Ionizing Radiation Detector Circuits and their Operations

Hristo Sabev¹ and Tsanko Karadzhov² ¹Hristo Sabev is with the Faculty of Electrical Engineering and Electronics at Technical University of Gabrovo, 4 H. Dimitar, Gabrovo 5300, Bulgaria

²Tsanko Karadzhov is with the Faculty of Mechanical and Precision Engineering at Technical University of Gabrovo, 4 H. Dimitar, Gabrovo 5300, Bulgaria

ABSTRACT: The functioning of the ionizing radiation detector circuits and their operations are tested using simulations in the current work. We have verified the semiconductor optoelectronic detectors of ionizing radiation. Based on the outcome we proposed circuits for temperature compensation in the optoelectronic detectors performance with low energy levels. This environment has the ionizing particles in fast and slow changes. We have applied the trial results of the opto-electronic detectors.

Keywords: Ionizing Radiations, PIN Photodiodes, PSPICE Simulations

Received: 4 September 2022, Revised 19 November 2022, Accepted 5 December 2022

DOI: 10.6025/pca/2023/12/1/9-13

Copyright: with Authors

1. Introduction

Standards for optoelectronic detectors of ionizing radiations are given in [1, 2, 3]. The optoelectronic detectors of ionizing radiations, including PIN photodiodes, are viewed in [4, 5, 6, 7, 8, 10, 11]. The operation of three circuits of ionizing radiation detectors, realized by means of PIN photodiodes, are simulated. They are considered in [9].

2. Optoelectronic Circuits of Detectors

Figure 1 shows a circuit where the PIN photodiode is connected to an AC current circuit. The circuit is used for registering ionizing radiations. The photodiode operates under inverse voltage in photodiode mode. The amplifier DA1 has a high input resistance. A silicon PIN photodiode SFH 520 of large area is used [11].

Progress in Computing Application Volume 12 Number 1 March 2023

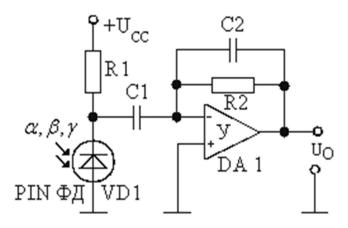


Figure 1. Circuit where the PIN photodiode is connected

Within the next circuits an operating photodiode (VD1) and a compensating photodiode (VD2) are used.

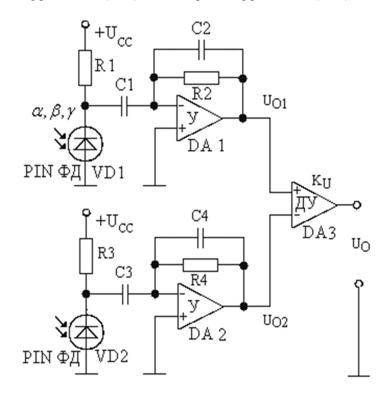
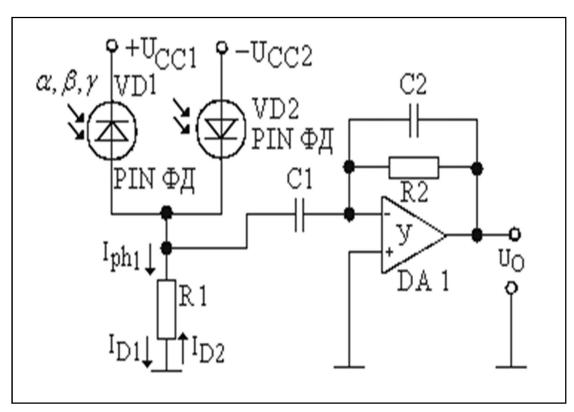


Figure 2. A detector circuit with compensation of fast temperature changes


The output circuit voltage is:

$$U_0 = K_U \cdot I_{ph1} \cdot R_2 \tag{1}$$

$$U_{0} = K_{U} \cdot (U_{01} - U_{02}) = K_{U} \cdot [(I_{ph1} + I_{D1}) \cdot R_{2} - I_{D2} \cdot R_{2}] = K_{U} \cdot I_{ph1} \cdot R_{2}$$
(2)

When the photodiodes are identical, the two dark currents are equal $I_{D1} = I_{D2}$

where K_U - coefficient of amplification according to the voltage of the differential amplifier DA3, I_{ph1} - photocurrent of the PIN photodiode 1, I_{D1} , I_{D2} - dark currents of the PIN photodiodes 1 and 2. The following conditions must be satisfied:

$$R1 = R3; R2 = R4; C1 = C3; C2 = C4$$
 Iph2 = 0 (3)

Figure 3. A detector circuit with compensation of slow temperature changes

The supply voltages of the circuit are equal $U_{CC1} = U_{CC2}$

The voltage on the resistor R1 is:

$$U_{R1} = [I_{ph1} + (I_{D1} - I_{D2})] \cdot R_1 = I_{ph1} \cdot R_1$$
$$I_{D1} = I_{D2}; I_{ph2} = 0$$
$$I_{D1} = I_{D2}; I_{ph2} = 0$$
(4)

For the circuits in figure 2 and figure 3 differential detectors or coordinate (position)-sensitive detectors (PSD) should be used.

For an operation in a wide temperature range the photodiodes of ORTEC company should be used [10].

ORTEC produces photon detectors made of high purity germanium (G?), of a P or N type with a cryostat.

The circuits in figure 1, 2 and 3 possess a common basic circuit shown in figure 4.

Progress in Computing Application Volume 12 Number 1 March 2023

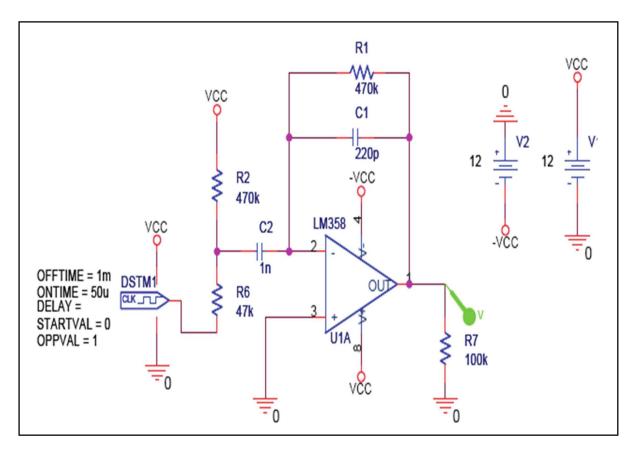


Figure 4. Basic circuit for PSPICE simulations of optoelectronic detectors

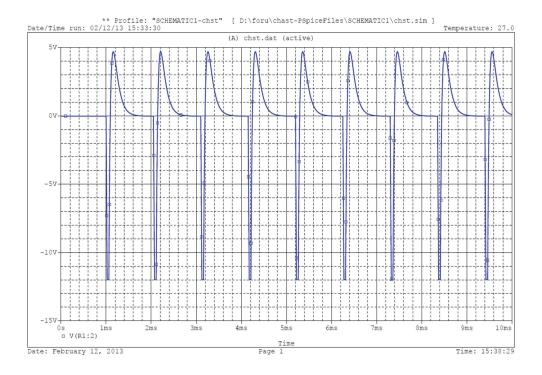


Figure 4a. Output voltage of the circuit in figure 4

3. Conclusion

Circuits of optoelectronic detectors of ionizing radiation, implemented by means of PIN photodiodes, are simulated. The results from the simulations are compared with those obtained from the calculations and measurements done.

References

[1] БДС 10165:1972. Ядрено уредостроене. Детектори на йонизиращи излъчвания полупроводникови с електроннодупчест преход, силициеви спектрометрични. Технически изисквания.

[2] ГОСТ 26222-86. Детекторы ионизирующих излучений полупроводниковые. Методы измерения параметров.

[3] ГОСТ 20766-75. Детекторы ионизирующих излучений полупроводниковые спектрометрические. Типы и основные параметры.

[4] Колев, И. С. и Е. Н. Колева. Инфрачервена оптоелектроника. (Второ преработено и допълнено, издание). Габрово, Унив. изд. "В.Априлов", 2008, ISBN 978-954-683-402-7.

[5] Колев, И. С. и Е. Н. Колева. Кохерентна оптоелектроника. Пловдив, Автоспектър, 2008, ISBN 978-954-8932-46-2.

[6] Колев, И. С. и Е. Н. Колева. Некохерентна оптоелектроника., Габрово, Унив. изд. "В. Априлов" 2007, ISBN 978-954-683-373-0.

[7] Колев, И. С. и Е. Н. Колева. Оптоелектроника. Прибори. Елементи. Приложения. София, Техника, 2007, ISBN 978-954-03-0670-4.

[8] Колев, И. С. и Е. Н. Колева, Оптоелектронни сензори и оптоелектронни охранителни системи. Габрово, Унив. изд. "В. Априлов", 2009, ISBN 978-954-683-420-1.

[9] И. С. Колев, Е. Н. Колева и Х. П. Събев. Оптоелектронни детектори на йонизиращи лъчения. Optoelectonic Detectors for Ionizing Radiations. International Scientific Conference, UNITECH, 2012, Gabrovo, 16-17.XI.2012, Proceedings, vol. 1, I-209, ?-214.

[10] ORTEC. Semiconductor Photon Detectors, 2012.

[11] Siemens Semiconductor Group. SFH520 - a-ß-?- Strahlungsdetektoren. a-ß-?- Radiation Detectors, 2000.

[12] Александров Б., "Развитие на методите за защитно кодиране при съхранение и обмен на информация в: компютърните системи", дисертационен труд:2001 г., 152 стр.

[13] B. Aleksandrov, N. Siniagina, P. Kochevski; "Secret Sharing Based on the Residue Theorem"; Jornal og Communication and Computer; David Publishing Company, US, vol. 9, number 2, 2012; pp.148-154; (www.davidpublishing.com/journals) 686