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ABSTRACT: The automatic control of draglines has an edge over the manual control including greater efficiency. In this
work, we advocated a simplified control strategy based on the linearization of the dynamic model combined with trajectory
tracking and linear feedback control law. Using Lagrange formalism, we introduced the design which was tested in our work.
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1. Introduction

Dragline excavators are heavy machines, widely used in the mining industry to remove overburden in open-pit coal mining.

The interest in automatic control of draglines has been increasing in recent years. This is because the advantages that the
automatic control offers over a manual control include greater efficiency, operator’s convenience and possibility of periodic break
for repose. While the problem of automatic control of cranes has attracted a great deal of attention during the last decade [1,2], to
our knowledge, the problem of controlling dragline excavators has seldom been addressed in the literature [3,4,5]. The goal is to
transport the payload for a given period of time and, in the same time, to reduce the bucket swing angle. The Lagrange formalism
is often used for derivation of different types of mechanical devices [6,7,8,9].

In this paper, we propose a simplified control strategy based on linearization of the dynamic model combined with trajectory
tracking and linear feedback control law. The organization of the paper is as follows: In Section II, a dynamic model of the dragline
excavator suitable for feedback control applications is derived. In Section 3, a linear control law is designed. Section 4 contains
simulation results. Conclusions are presented in Section 5.
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2. Dynamic Model

A schematic view of the dragline excavator is shown in Figure 1. In order to derive a dynamic model suitable for control
applications, we make the following assumptions: the bucket and the payload are considered as a point mass, the mass and
stiffness of the drag and hoist ropes are neglected. In this case, the system has two degree of freedom and the associate
generalized coordinates are

 (1)

where  is the slew angle, which represents the rotation of the house and the boom structures about the vertical z axis;  is the
swing angle of the bucket, which represents the angle between the vertical plane passing through the boom axis and the plane
passing through the boom axis and the bucket (Figure 1).

Figure 1. Schematic view of a dragline excavator
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The swing angle  is measured between x
2
 and x

3
 axes. The parameters L

X 
and L

Z
 are the distances from the point O

0
 to the point

O
2
. The corresponding homogeneous transformation matrices which define the relative position and orientation between the

adjacent coordinate systems are:
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If we suppose that swing angle 
2
 is small than

 (2)

Using the transformation matrices (2), the coordinates of the points A and B with respect to O
0
x

0
y

0
z

0
 are

 (3)

The dynamic equations of motion of the dragline are derived using Lagrange formalism

(4)

where the Lagrangian L
a 

represents the difference between the kinetic and potential energy of the system;  is the Rayleigh

dissipation function; Q
i
 are the generalized forces associated with the generalized coordinates.

The kinetic energy of the system comprises three components – the kinetic energies of the masses m
A
 and m

B
 and the kinetic

energy of the rotating house. The full kinetic energy of the system is obtained as follows:

(5)

where a is the angle between the boom and the horizontal plane; L is the length of line between points A and B; m
A
 is the reduced

to the point A mass of the boom; m
B
 is the mass of the dragline bucket and payload; J is the mass moment of inertia of the rotated

house.

The potential energy of the system is given as

 (6)

In the present paper, we consider that the dissipation of the energy is present only in the rotating mechanism, supporting rotating
house and is due to the resistive forces, which are proportional to the velocity. The Rayleigh dissipation function is defined by
the following equation

(7)



Signals and Telecommunication Journal    Volume   12    Number  1   March    2023               11

where b
1
 is viscous damping coefficient, associated with coordinate 

1
.

Using equations (3), (4), (5), (6) and (7), the dynamic equations of motion of the dragline are obtained in the form

(8)

After linearization, the matrices in (8) take the form:

(9)

where M is the control moment, acting on the rotating house.

Remark 1: It should be noted that the matrix D is positive definite and the matrix 1/ 2D -C is skew-symmetric.

3. Feedback Control Design

In this paper, we consider the problem of position control of the dragline excavator. The goal is to transport the bucket by slew
motion of the boom and to reduce the swing angle of the bucket. The desired trajectory for the slew motion of the boom is
proposed in the form of a fifth order polynomial:

(10)

where the coefficients a
0
…a

5
 are determined by the initial and end conditions.

We make the following change of coordinate

 (11)

and input

 (12)

where

(13)

Finally, using (11)-(13), after some work, the dynamic equations of the dragline excavator can be written in error coordinate as

(14)

where

(15)



    12                    Signals and Telecommunication Journal    Volume  12   Number   1   March    2023

We assume that  are measurable.

and

The system (14) is transformed in control canonical form by using the transformations  (16)

Then, the system is stabilized by linear feedback of the form

 (18)

by using the pole placement method, where k = [k
1
,k

2
, k

3
, k

4
] and the gains k

i
 (i = 1, 2, 3, 4) are positive numbers.

4. Simulation Results

Several simulations using MATLAB were carried out in order to illustrate the performance of the proposed controller.

The desired trajectory of the boom slew motion is given by (10) and coefficients for the desired angle /2 rad and final time of 22s
are a

0
= a

1
= a

2
=0, a

3
=1.475.10-3, a

4 
= -1.006.10-4, a

5
=1.829.10-6. The dragline excavator is tested with a reduced mass of the boom

Figure 2. Time history of the swing angle of the bucket

(16)

(17)
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Figure 3. Time history of the boom displacement (red line), desired trajectory (blue line)

5. Conclusion

In this paper, a trajectory tracking controller for a 2-DOF dragline excavator has been proposed. A dynamic model of the dragline
was developed by using the Lagrange formalism.. A desired trajectory for the boom rotation was generated using a fifth order
polynomial. Linear feedback was proposed for the linearized control system. Simulation results confirm the validity of the
proposed controller.
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m
A
=150.103 kg, mass of the bucket and payload m

B
=50.103 kg, distances L

X 
= 40 m and L=15 m, mass moment of inertia of the

rotating house J = 37.106 kg. m2, damping coefficients b
1
=150.103 N.m.s, b

2
= 2.103 N.m.s. In the first simulation, from Figure 2, we

can see the evolution in time of the swing angle 
2
 during the rotation of the boom. Figure 3, presents the evolution in time of the

movement of the boom 
1
(t) according to desired trajectory . Figure 4 presents the tracking error e1. The results of the

simulations confirm the validity of the proposed controller.

The system (14) is controllable, since

 (19)

The system (14) is transformed in control canonical form by using the transformations

x
c 
= Te (20)
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Figure 4. Tracking error
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