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ABSTRACT: The growth in electric power and the evolution of electric grids led to framing of semantic grid infrastructure.
We have addressed the issues relating to the formation of semantic grids using information and communication technologies
with the combined adaptivity within smart grids. We need to use IoT devices with affordability and finally, we have outlined
the architecture and evaluation outcome.
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1. Introduction

In the previous century, the usage of electrical power has been one of the main key-enablers of rapid technological progress [1].
However, the demand for electrical energy of today’s consumers is becoming much higher, while, on the other side, the availability
of non-renewable resources is limited, pushing the traditional energy distribution systems to their limits [1-4]. In such conditions,
the quality of the transferred power is dramatically affected that could lead to serious problems and even catastrophic results.
Moreover, a constant pressure for switching to renewable, sustainable and cheaper energy resources exists. Therefore, there is
a need for evolution of the existing energy distribution systems and increase of their flexibility while making them adaptable.

In recent years, a lot of effort is being put in process of transformation of the existing energy distribution systems, relying on
state-of-the-art information and communication technologies, towards the so-called Smart Grid infrastructure. Smart Grid is
defined as a next generation power grid, implemented as a two-way cyber-physical system with embedded computational intelli-
gence, leveraging the collected information in order to provide clean, safe, secure, reliable, resilient, efficient, economic and
sustainable electrical energy to end-users [1-5]. One of its main characteristics is the ability to detect the events that occur
anywhere in the grid and react by adopting the corresponding strategy in order to respond the changing demands or recover itself
in case of anomalies, in near real-time.
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In this paper, it is examined how the synergy of cutting-edge information and communication technologies and paradigms can
enable adaptivity within Smart Grid relying on Internet of Things (IoT) devices. As an outcome, we propose an architecture
leveraging the mentioned concepts and present proof-of-concept implementation with some evaluation aspects.

2. Background and Related Work

Architecture model: In literature, many descriptions of Smart Grid infrastructure components and architecture model exist [3- 5].
However, some common elements are identified and we summarize them as follows in Table  1.

Component

Energy subsystem

Communication layer

Metering devices

Computational intelligence

Applications and services

Role

Power generation, transmission and distribution

Usage of wired and wireless communication technology to enable
information exchange between components

Devices recording electrical and nonelectrical measurement values

Knowledge extraction from the collected data and decisioning

Various software used by operators or consumers providing visualization, monitoring and/or
control

Table 1. Smart Grid Components and their Roles

Internet of Things (IoT): IT refers to a system of interconnected devices used in everyday life, residing in our environment with
goal to perform the automation of a particular domain – from healthcare and home appliances to military systems. These devices
are equipped with different kinds of sensors and modules enabling them to collect certain type of information. Moreover, they
can be equipped with actuators in order to be able to affect the environment as a response. In most cases, their processing power
is quite limited and they often need to communicate with other devices (or servers) in order to achieve their goal. For communi-
cation, a variety of technologies is used, both short- (such as Bluetooth) and longrange (Wi-Fi, 4G). It is identified that IoT has
great potential in Smart Grid applications, as measurement and actuation devices have to be distributed throughout residential
and industrial objects in order to collect the necessary data and provide the response to the events that have occurred. IoT
devices perfectly fit that purpose, considering their small size, affordability and connectivity [2].

Data Analysis: In Smart Grids, it is necessary to analyze the enormous amount of data acquired by IoT and metering devices to
extract knowledge and meaningful patterns in order to detect or predict occurrence of particular events within the environment
and react accordingly. For that purpose, various data mining and machine learning techniques are leveraged. In most of the
existing work, the focus of their application is on anomaly detection and load forecasting [3]. In these use cases, clustering,
classification and regression are widely used, acting on various measurements beside electrical signals – temperature, weather,
rainfall and location data [3-7]. Anomaly detection is of particular importance in this context, as it provides the ability of
discovering failures and malfunctions, so Smart Grid can respond to fix them, making them selfhealing. In [4], a clustering
algorithm together with association rule discovery was applied in order to detect anomalous events, such as overcurrent. On the
other side, to optimize the demand scheduling, the accurate energy usage pattern of the consumers is essential. For that reason,
the demand forecasting plays an important role. In [6] and [7], regression based on support vector machines was used for load
forecasting.

Edge Computing: Acquiring the data coming from IoT devices and their sensors is of utmost importance for monitoring and
decisioning in Smart Grids. However, in this case, the traditional Cloud computing approach does not give satisfactory results,
as offloading the enormous amount of data generated by IoT devices equipped with a variety of sensors to the Cloud for
processing would introduce huge latency. On the other side, as Smart Grids grows, the number of connected IoT devices
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increases, introducing delay even further. As Smart Grid has to act to the environment changes and events in near real-time, such
delay is intolerable [8, 9]. The idea of Edge computing is to move the computation and data processing closer to data sources,
in order to enable faster response time [8]. For example, in [9], it has been shown that Smart Grid system monitoring performance
can be increased up to 10 times by moving the computation closer to the location where the data was generated.

Semantic Technology: The role of semantic technology is to encode the meaning of data separately from its content and
application code. This way, it is enabled that both machines and people can understand the data, exchange it and perform
reasoning. In context of semantic technologies, ontologies are used to describe the shared conceptualization of a particular
domain. Semantic descriptions are stored within the triple stores. RDF is often used for the representation of semantic data
within triple stores. It consists of classes, their properties and relationships expressed in forms of triplets (subject, predicate,
object). SPARQL is a language used for querying the RDF semantic triple stores. By executing queries against the triple store,
it is possible to retrieve the results that can be further used by reasoning mechanisms in order to infer new knowledge based on
the existing facts. In IoT systems, semantic technology is used for various purposes. It is widely adopted in cases when it is
needed to achieve interoperability of heterogeneous devices [10]. In [11], a lightweight semantic framework was used for
semantic annotation of the results obtained by computer vision algorithms in order to enable reasoning about the events that
occurred within IoT-based video surveillance system and act accordingly. In this paper, we want to adapt the similar approach
to [11] within Smart Grid architecture.

Domain-specific language (DSL): It is a programming language specialized for solving problems from a particular application
domain. If the considered problem belongs to target domain, that problem is solved more conveniently than using general
purpose programming languages. Their notation could be textual or visual (within modeling tools). Domain-specific languages
are being adopted in IoT systems in order to decrease cognitive load introduced by the device heterogeneity and complexity of
the underlying infrastructure. The domainspecific language scripts are further automatically translated to lower-level device-
specific commands. For example, in [12], EDL domain specific language is used to describe the experiments carried out using
robotic IoT devices. In context of Smart Grids, visual tools based on domain-specific languages would enable much more
convenient control and management for operators. This way, the implementation of complex scenarios is enabled by eliminating
the need to deal with indepth implementation details of the involved devices.

3. Implementation Overview

In this section, we propose Smart Grid architecture putting together the previously described technologies and present several
aspects of system implementation.

Figure 1. Overview of automated adaptation process in Smart Grid
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System Architecture and Working Principles: The measurement of electrical quantities is performed by smart devices, referred
to as Smart Meters. They can either be microcontrollers, low-power single-board computers (such as Raspberry Pi) or even
smartphones (as in our case). The advantage of using smartphones is the availability of built-in sensors and inputs (such as
audio jack). Moreover, their rechargeable batteries and wireless mobile network availability give the ability to use smartphone
devices conveniently even in less accessible areas. After that, the collected data is analyzed relying on data mining and machine
learning techniques. The obtained results are semantically annotated, so the semantic reasoning can be performed against them
in order to draw conclusion about the events that occurred. According to these results the corresponding actions are taken in
order to adapt the Smart Grid to current consumption demands. The adaptation plan can be specified by operators, using a
visual modeling tool utilizing a domain-specific notation. Finally, the devicespecific commands are generated in order to respond
to the changes detected in Smart Grid. The illustration of working principle is given in Figure 1.

Android-based Smart Meters: In [13], we have presented a method for acquiring electric measurement utilizing affordable
Android-based devices. Voltage and current signals are acquired via voltage and current transformers from the power grid and
both converted into voltage signals, which are then scaled down further to audio signal levels using variable resistors. After that
signal goes directly into the devices 3.5 mm audio jack. Since many Android based devices support stereo microphone input, it
makes them an ideal two-channel measuring platform for power signals. Sound card of the device performs analog to digital (A/
D) conversion, so the data can be further processed by standard digital signal processing methods, such as FFT-based
algorithms. Moreover, it is useful to also record other data coming from device, such as temperature, timestamp and location.
The collected measurements are sent to Edge server, via MQTT (Message Queuing Telemetry Transport)1, a lightweight,
publishsubscribe- based ISO-standard messaging protocol, working on top of TCP/IP. The messages are sent as JSON-encoded
string. The smart measurement system is illustrated in Figure 2.

Figure 2. Android based smart measurement

Data Analysis Mechanisms: For implementation of data analysis mechanisms, we rely on TensorFlow2 for Python, an open-
source library used for machine learning. We decide to use it, as it supports execution on GPU. Two mechanisms are imple-
mented: 1) anomaly detection based on classification 2) load forecasting based on regression. In the first case, the training data
contains voltage and frequency measurements with label (ok/anomaly), while in the second case it consists of average daily
consumption (dependent variable) and average temperature (independent variable).

Semantic Framework: A domain ontology (illustrated in Figure 3) is defined in order to semantically annotate the results
obtained during the process of data analysis. This way, it is possible to draw conclusion about the events that occurred by
executing SPARQL queries and interpreting their results. Different types of events are considered: device failure, voltage
anomaly, idle state of the consumer device etc. Moreover, for each of the events, it can be defined which are possible actions that
could be taken in order to react to detected events, such as voltage regulation, turning off the device, switching the device to
power saving mode.

Visual Modelling Tool for Grid Operators: It was developed using Node-RED3 as a basis. It is an intuitive and extendable

1http://mqtt.org/
2https://www.tensorflow.org
3https://nodered.org/
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framework that is used for wiring together IoT devices, APIs and online services in novel ways, providing a browser-based
editor with drag-and-drop user interface using the wide range of modeling elements (nodes). The domain-specific notation
within the tool is described by a metamodel shown in Fig. 4. A model of a modeling language which defines the structure and
constraints for a family of models. In this paper, it is used to define a set of  actions that need to be taken over the target  devices
in order to adapt Smart Grid to the environment changes when pre-defined environment conditions (related to the change that
occurs) are satisfied. The conditions could be either some specific events or relational expressions with respect to a given pre-
defined threshold.

Figure 3. Domain ontology describing control within Smart Grid

Figure 4. Adaptation plan metamodel given in UML notation
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Reasoning and Command Generation: It is performed according to the algorithm shown in Listing I as pseudo-code. Each
condition from the adaptation plan is translated to SPARQL query and executed against the semantic knowledge base. If it
returns results, then the corresponding code is generated and appended to the command script.

Listing 1. Code Generation Algorithm

4. Evaluation and Results

In this section, we present experimental results achieved utilizing the described framework from two different perspectives. First,
we consider the accuracy of anomaly detection and load forecasting mechanisms. Moreover, the adaptability responsiveness of
the implemented system is analyzed considering the processing time necessary for each step. The evaluation was performed on
a server equipped with AMD Ryzen 7 1700X octa-core CPU running at 3.80GHz, 64GB of DDR4 RAM and NVIDIA Quadro P2000
GPU with 4GB of VRAM.

In Table 2 and Table 3, the achieved results using the presented approach for anomaly detection and load forecasting imple-
mented using TensorFlow are given. As it can be noticed observing the achieved results, both data analysis mechanisms have
satisfactory performance in cases of different training/test set ratios, performing better in case of larger training sets.

Training set size Test set size  Correct/Test size [%]

75 150 89, 93

100 150 92, 58

125 150 95, 17

Table 2. Anomaly Detection Results

Input: sensor measurements, adaptation plan

Output: commands

Steps:

1. Retrieve all the adaptation rules from the adaptation plan;

2. Analyze sensor data;

3. Semantically annotate results;

4. For each of the adaptation rules

5. If(condition is true)

6. then generate command targeting adaptation_rule.targetDeviceId;

7. end for each

8. end
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Training set size Test set size Relative error [%]

75 150 13, 51

100 150 12, 89

125 150 12, 21

Table 3.  Load Forecasting Results

In Table 4, an overview of the achieved processing times for data analysis and code generation are shown for various cases of
adaptation plan length (in number of rules) and consumer devices involved. Each rule targets a distinct device, while data
analysis was performed for measurements collected during 300 seconds. For data analysis, the processing times for anomaly
detection considering both the CPU and GPU execution are provided (70% training, 30% test set). According to the results, the
time spent for data analysis increases with larger number of devices involved, as more devices generate larger amount of data.
Moreover, the time needed for code generation also increases, as number of SPARQL queries that will be executed during the
code generation process depends on number of adaptation rules involved. Another observation is that the code generation time
for the same number of rules may vary, as it depends on number of adaptation rule conditions that are true, so the commands will
be generated only then, as in the second and third case shown in Table IV. Finally, the execution of anomaly detection is up to
3 times faster when executed on GPU, instead of CPU, while the speed-up increases with amount of data, which is beneficial
when adaptivity has to be performed in near real-time for huge number of devices.

Number
of rules

Data analysis
(CPU) [s]

Data analysis
(GPU) [s]

Code
generation[s]

1 1, 74 0, 93 1, 62

2 2, 68 1, 06  2, 44

2 2, 64 1, 09 1, 91

3 3, 71 1, 24 3, 08

Table 4. Processing Time Overview

5. Conclusion and Future Work

In this paper, the enabler technologies for enabling adaptivity in IoT-based Smart Grid architecture were discussed and some
implementation and evaluation aspects presented. It can be concluded that IoT-based technology has huge potential in this use
case. While the achieved results in case of anomaly detection are comparable to a similar solution [4], the load forecasting
performs slightly worse compared to [6, 7]. It can be concluded that more data was needed for training in case of load forecast-
ing. However, our plan is to further work on the implementation, considering the adoption on Big Data technologies, evaluation
on larger data sets, optimization of real-time performance, security and evaluation of various implementation variants.
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