
                     International Journal of Web Applications   Volume   15    Number   1   March   2023           1

Bandit Based Pure Exploration of Greedy Learning

Tian Lin, Jian Li
Tsinghua University
Beijing, China
lintian06@gmail.com
lapordge@gmail.com

Wei Chen
Microsoft Research
Beijing, China
weic@microsoft.com

ABSTRACT: Combinatorial optimization has many greedy algorithms. Using the stochastic based greedy algorithm, we have
studied the online learning issues. Primarily, we compared the quasi- greedy regret as a metric for learning and equated with
the offline greedy algorithms. Multi-armed bandit based pure exploration at each level of greedy learning is used to develop
the two step online greedy algorithm with semi-bandit feed backs. This process works out for regret metrics well. The use of
general class of combinatorial structures and reward function permit greedy solutions. We have tested the procedures with the
parameters of other problems.

Keywords: Combinatorial optimization, Greedy algorithms, Learning Metrics

Received:  19 September 2022, Revised 8 December 2022, Accepted 18 December 2022

DOI: 10.6025/ijwa/2023/15/1/1-11

Copyright: with Authors

1. Introduction

The greedy algorithm is simple and easy-to-implement, and can be applied to solve a wide range of complex optimization
problems, either with exact solutions (e.g. minimum spanning tree [19, 25]) or approximate solutions (e.g. maximum coverage [11]
or influence maximization [17]). Moreover, for many practical problems, the greedy algorithm often serves as the first heuristic of
choice and performs well in practice even when it does not provide a theoretical guarantee.

The classical greedy algorithm assumes that a certain reward function is given, and it constructs the solution iteratively. In each
phase, it searches for a local optimal element to maximize the marginal gain of reward, and add it to the solution. We refer to this



            International Journal of Web Applications   Volume   15   Number   1   March   2023 2

case as the offline greedy algorithm with a given reward function, and the corresponding problem the offline problems. The
phase-by-phase process of the greedy algorithm naturally forms a decision sequence to illustrate the decision flow in finding
the solution, which is named as the greedy sequence.We characterize the decision class as an accessible set system, a general
combinatorial structure encompassing many interesting problems.

In many real applications, however, the reward function is stochastic and is not known in advance, and the reward is only
instantiated based on the unknown distribution after the greedy sequence is selected. For example, in the influence maximization
problem [17], social influence are propagated in a social network from the selected seed nodes following a stochastic model with
unknown parameters, and one wants to find the optimal seed set of size k that generates the largest influence spread, which is
the expected number of nodes influenced in a cascade. In this case, the reward of seed selection is only instantiated after the
seed selection, and is only one of the random outcomes. Therefore, when the stochastic reward function is unknown, we aim at
maximizing the expected reward overtime while gradually learning the key parameters of the expected reward functions. This falls
in the domain of online learning, and we refer the online algorithm as the strategy of the player, who makes sequential decisions,
interacts with the environment, obtains feedbacks, and accumulates her reward. For online greedy algorithms in particular, at
each time step the player selects and plays a candidate decision sequence while the environment instantiates the reward
function, and then the player collects the values of instantiated function at every phase of the decision sequence as the
feedbacks (thus the name of semi-bandit feedbacks [2]), and takes the value of the final phase as the reward cumulated in this
step.

The typical objective for an online algorithm is to make sequential decisions against the optimal solution in the offline problem
where the reward function is known a priori. For online greedy algorithms, instead, we compare it with the solution of the offline
greedy algorithm, and minimize their gap of the cumulative reward over time, termed as the greedy regret. Furthermore, in some
problems such as influence maximization, the reward function is estimated with error even for the offline problem [17] and thus
the greedily selected element at each phase may contain some / error.

We call such greedy sequence as /-quasi greedy sequence. To accommodate these cases, we also define the metric of /-quasi
greedy regret, which compares the online solution against the minimum offline solution from all /-quasi greedy sequences.

In this paper, we propose two online greedy algorithms targeted at two regret metrics respectively. The first algorithm OG-UCB
uses the stochastic multi-armed bandit (MAB) [22, 8], in particular the well-known UCB policy [3] as the building block to
minimize the greedy regret. We apply the UCB policy to every phase by associating the confidence bound to each arm, and then
choose the arm having the highest upper confidence bound greedily in the process of decision. For the second scenario where
we allow tolerating /-error for each phase, we propose a first-explore-then-exploit algorithm OG-LUCB to minimize the /-quasi
greedy regret. For every phase in the greedy process, OG-LUCB applies the LUCB policy [16, 9] which depends on the upper and
lower confidence bound to eliminate arms. It first explores each arm until the lower bound of one arm is higher than the upper
bound of any other arm within an /-error, then the stage of current phase is switched to exploit that best arm, and continues to
the next phase. Both OG-UCB and OG-LUCB achieve the problemdependent O(log T) bound in terms of the respective regret
metrics, where the coefficients in front of T depends on direct elements along the greedy sequence (a.k.a., its decision frontier)
corresponding to the instance of learning problem. The two algorithms have complementary advantages: when we really target
at greedy regret (setting / to 0 for OG-LUCB), OG-UCB has a slightly better regret guarantee and does not need an artificial
switch between exploration and exploitation; when we are satisfied with /-quasi greedy regret, OG-LUCB works but OG-UCB
cannot be adapted for this case and may suffer a larger regret.We also show a problem instance in this paper, where the upper
bound is tight to the lower bound in T and other problem parameters.

We further show our algorithms can be easily extended to the knapsack problem, and applied to the stochastic online maximiza
tion for consistent functions and submodular functions, etc., in the supplementary material.

To summarize, our contributions include the following: (a) To the best of our knowledge, we are the first to propose the
framework using the greedy regret and /-quasi greedy regret to characterize the online performance of the stochastic greedy
algorithm for different scenarios, and it works for a wide class of accessible set systems and general reward functions; (b) We
propose Algorithms OGUCB and OG-LUCB that achieve the problem-dependent O(log T) regret bound; and (c) We also show
that the upper bound matches with the lower bound (up to a constant factor).

Due to the space constraint, the analysis of algorithms, applications and empirical evaluation of the lower bound are moved to



                     International Journal of Web Applications   Volume   15    Number   1   March   2023           3

the supplementary material.

Related Work: The multi-armed bandit (MAB) problem for both stochastic and adversarial settings [22, 4, 6] has been widely
studied for decades. Most work focus on minimizing the cumulative regret over time [3, 14], or identifying the optimal solution
in terms of pure exploration bandits [1, 16, 7]. Among those work, there is one line of research that generalizes MAB to
combinatorial learning problems [8, 13, 2, 10, 21, 23, 9]. Our paper belongs to this line considering stochastic learning with semi-
bandit feedbacks, while we focus on the greedy algorithm, the structure and its performance measure, which have not been
addressed.

The classical greedy algorithms in the offline setting are studied in many applications [19, 25, 11, 5], and there is a line of work
[15, 18] focusing on characterizing the greedy structure for solutions. We adopt their characterizations of accessible set systems
to the online setting of the greedy learning. There is also a branch of work using the greedy algorithm to solve online learning
problem, while they require the knowledge of the exact form of reward function, restricting to special functions such as linear [2,
20] and submodular rewards [26, 12]. Our work does not assume the exact form, and it covers a much larger class of combinatorial
structures and reward functions.

2. Preliminaries

Online combinatorial learning problem can be formulated as a repeated game between the environment and the player under
stochastic multi-armed bandit framework.

Let  be a finite ground set of size n, and  be a collection of subsets of E. We consider the accessible set system

(E, ) satisfying the following two axioms: (1) ; (2) If S  and S = , then there exists some e in .We define

any set  as a feasible set if . For any , its accessible set is defined as  .

We say feasible set S is maximal if . Define the largest length of any feasible set as , and

the largest width of any feasible set as  .We say that such an accessible set system (E, ) is

the decision class of the player. In the class of combinatorial learning problems, the size of  is usually very large (e.g.,
exponential in m, W and n).

Beginning with an empty set, the accessible set system (E, )  ensures that any feasible set S can be acquired by adding
elements one by one in some order (cf. Lemma A.1 in the supplementary material for more details), which naturally forms the
decision process of the player. For convenience, we say the player can choose a decision sequence, defined as an ordered

feasible sets  satisfying that  and for any 

 where . Besides, define decision sequence  as maximal if and only if S
k
 is maximal.

Let  be an arbitrary set. The environment draws i.i.d. samples from   at each time t = 1, 2, ... , by following a
predetermined but unknown distribution. Consider reward function  that is bounded, and it is non-decreas-

ing1 in the first parameter, while the exact form of function is agnostic to the player. We use a shorthand  to

denote the reward for any given S at time t, and denote the expected reward as , where the expectation 
is taken from the randomness of the environment at time t. For ease of presentation, we assume that the reward function for any
time t is normalized with arbitrary alignment as follows: (1)  (for any constant ; (2) for any

 . Therefore, reward function f( ) is implicitly bounded within [L. L + m].

We extend the concept of arms in MAB, and introduce notation  to define an arm, representing the selected element

e based on the prefix S, where S is a feasible set and ; and define  as the arm

space. Then, we can define the marginal reward for function , and the expected marginal

reward for  as . Notice that the use of arms characterizes the marginal reward, and also indicates
that it is related to the player’s previous decision.



            International Journal of Web Applications   Volume   15   Number   1   March   2023 4

2.1 The Offline Problem and the Offline Greedy Algorithm

In the offline problem, we assume that  is provided as a value oracle. Therefore, the objective is to find the optimal solution

, which only depends on the player’s decision. When the optimal solution is computationally hard to

obtain, usually we are interested in finding a feasible set  such that  where , then S+ is
called an - approximation solution. That is a typical case where the greedy algorithm comes into play. The offline greedy
algorithm is a local search algorithm that refines the solution phase by phase. It goes as follows: (a) Let   For each

phase  find , and let   and let   The above process

ends when . We define the maximal decision sequence   is its
length) found by the offline greedy as the greedy sequence. For simplicity, we assume that it is unique.

One important feature is that the greedy algorithm uses a polynomial number of calls (poly(m,W, n)) to the offline oracle, even
though the size of  or A may be exponentially large. In some cases such as the offline influence maximization problem [17], the

value of  can only be accessed with some error or estimated approximately. Sometimes, even though  can be computed

exactly, we may only need an approximate maximizer in each greedy phase in favor of computational efficiency (e.g., efficient
submodular maximization [24]). To capture such scenarios, we say a maximal decision sequence is an

quasi greedy sequence (  0), if the greedy decision can tolerate / error every phase, i.e., for each  and
  . Notice that there could be many -quasi greedy sequences, and

we denote  is its length) as the one with the minimum reward, that is  is minimized over
all -quasi greedy sequences.

2.2 The Online Problem

In the online case, in constrast  is not provided. The player can only access one of functions  generated by the
environment, for each time step during a repeated game.

For each time t, the game proceeds in the following three steps: (1) The environment draws i.i.d. sample   from its
predetermined distribution without revealing it; (2) the player may, based on her previous knowledge, select a decision se-

quence , which reflects the process of her decision phase by phase; (3) then, the player plays  and
gains reward , while observes intermediate feedbacks  to update her knowledge. We refer
such feedbacks as semi-bandit feedbacks in the decision order.

For any time t = 1, 2, ..., denote  and . The player is to make sequential  decisions, and the
classical objective is to minimize the cumulative gap of rewards against the optimal solution [3] or the approximation solution
[10]. For example, when the optimal solution S  can be solved in the offline problem, we minimize the

expected cumulative regret  over the time horizon T, where the expectation is taken

from the randomness of the environment and the possible random algorithm of the player. In this paper, we are interested in
online algorithms that are comparable to the solution of the offline greedy algorithm, namely the greedy sequence

. Thus, the objective is to minimize the greedy regret defined as

(1)

Given , we define the -quasi greedy regret as

(2)

1Therefore, the optimal solution is a maximal decision sequence.



                     International Journal of Web Applications   Volume   15    Number   1   March   2023           5

where   is the minimum -quasi greedy sequence. We remark that if the offline greedy algorithm

provides an ”-approximation solution (with ), then the greedy regret (or -quasi greedy regret) also provides -
approximation regret, which is the regret comparing to the ” fraction of the optimal solution, as defined in [10].

In the rest of the paper, our goal is to design the player’s policy that is comparable to the offline greedy, in other words,

. Thus, to achieve sublinear greedy regret  is our main

focus.

3. The Online Greedy and Algorithm OG-UCB

In this section, we propose our Online Greedy (OG) algorithm with the UCB policy to minimize the greedy regret (defined in (1)).

For any arm , playing a at each time t yields the marginal reward as a random variable , in which the

random event   is i.i.d., and we denote  as its true mean (i.e.,

Algorithm 1 OG

Require: MaxOracle

1: for t = 1, 2, . . . do

2:  true

3: repeat  online greedy procedure

4: 

5:  find the current maximal

6: 

7: until  until a maximal sequence is found

8: Play sequence .

9: for all  do  update according to signals from MaxOracle

10: if  are all true then

11: Update  according to (3).

Subroutine 2 UCB  to implement MaxOracle

Setup: confidence radius , for each 



            International Journal of Web Applications   Volume   15   Number   1   March   2023 6

1: if  is not initialized then  break ties arbitrarily

2: return (a; true)  to initialize arms

3: else  apply UCB’s rule

4:   and return 

. Let  be the empirical mean for the marginal reward of a, and N(a) be the counter of the plays. More

specifically, denote  and  for particular  and  at the beginning of the time step t, and they are evaluated

as follows:

(3)

where  indicates whether a is updated at time i. In particular, assume that our algorithm is lazy-initialized so that

each  and N(a) is 0 by default, until a is played.

The Online Greedy algorithm (OG) proposed in Algorithm 1 serves as a meta-algorithm allowing different implementations of
Subroutine MaxOracle. For every time t, OG calls MaxOracle (Line 5, to be specified later) to find the local maximal phase by

phase, until the decision sequence  is made. Then, it plays sequence , observes feedbacks and gains the reward (Line 8).
Meanwhile,  collects the Boolean signals (hk) from MaxOracle during the greedy process (Line 5), and update estimators 

( ) and N( ) according to those signals (Line 10). On the other hand, MaxOracle takes accessible arms A, estimators  ( ), N( ),
and counted time t

0
, and returns an arm from A and signal  to instruct OG whether to update estimators for the

following phase.

The classical UCB [3] can be used to implement MaxOracle, which is described in Subroutine 2.

We term our algorithm OG, in which MaxOracle is implemented by Subroutine 2 UCB, as Algorithm OG-UCB. A few remarks are
in order: First, Algorithm OG-UCB chooses an arm with the highest upper confidence bound for each phase. Second, the signal
hk is always true, meaning that OG-UCB always update empirical means of arms along the decision sequence. Third, because we

use lazy-initialized  and , the memory is allocated only when it is needed.

3.1 Regret Bound of OG-UCB

For any feasible set S, define the greedy element for S as , and we use 

g for convenience. Denote  is maximalg as the collection of all maximal feasible sets in . WeWe
use the following gaps to measure the performance of the algorithm.

Definition 3.1 (Gaps). The gap between the maximal greedy feasible set  and any  is defined as

 if it is positive, and 0 otherwise. We define the maximum gap as ,

which is the worst penalty for any maximal feasible set. For any arms , we define the unit gap of a (i.e., the gap for
one phase) as

(4)



                     International Journal of Web Applications   Volume   15    Number   1   March   2023           7

For any arms , we define the sunk-cost gap (irreversible once selected) as

(5)

where for two feasible sets A and B, A  B means that A is a prefix of B in some decision sequence, that is, there exists a decision

sequence  such that  and for some . Thus,  means the largest gap we

may have after we have fixed our prefix selection to be , and is upper bounded by .

Definition 3.2 (Decision frontier). For any decision sequence , define decision frontier

 as the arms need to be explored in the decision sequence , and

  similarly..

Theorem 3.1 (Greedy regret bound). For any time T, Algorithm OG-UCB (Algorithm 1 with Subroutine 2) can achieve the greedy
regret

(6)

where  is the greedy decision sequence.

When m = 1, the above theorem immediately recovers the regret bound of the classical UCB [3] (with ). The

greedy regret is bounded by  where  is the minimum unit gap , and the memory cost

is at most proportional to the regret. For a special class of linear bandits, a simple extension where we treat arms e|S and  as

the same can make OG-UCB essentially the same as OMM in [20], while the regret is  and the memory cost is O(n)
(cf. Appendix F.1 of the supplementary material).

4. Relaxing the Greedy Sequence with /-Error Tolerance

In this section, we propose an online algorithm called OG-LUCB, which learns an -quasi greedy sequence, with the goal of
minimizing the -quasi greedy regret (in (2)). We learn -quasi-greedy sequences by a first-explore-then-exploit policy, which
utilizes results from PAC learning with a fixed confidence setting. In Section 4.1, we implement MaxOracle via the LUCB policy,
and derive its exploration time; we then assume the knowledge of time horizon T in Section 4.2, and analyze the -quasi greedy
regret; and in Section 4.3, we show that the assumption of knowing T can be further removed.

4.1 OG with a first-explore-then-exploit policy
Given  and failure probability , we use Subroutine 3 LUCB , to implement the  subroutine MaxOracle in
Algorithm OG. We call the resulting algorithm OG-LUCB ;. Specifically, Subroutine 3 is adapted from CLUCB-PAC in [9], and

specialized to explore the top-one element in the support of [0, 1] (i.e., set , width( ) = 2 and Oracle = arg max in [9]).

Assume that Iexploit(A) is lazy-initialized. For each greedy phase, the algorithm first explores each arm in A in the exploration
stage, during which the return flag (the second return field) is always false; when the optimal one is found (initialize Iexploit(A)
with ), it sticks to Iexploit(A) in the exploitation stage for the subsequent time steps, and return flag for this phase becomes
true. The main algorithm OG then uses these flags in such a way that it updates arm estimates for phase i if any only if all phases

Subroutine 3 LUCB  to implement MaxOracle

Setup:  2N(a) , for each  to cache arms for exploitation;



            International Journal of Web Applications   Volume   15   Number   1   March   2023 8

1: if  is initialized then return (Iexploit(A); true)  in the exploitation stage

2: if  is not initialized then  break ties arbitrarily

3: return (a; false)  to initialize arms

4: else

5: 

6: 

7: 

8: if  then  not separated

9: , and return   in the exploration stage

10: else . separated

11:   initialize Iexploit(A) with ̂ It

12: return (Iexploit(A); true)   in the exploitation stage

for j < i are already in the exploitation stage. This avoids maintaining useless arm estimates and is a major memory saving
comparing to OG-UCB.

In Algorithm OG-LUCB , we define the total exploration time , such that for any time , OG-LUCB

 is in the exploitation stage for all greedy phases encountered in the algorithm. This also means that after time TE, in every step

we play the same maximal decision sequence +1, which we call a stable sequence. Following a
common practice, we define the hardness coefficient with prefix  as

 ; where  is defined in (4):  (7)

Rewrite definitions with respect to the -quasi regret. Recall that  is the minimum -quasi greedy

sequence. In this section, we rewrite the gap   for any , the maximum gap

, and   , for any arm
..

The following theorem shows that, with high probability, we can find a stable -quasi greedy sequence, and the total exploration



                     International Journal of Web Applications   Volume   15    Number   1   March   2023           9

time is bounded.

Theorem 4.1 (High probability exploration time). Given any  and  suppose after the total exploration time

, Algorithm OG-LUCB (Algorithm 1 with Subroutine 3) sticks to a stable sequence 

where  is its length. With probability at least , the following claims hold: (1)  is an -quasi greedy sequence; (2) TheThe

total exploration time satisfies that .

4.2 Time Horizon T is Known

Knowing time horizon T, we may let  in OG-LUCB  to derive the -quasi regret as follows.

Theorem 4.2. Given any . When total time T is known, let Algorithm OG-LUCB  run with . Suppose

 is the sequence selected at time T.

Define function   In   where m is the largest

length of a feasible set and  is defined in (7). Then, the -quasi regret satisfies that ,

where  is the minimum unit gap.

In general, the two bounds (Theorem 3.1 and Theorem 4.2) are for different regret metrics, thus can not be directly compared.
When   = 0, OG-UCB is slightly better only in the constant before log T. On other hand, when we are satisfied with -quasi
greedy regret, OG-LUCB  may work better for

Algorithm 4 OG-LUCB-R (i.e., OG-LUCB with Restart)

Require: 
1: for epoch l = 1, 2;    do

2: Clean  and  for all arms, and restart OG-LUCB ; with   (defined in (8)).

3: Run OG-LUCB ; for  time steps. (exit halfway, if the time is over.)

some large , for the bound takes the maximum (in the denominator) of the problem-dependent term (  and the fixed
constant  term, and the memory cost is only O (mW).

4.3 Time Horizon T is not Known
When time horizon T is not known, we can apply the “squaring trick”, and restart the algorithm for each epoch as follows. Define
the duration of epoch , and its accumulated time as , where

(8)

For any time horizon T, define the final epoch K = K(T) as the epoch where T lies in, that is . Then, our algorithm
OG-LUCB-R is proposed in Algorithm 4. The following theorem shows that the O(log T) -quasi regret still holds, with a slight
blowup of the constant hidden in the big O notation (For completeness, the explicit constant before log T can be found in
Theorem D.7 of the supplementary material).

Theorem 4.3. Given any . Use   and  defined in (8), and function  defined in Theorem 4.2. In Algorithm OG-



            International Journal of Web Applications   Volume   15   Number   1   March   2023 10

LUCB-R, suppose  is the sequence selected by the end of l-th epoch of OG-LUCB , where 

is its length. For any time T, denote final epoch as K = K(T) such that , and the -quasi regret satisfies that 

, where  is the minimum unit gap.

5. Lower Bound on the Greedy Regret

Consider a problem of selecting one element each from m bandit instances, and the player sequentially collects prize at every
phase. For simplicity, we call it the prize-collecting problem, which is defined as follows: For each bandit instance i = 1, 2, ... , m,

denote set  of size W. The accessible set system is defined as (E, F), where 

and . The reward function  is non-decreasing in the
first parameter, and the form of f is unknown to the player. Let minimum unit gap

, where its value is also unknown to the player. The objective of

the player is to minimize the greedy regret.

Denote the greedy sequence as , and the greedy arms as  . WeWe

say an algorithm is consistent, if the sum of playing all arms  is in , for any , i.e., .

Theorem 5.1. For any consistent algorithm, there exists a problem instance of the prize-collecting problem, as time T tends to ,

for any minimum unit gap , such that  for some constant , the greedy regret satisfies that

:

We remark that the detailed problem instance and the greedy regret can be found in Theorem E.2 of the supplementary material.

Furthermore, we may also restrict the maximum gap (1), and the lower bound , for any

sufficiently large T. For the upper bound, OGUCB (Theorem 3.1) gives that , Thus, our upper bound

of OG-UCB matches the lower bound within a constant factor.

Acknowledgments

Jian Li was supported in part by the National Basic Research Program of China grants 2015CB358700, 2011CBA00300,
2011CBA00301, and the National NSFC grants 61202009, 61033001, 61361136003.

References

[1] Audibert, J.-Y., Bubeck, S. (2010) Best arm identification in multi-armed bandits. In: Colt.

[2] Audibert, J.-Y., Bubeck, S., Lugosi, G. Minimax Policies for Combinatorial Prediction Games. arXiv Preprint ArXiv:1105.4871
(2011).

[3] Auer, P., Cesa-Bianchi, N. & Fischer, P. (2002) Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47,
235–256.

[4] Auer, P., Cesa-Bianchi, N., Freund, Y. & Schapire, R.E. (2002) The nonstochastic multiarmed bandit problem. SIAM Journal on
Computing, 32, 48–77 [DOI: 10.1137/S0097539701398375].

[5] Björner, A. & Ziegler, G.M. (1992) Introduction to greedoids. Matroid Applications, 40, 284–357.

[6] Bubeck, S. & Cesa-Bianchi, N. (2012). Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems.
arXiv Preprint ArXiv:1204.5721 (2012).



                     International Journal of Web Applications   Volume   15    Number   1   March   2023           11

[7] Bubeck, S., Munos, R. & Stoltz, G. (2011) Pure exploration in finitely armed and continuous-armed bandits. Theoretical
Computer Science, 412, 1832–1852 [DOI: 10.1016/j.tcs.2010.12.059].

[8] Cesa-Bianchi, N. & Lugosi, G. (2012) Combinatorial bandits. Journal of Computer and System Sciences, 78, 1404–1422 [DOI:
10.1016/j.jcss.2012.01.001].

[9] Chen, S., Lin, T., King, I., Lyu, M.R. & Chen, W. (2014) Combinatorial pure exploration of multi-armed bandits. In: Nips.

[10] Chen, W., Wang, Y. & Yuan, Y. (2013) Combinatorial multi-armed bandit: General framework and applications. In: ICML.

[11] Chvatal, V. (1979) A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 4, 233–235 [DOI:
10.1287/moor.4.3.233].

[12] Gabillon, V., Kveton, B., Wen, Z., Eriksson, B. & Muthukrishnan, S. (2013) Adaptive submodular maximization in bandit
setting. In: Nips.

[13] Gai, Y., Krishnamachari, B. & Jain, R. (2010) Learning multiuser channel allocations in cognitive radio networks: A combina-
torial multi-armed bandit formulation. In: DySPAN. IEEE Publications, 1–9 [DOI: 10.1109/DYSPAN.2010.5457857].

[14] Garivier, A. & Cappé, O. The Kl-Ucb Algorithm for Bounded Stochastic Bandits and Beyond. arXiv Preprint ArXiv:1102.2490
(2011).

[15] Helman, P., Moret, B.M.E. & Shapiro, H.D. (1993) An exact characterization of greedy structures. SIAM Journal on Discrete
Mathematics, 6, 274–283 [DOI: 10.1137/0406021].

[16] Kalyanakrishnan, S., Tewari, A., Auer, P. & Stone, P. (2012) Pac subset selection in stochastic multi-armed bandits. In:
ICML.

[17] Kempe, D., Kleinberg, J., and ́  E Maximizing the spread of influence through a social network. In: SIGKDD (2003) [DOI:
10.1145/956750.956769].

[18] Korte, B. & Lovász, L. (1984) Greedoids and linear objective functions. SIAM Journal on Algebraic Discrete Methods, 5,
229–238 [DOI: 10.1137/0605024].

[19] Kruskal, J.B. (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the
American Mathematical Society, 7, 48–50 [DOI: 10.1090/S0002-9939-1956-0078686-7].

[20] Kveton, B., Wen, Z., Ashkan, A., Eydgahi, H. & Eriksson, B. Matroid Bandits: Fast Combinatorial Optimization with
Learning. arXiv Preprint ArXiv:1403.5045 (2014).

[21] Kveton, B., Wen, Z., Ashkan, A. & Szepesvari, C. Tight Regret Bounds for Stochastic Combinatorial Semi-bandits. arXiv
Preprint ArXiv:1410.0949 (2014).

[22] Lai, T.L. & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6, 4–
22 [DOI: 10.1016/0196-8858(85)90002-8].

[23] Lin, T., Abrahao, B., Kleinberg, R., Lui, J. & Chen, W. (2014) Combinatorial partial monitoring game with linear feedback
and its applications. In: ICML.

[24] Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrak, J. & Krause, A. (2015) Lazier than lazy greedy. In:. Proceedings of
the AAAI Conference on Artificial Intelligence. Proceedings of the Conference on Artificial Intelligence (AAAI), 29 [DOI:
10.1609/aaai.v29i1.9486].

[25] Prim, R.C. (1957) Shortest connection networks and some generalizations. Bell System Technical Journal, 36, 1389–1401
[DOI: 10.1002/j.1538-7305.1957.tb01515.x].

[26] Streeter, M. & Golovin, D. (2009) An online algorithm for maximizing submodular functions. In: Nips.




