
                Journal of Information Organization Volume   13   Number   2   June   2023  43

ABSTRACT: Kalman Filter Extension is used to fix the object position in the space for which we added sensor data and
developed proper algorithms.  The two filters, Non-linear Kalman and Linear are employed to study. To fix the magnetometer
data, the external magnetic disturbances rejection is studied for which algorithms are used. For accelerometer data, a low-
pass filter is used. Both stationary and dynamic platforms are considered to measure the rotation angles of the car seats.
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1. Introduction

Object position determination is the major task of the human life and it is solved by different methods. Nowadays, the outdoor
position may be obtained easily by using the global navigation positioning systems (GNSS) [1]. The indoor navigation task also
may be solved using inertial navigation systems (INS), beacons, etc. [2], but sometimes there is a necessity to
combine the navigation systems to overcome some specific disadvantages, such as the integration error in the INS systems,
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which decision is proposed by Rudolf Kalman, [3] known as Kalman filter. This filter is also used to combine the sensor data from
different measurement systems. The alternative of Kalman filter is the complementary filter [4,5] which may be implemented
easily in the embedded system due to its low complexity. It uses the constant values for the low and high pass filters, while the
Kalman filter calculates the sensor noise and dynamically changes these values. The Kalman Filter is, however, known to
provide an optimal estimate of the unknown state for a linear dynamic system with Gaussian distribution.

The current paper discusses the Kalman filter algorithm which is used to calculate the rotation angles of the kid car seat. The
algorithm verification is shown in the stationary and moving situations and the results are commented. By integrating data
from accelerometers and gyroscope, mounted on the car seat, we were able to predict and calculate its position.

2. Algorithm Description of the Data Combination

The rotation angles calculation of the object (kid car seat) is accomplished by 9DoF inertial measurement system, which is
capable of reading the linear accelerations and angular velocities and magnetometer data too. The data of these nine degrees of
freedom are combined to calculate the three Euler angles in the inertial coordinate system. The transformation of the coordinate
system to the inertial one is based on the rotation matrix Rxyz [6].

The combination of the sensor data is made using the Kalman algorithm, which is well known and is implemented in many
systems [7,8]. The object mathematical model assumes that the actual measurement at any time is related to the current state
and the system model may be written as [9]:
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The practical implementation of the Kalman Filter is often difficult due to the difficulty of getting a good estimate of the
noise covariance matrices. Several methods for the noise covariance estimation have been proposed such as autocovariance
least-squares (ALS) technique. The predicted (a priori) state estimate is calculated by (4):
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In the same time the Q matrix is used to obtain the predicted (a priori) error covariance          :

(5)

 It is better to choose the smaller Q values and bigger R values if we want to decrease the state variations.

The system model for calculation of the Euler angles with quaternions (q) is given by the equation (6):
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where p, q, r denote the angular velocities from the gyroscope measurements.

The transition matrix is given by (7):
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The quaternion values are calculated from the Euler angles according to the equation (8):
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If the Euler angles are used as state estimates the nonlinear model is used according to the equation (9) and (10):
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The difference between the above model and the linear model(1,2) is that the linear matrix equation has been changed into
nonlinear form as following  Ax

k 
 to  f (x)  and Hx
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 to hf (x). To implement an extended Kalman filter the Jacobian of equation (9)

must be known. This is defined as following (11):
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In both system models, the Euler angles, determined by the accelerometer data, becomes the measurement in Kalman filter.
They are stable over time but substantially deviating from the actual values, especially when additional linear accelerations
affect them (12):
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In both system models, the Euler angles, determined by the accelerometer data, becomes the measurement in Kalman filter.
They are stable over time but substantially deviating from the actual values, especially when additional linear accelerations
affect them (12):
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 are accelerometer data, g – gravitational acceleration.

If the system is stationary or moving with  constant velocity, the equation (12) becomes as simple as following (13):
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The angles  and  are calculated according to (14) and (15) [6]:
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The  parameter is included in the equation to prevent the null values division. The  angle calculation cannot be estimated
from the accelerometer data so the magnetometer data have to be used. It is calculated according to the equation (16) [6]:
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where Y
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data values, corrected by the inclination angles by equation (17) and (18)[10]:
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The measured magnetometer data are distorted by the soft and hard iron effects so it is necessary to calibrate the data. The
magnetometer data calibration is accomplished by the algorithm described at [11]. The six data values are used for X value
calculation according to the equation (19):
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(19) X =

The chosen data values are also used for parameter Y estimation according to the equation (20):

(20) Y =

The results from the equations (19) and (20) are used for parameter  estimation according to the equation (21):

(21)

The calculated  values then are used for calculation of the magnetometer data disturbances (22):

(22)

The obtained values are subtracted from the measured values and the calculated ones are used for the Euler angle estimation.

3. Experimental Results

The validation of the proposed algorithm is accomplished with/via static and dynamic measurements with the MEMS inertial
sensor ADIS16405 [12], produced by Analog Devices. The first test checks the static performance of the algorithm and
compare the seat rotation angles with the measured ones.The test is also used to calibrate the magnetometer and compensate
the soft and the hard iron effects. The calculated Euler angl es before and after magnetometer calibration are shown at Figure
1 and Figure 2. The magnetometer curves in the XY coordinate systems before and after calibration are shown at Figure 3.
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Figure 1. Euler angles before calibration
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Figure 2. Euler angles after calibration

Figure 3. Representation of x
h
 and Y

h
 magnetometer data before and after calibration

The dynamic test is accomplished while the inertial module is installed on the kid car seat which is specially designed for the
measurements [13,14]. On the inertial module is mounted the mannequin with the size and weight of a child (Figure 4).

Figure 4. The inertial sensor position on the kid car seat
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Figure 5. Experimental recorded track

The dynamic test is accomplished on a mountain road with lots of curves. The test road pieces are chosen in such way that the
road direction is preliminary from north to south and the road curves are from east to west. The track and the speed are
recorded with GPS receiver which is integrated in the inertial system design. The experimental track is shown at Figure 5.

The Euler angles are estimated from the linear accelerations, which are passed through low pass filter with cut-off frequency
of 20Hz. Lower cut-off frequency lead to the increased latency of the Kalman filter output towards the acceleration data.
Figure 6 represents Õ angle values when the cut-off frequency is changed from 5 to 20Hz.

Figure 6. angle value after low pass filtering with cut-off frequencies from 5 to 20Hz

The results of the Euler angle estimation are shown at Figure 7.

The  Euler angle values varies from 0 to 360 degrees due to the road curves and the travelling direction, which is constantly
changed. We are interested in the  Euler angle because it represents the rotation angle of the kid car seat, which movement
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Figure 7. Estimated Euler angles

is provoked by the lateral accelerations in the curves. The frequency of rotation of the kid car seat is also point of interest
because the values represent the travelling comfort [15]. The estimated values of  Euler angle are shown at Figure 8.

The Euler angles are calculated upon the quaternions model and the results are compared with the EKF ones and can be seen
represented at Figure 9.

It shows that there is no apparent difference in the angle values obtained using the two different models.

The model parameters are also studied for the Euler angle calculation. The first test (Figure 10, R= 0.0001225, Q = 0.16) used the
noise parameters, which are estimated in our previous paper [16]. When R decreases and Q increases, the contribution of the
measurement to the estimate increases. In this case the results match the actual deviation of the kid car seat.

Figure 8. Estimated  Euler angle values (rotation according to X kid car seat axis)
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Figure 9. Comparison of the calculated  angle with EKF and quaternions

Figure 10. Euler  angle depends from Q and R values

4. Conclusion

The obtained results show that the nonlinear Kalman filter model and the quaternion one represent the similar angle values.
The proposed algorithm for the magnetometer calibration and data filtering are adequate. The chosen R and Q values, based on
the sensor noise estimation, are included in the model and the results are compared with the real angle values. R and Q values
are also studied to the model performance. Better results are obtained when R and Q values correspond to the values of the
sensor noise estimation. The cut-off frequency of the low pass filter, which is applied to the accelerometer data, is also studied
and it is shown that the lower cut-off frequency lead to the increased latency of the Kalman filter output towards the acceleration
data. In the same time, higher cut-off frequency lead to the increased noise levels. Therefore the cut-off frequency of 20Hz is
chosen.
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