no node has exclusive access, and the server sends SendS message to the client that initially requested
access, who then sets its own state to Shared.

Hence, the interaction is mediated by six types of events, defined as follows:

record server =
invset :: bool list
shrset :: bool list
curptr :: nat option
grantE :: bool

Here invset records which client nodes the server is waiting for InvAck from. shrset indicates which client nodes currently have
exclusive or shared access. curptr stores the currently requesting client node, and grantE indicates whether the requested
access is exclusive. The state of the client is simply record client = st :: state, where st is one of Invalid,
Shared, or Exclusive.

In this model, Inv, InvAck, SendS, and SendE are all generated by event handlers in either server or clients,
whereas ReqS and ReqE can be seen as events coming from the environment.

Correctness of the system can be stated as an invariant that is preserved by the ReqS and ReqE events, and which implies
exclusive access when required. This can be stated for ReqS in the following theorem (the one for ReqE is similar).

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 23

where system_inv contains a number of conditions, including the following:

Together, they state that a client node can be in shared or exclusive state only if the corresponding bit in the shrset or invset
array is turned on. However, before and after each ReqE and ReqS event, none of the invset is turned on, while in the case when
grantE equals true, at most one shrset is turned on. Hence in this case at most one client node has exclusive access.

5.3. Partition Scheduling
We now describe the application of our framework to verify partition scheduling using time tables. We perform two versions of
verification: with and without allowing switching between time tables. The version without switching already contains interac-
tion between the scheduler and watchdog in both directions, hence illustrates the main ideas of the framework. The version with
switching shows scalability to examples of moderate complexity. Verification of the watchdog is shared between the two
versions, and will be described first below.

5.3.1 Watchdog
The watchdog module maintains a set of tasks, each with its own deadline. Tasks are indexed by elements of type task_id.
Abstractly, the state of a watchdog can be represented by a partial mapping from task ID to deadline (in the number of clock
ticks):

Concretely, a watchdog is implemented as a doubly-linked list (the watchdog chain), where each node represents a task,
consisting of task ID and deadline relative to the previous task in the chain. The deadline at the first node of the chain is the
actual deadline. The advantage of recording relative deadline is that at each tick, only the deadline at the head of the chain needs
to be updated. In this paper, we model the watchdog chain as an array, which preserves most of the logical complexity, without
requiring reasoning about linked lists. Hence, the type of concrete watchdog is given by

For example, the watchdog chain (1, 10), (2, 5), (4, 0), (3, 2) means the task with ID 1 is due in 10 ticks, Two tasks with IDs 2 and
4 are due in 15 ticks, and a task with ID 3 is due in 17 ticks.

We define rel_w as the refinement relation between abstract and concrete watchdog representations as follows:

Here event_time cw i returns None if i is not in the watchdog chain cw, and Some k if it is in the chain with actual
deadline k. The condition valid_watchdog contains the invariant that the first deadline in the chain is always positive, and
each task appears at

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 24

most once in the chain.

The concrete watchdog operations are implemented as follows. Adding a new task requires traversing the chain, inserting the
task at the correct location, and decrement the deadline of the next node accordingly. The tick operation first decrements the
deadline at the head of the chain by 1, then removes all tasks from the head that have zero deadlines, and emitting their dispatch
events. The remove operation first locates the task to be removed in the chain, removes it, then increments the deadline of the
next node accordingly.

It is nontrivial to verify the correctness of the watchdog module (see the statistics in Section 5.4). This is stated in terms of
refinement between abstract and concrete specifications, including correctness of the list of DISPATCH events emitted when
handling WATCHDOG_TICK, as well as correct update of the watchdog chain when handling WATCHDOG_ADD and
WATCHDOG_REMOVE.

5.3.2 Scheduler with No Switching
We now describe the verification of scheduler without considering switching between time tables. The abstract state of the
scheduler consists of the time table (which stays unchanged), and the ID of the current window:

Dispatch increments window_id by one (modulo the total number of windows) and produces two output events: change of
partition (which is output to the environment in the combined system) and adding to the watchdog (which is handled by the
watchdog module).

The concrete state, which corresponds more closely to the actual implementation in C, maintains in addition the length of the
current window (window_time) and the amount of time passed in the current frame (cur_frame_time). The variable
window_id in the abstract state is renamed to cur_window:

The invariant to be maintained is that window_time is the length of the window with index cur_window, and cur_frame_time
is the total length up to (but not including) cur_frame_time. During dispatch, first increment cur_frame_time by
window_time; if the result equals the length of the major frame, then cur_window and cur_frame_time are reset to zero,
otherwise cur_window is incremented by one; finally window_time is updated, and the events PARTITION and
WATCHDOG_ADD are emitted. Again, correctness of the scheduler is stated and proved as refinement between the abstract
and concrete specifications. The refinement relation rel_s requires that window_id in the abstract state equals cur_window
in the concrete state, and the invariant to be maintained held for the concrete state.

5.3.3 Combined System
The state of the combined system is the product of concrete states for the scheduler and the watchdog. The event handlers are
defined in terms of handlers in the two subsystems:

The refinement relation in the product system is the product of the refinement relations on the two sides:

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 25

We then verify the overall system specifications stated as Hoare triples in the event system, following the method described at
the end of Section 4.2. We briefly describe the proved specifications. WATCHDOG_ADD adds a new task with given deadline
to the watchdog chain, without producing additional events. DISPATCH 0 outputs a PARTITION event to indicate change of
partition, as well as adding task 0 with a new deadline back to the watchdog chain.

The input event WATCHDOG_TICK is the main entry point of the system. Its handler produces a list of DISPATCH i events for
all tasks i 0 that should be dispatched at the current step, as well as performing the action of DISPATCH 0 if task 0 should be
dispatched.

5.3.4 Top-Level Refinement
Based on the results proved in the previous section, it is possible to prove a more abstract specification of the combined system,
stating that the scheduling follows the time table precisely. For this, we first define an overall abstract state as follows.

The state contains the constant time table (a_ttbl), the number of ticks spent in the current frame (frame_time), and the
watchdog mapping excluding the scheduler task (wchain). The functional specifications spec_atick and spec_atick_ev
(omitted here) state that frame_time increments by 1 at each tick (modulo frame length), change of partition is emitted only at
window boundaries, and the usual dispatch events for other tasks are emitted at appropriate times. Then the theorem stating the
top-level refinement is:

Here arel_full is the refinement relation between astate and the pair of abstract states (as, aw) in the previous section.
The theorem is proved directly from the previous result for WATCHDOG_TICK, by proving the refinement between the speci-
fication in the previous section and the specifications spec_atick and spec_atick_ev.

5.3.5 Scheduler with Switching
We also verified a version of the scheduler allowing switching between time tables, which forms a more substantial example
showing the scalability of our framework. For reason of space, we only sketch the main additional features:

Table 1. Statistics of the implementation and examples

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 26

• There is an additional input event SWITCH n mode, which requests switching to a new time table with identifier n, with
switch mode given by mode.

• The dispatch function in the scheduler tests for two of the switch modes: next window and next frame, and performs switching
at the appropriate time.

• There is an event for overall clock tick which handles the next tick switch mode. If next tick is active, the handler sets the mode
to next window, then emits three events: remove the scheduler task from watchdog chain, perform watchdog tick, and dispatch
the scheduler. Otherwise, it simply emits the event to perform watchdog tick.

As with the case with no switching, we combined correctness of the scheduler and the watchdog to form correctness result of
the overall system. It states that scheduling proceeds precisely according to the time table, and whenever a switch event arrives,
the switch to a new time table will be performed at the appropriate time according to the switch mode. The correctness theorem
is again stated in the form of a refinement between the concrete behavior of the system and an abstract functional specification.

5.4 Statistics
Statistics from the implementation of the framework and the examples are given in Table 1. Definingx the event monad and event
system, then setting up the Hoare logic take around 1000 lines in total. Verifying the watchdog is surprisingly complex, so it is
a good thing that under the framework, it only need to be done once for verifying the two versions of the scheduler.

6. Related work

There is a large body of work on effects and effect handlers [4, 24, 30], game semantics [20], and verification methods using
interaction trees [21, 34, 36], which study how to model and verify interacting systems where interactions are synchronous, and
a response is needed immediately in order to proceed with execution of the program. Hence, programs are modeled using
interaction trees which branch at every continuation in response to an event. Compared to these works, we consider a different
model, which may be simpler or more accurate in some settings, where sending events is asynchronous. Closely related is the
work of Ahman et al. on asynchronous effects [3]. However, they focused mostly on type checking of programs with asynchro-
nous effects, rather than verification of functional correctness.

Zhao et al. [39] proposed a framework for rely-guarantee reasoning about reactive systems defined by events. In this work (and
many earlier works that specify systems using events), each event has a guard, and is triggered whenever the guard is satisfied.
The semantics in our case is quite different, where events are triggered explicitly, either by the environment or by other event
handlers. In this respect, our semantics is closer to that of I/O automata [26, 27], but with sequential rather than concurrent
execution.

There is a large number of frameworks for program verification in Isabelle and other proof assistants, many of which based on
monads and/or refinement. We will only give some examples in Isabelle here. Our work builds upon the state monads of Cock et
al. [7], which are used extensively in the seL4 project [19]. Lammich et al. developed the Isabelle Refinement Framework [23, 22],
which was most recently used by Haslbeck and Lammich for verification of functional correctness and worst-case complexity of
algorithms at the LLVM level [16]. Tuong et al. developed Clean [32], which implements a state-exception monad in Isabelle, and
is used to verify a number of small programs. Foster et al. developed Isabelle/UTP [11], implementing Hoare and He’s Unifying
Theories of Programming [17], and applied it to the verification of reactive and hybrid systems [10, 9].

There have been many existing work on verifying operating systems or its components [13, 18, 19, 35, 37]. This includes much
work on the specification and verification of separation kernels [40]. Zhao et al. [38] specified channel-based communication
according to the ARINC 653 standard, and provided formal proofs about its information flow security. Verbeek et al. [33]
formalized the API specification for PikeOS, and proved security properties as required by the MILS architecture. Murray et al.
also extended the verification of the seL4 microkernel to prove information flow enforcement properties [28]. More recently,
there have been focus on verification of the scheduling in real-time operating systems. In particular, the work of Guo et al. [14]
and Liu et al. [25] verified the correctness of scheduling in a real-time version of CertiKOS. They verify both the correct
implementation of a scheduling policy as well as schedulability under that policy.

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 27

7. Conclusion

In this paper, we introduced a framework for modular verification of interacting components using event monads. Procedures in
each component are modeled by event monads which can produce a trace of events. Each event can then be handled by
procedures in other components in the event system. We applied the framework to the verification of three examples, including
partition scheduling based on time tables in a real-time operating system. These indicate that the framework is applicable in a
wide range of scenarios.

While the current paper focuses on verification of distributed systems and operating system components, it appears likely that
verification using event monads and event systems can also be applied in other contexts, such as network communication.
Exploring these other applications is a goal of future work.

Referennces

[1] Abadi, M. & Lamport, L. (1993) Composing specifications. ACM Transactions on Programming Languages and Systems, 15,
73–132 [DOI: 10.1145/151646.151649].

[2] Aeronautical Radio, Inc. & ARINC (2015). Specification 653: Avionics Application Software Standard Interface, Part 1–Re-
quired Services. ARINC Airlines Electronic Engineering Committee.

[3] Ahman, D. & Pretnar, M. (2021) Asynchronous effects. Proceedings of the ACM on Programming Languages. Proceedings
of the ACM Program. Lang, 5, 1–28 [DOI: 10.1145/3434305].

[4] Bauer, A. & Pretnar, M. (2015) Programming with algebraic effects and handlers. Journal of Logical and Algebraic Methods
in Programming. Algebraic Methods Program, 84, 108–123 [DOI: 10.1016/j.jlamp.2014.02.001].

[5] Chaochen, Z., Hoare, C.A.R. & Ravn, A.P. (1991) A calculus of durations. Information Processing Letters, 40, 269–276 [DOI:
10.1016/0020-0190(91)90122-X].

[6] Chou, C.-T., Mannava, P.K. & Park, S. (2004) A simple method for parameterized verification of cache coherence protocols. In:
Formal Methods in Computer-Aided Design, 5th International Conference, FMCAD 2004, Austin, TX, USA, 15–17 November,
2004, Proceedings, pp. 382–398.

[7] Cock, D., Klein, G. & Sewell, T. (2008) Secure microkernels, state monads and scalable refinement. In: Theorem Proving in
Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada, 18–21 August, 2008. Proceedings, pp.
167–182 [DOI: 10.1007/978-3-540-71067-7_16].

[8] Dean, J. & Ghemawat, S. (2008) MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51,
107–113 [DOI: 10.1145/1327452.1327492].

[9] Foster, S. (2019), Proceedings Hybrid relations in isabelle/utp. In: Unifying Theories of Programming - 7th International
Symposium, UTP 2019, Dedicated to Tony Hoare on the Occasion of His 85th Birthday, Vol. 8. October: Porto, Portugal, pp. 130–
153.

[10] Foster, S., Baxter, J., Cavalcanti, A., Miyazawa, A. & Woodcock, J. (2018) Automating verification of state machines with
reactive designs and isabelle/utp. In: Proceedings Formal Aspects of Component Software - 15th International Conference,
FACS 2018, Pohang, South Korea, 10–12 October, 2018, pp. 137–155.

[11] Foster, S., Baxter, J., Cavalcanti, A., Woodcock, J. & Zeyda, F. (2020) Unifying semantic foundations for automated verification
tools in Isabelle/UTP. Science of Computer Programming, 197, 102510 [DOI: 10.1016/j.scico.2020.102510].

[12] Greenaway, D. (2014). Automated Proof-Producing Abstraction of C Code. URL: handle.unsw.edu.au/1959.4/54260 [PhD
Thesis]. University of New South Wales: Sydney.

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 28

[13] Gu, R., Shao, Z., Chen, H., Wu, Xiongnan (N), Kim, J., Sjöberg, V. & Costanzo, D. (2016) Certikos: An extensible architecture
for building certified concurrent OS kernels. In: 12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, 2–4 November, Vol. 2016. URL: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/gu, pp. 653–669.

[14] Guo, X., Lesourd, M., Liu, Mengqi, Rieg, L. & Shao, Z. (2019) Integrating formal schedulability analysis into a verified OS
kernel. In: Proceedings, Part II Computer Aided Verification - 31st International Conference, CAV 2019, New York City, USA,
15–18 July, 2019, pp. 496–514 [DOI: 10.1007/978-3-030-25543-5_28].

[15] Halpern, J.Y., Manna, Z. & Moszkowski, B.C. (1983) A hardware semantics based on temporal intervals. In: Automata,
Languages and Programming, 10th Colloquium, Barcelona, Spain. Proceedings. ITP Foundation 2022, 1983, 278–291 [DOI:
10.1007/BFb0036915].

[16] Maximilian P. L. Haslbeck and Peter Lammich. For a few dollars more - verified fine-grained algorithm analysis down to
LLVM. In Programming Languages and Systems - 30th European Symposium on Programming, ESOP 2021, Luxembourg City,
Luxembourg, March 27 - April 1, 2021, Proceedings, pages 292–319, 2021.

[17] C.A.R Hoare and Jifeng He. Unifying Theories of Programming. Prentice-Hall, 1998.

[18] Gerwin Klein. Operating system verification–an overview. Sadhana, 34:27–69, 2009.

[19] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray, Thomas Sewell, Rafal Kolanski, and Gernot Heiser.
Comprehensive formal verification of an OS microkernel. ACM Trans. Comput. Syst., 32(1): 2:1–2:70, 2014. doi:10.1145/2560537.

[20] Jérémie Koenig and Zhong Shao. Refinement-based game semantics for certified abstraction layers. In LICS ’20: 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages 633–647, 2020.
doi:10.1145/3373718.3394799.

[21] Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C. Pierce, and Steve
Zdancewic. From C to interaction trees: specifying, verifying, and testing a networked server. In Proceedings of the 8th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, pages
234–248, 2019. doi:10.1145/3293880.3294106.

[22] Peter Lammich. Refinement to imperative HOL. J. Autom. Reason., 62(4):481–503, 2019.

[23] Peter Lammich and Thomas Tuerk. Applying data refinement for monadic programs to hopcroft’s algorithm. In Interactive
Theorem Proving - Third International Conference, ITP 2012, Princeton, NJ, USA, August 13-15, 2012. Proceedings, pages 166–
182, 2012.

[24] Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, and Guillaume Hiet. Modular verification of programs with effects and
effects handlers. Formal Aspects Comput., 33(1):127–150, 2021. doi:10.1007/s00165-020-00523-2.

[25] Mengqi Liu, Lionel Rieg, Zhong Shao, Ronghui Gu, David Costanzo, Jung-Eun Kim, and Man-Ki Yoon. Virtual timeline: a
formal abstraction for verifying preemptive schedulers with temporal isolation. Proc. ACM Program. Lang., 4(POPL):20:1–20:31,
2020. doi:10.1145/ 3371088.

[26] Nancy A. Lynch and Eugene W. Stark. A proof of the Kahn principle for input/output automata. Inf. Comput., 82(1):81–92,
1989. doi:10.1016/0890-5401(89)90066-7.

[27] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proceedings of the Sixth
Annual ACM Symposium on Principles of Distributed Computing, Vancouver, British Columbia, Canada, August 10-12, 1987,
pages 137–151, 1987. doi:10. 1145/41840.41852.

[28] Toby C. Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke, Sean Seefried, Corey Lewis, Xin Gao,

 International Journal of Computational Linguistics Research Volume 14 Number 1 March 2023 29

and Gerwin Klein. sel4: From general purpose to a proof of information flow enforcement. In 2013 IEEE Symposium on Security
and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 415–429, 2013.

[29] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic,
volume 2283 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-45949-9.

[30] Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In Programming Languages and Systems, 18th
European Symposium on Programming, ESOP 2009, York, UK, March 22-29, 2009. Proceedings, pages 80–94, 2009. doi:10.1007/
978-3-642-00590-9_7.

[31] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th IEEE Symposium on Logic in
Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings, pages 55–74, 2002. doi:10.1109/
LICS.2002.1029817.

[32] Frédéric Tuong and Burkhart Wolff. Clean - an abstract imperative programming language and its theory. Arch. Formal
Proofs, 2019, 2019. URL: https://www.isa-afp.org/entries/ Clean.html. B. Zhan, Y. Lv, S. Wang, G. Zhao, J. Hao, H. Ye, and B. Xia
33:21

[33] Freek Verbeek, Oto Havle, Julien Schmaltz, Sergey Tverdyshev, Holger Blasum, Bruno Langenstein,Werner Stephan,
BurkhartWolff, and Yakoub Nemouchi. Formal API specification of the pikeos separation kernel. In NASA Formal Methods -
7th International Symposium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings, pages 375–389, 2015.

[34] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.
Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program. Lang., 4(POPL):51:1–51:32, 2020.
doi:10.1145/3371119.

[35] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and Zhaohui Li. A practical verification framework for
preemptive OS kernels. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part II, pages 59–79, 2016. doi:10.1007/978-3-319-41540-6_4.

[36] Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, William Mansky, Benjamin C.
Pierce, and Steve Zdancewic. Verifying an HTTP key-value server with interaction trees and VST. In 12th International
Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy (Virtual Conference), pages 32:1–
32:19, 2021.

[37] Yongwang Zhao and David Sanán. Rely-guarantee reasoning about concurrent memory management in Zephyr RTOS. In
Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part II, pages 515–533, 2019. doi:10.1007/978-3-030-25543-5_29.

[38] Yongwang Zhao, David Sanán, Fuyuan Zhang, and Yang Liu. Reasoning about information flow security of separation
kernels with channel-based communication. In Tools and Algorithms for the Construction and Analysis of Systems - 22nd
International Conference, TACAS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, pages 791–810, 2016.

[39] Yongwang Zhao, David Sanán, Fuyuan Zhang, and Yang Liu. A parametric rely-guarantee reasoning framework for concur-
rent reactive systems. In Formal Methods - The Next 30 Years - Third World Congress, FM 2019, Porto, Portugal, October 7-11,
2019, Proceedings, pages 161–178, 2019. doi:10.1007/978-3-030-30942-8_11.

[40] Yongwang Zhao, Zhibin Yang, and Dianfu Ma. A survey on formal specification and verification of separation kernels.
Frontiers Comput. Sci., 11(4):585–607, 2017. doi: 10.1007/s11704-016-4226-2.

