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Sample Rate Conversion of Arbitrary Non-integer Factors
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ABSTRACT: The farrow structure allows for flexible filtering, adjustable fractional delay filters, and SRC (Sample Rate
Conversion) by arbitrary non-integer factors. It has been noted in recent publications that it is suitable for band passing SRC.
When passband centres are placed above the input sampling rate, the complexity of the interpolator becomes approximately
proportional to the centre frequency. We propose a novel construct, the modified Farrow structure, which allows for arbitrary
high centre frequencies without increasing the prototype Farrow filter’s Polynomial degree. Modulated functions are con-
structed as low-order polynomials to avoid the expensive generation of trigonometric functions.
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1. Introduction

Discrete-time filter structures are used in many applications to interpolate new sample values at arbitrary points between the
discrete-time input samples [1], [2]. In those cases, it is beneficial to use polynomial-based interpolation filters. The  advantage
of the above system lies in the fact that the actual implementation can be efficiently performed by using the Farrow structure
[1] or its modifications [2], [3]. In [2], [3], several design methods for polynomial-based interpolation filters have been
developed in the time and in frequency domain. Using the frequency domain approach, it is possible to design the polynomial-
based filter realized in the form of Farrow structure with an arbitrary baseband (zero center frequency) frequency response.



Journal of Networking Technology   Volume  14    Number   4    December   2023 102

However, there are some applications where there is a need for a bandpass interpolation. Some example applications are:
bandpass sampling, bandpass sampling rate conversion, rational filter banks, etc [4], [5]. It has been shown in [6], that if the
center frequency of the bandpass interpolation filter is smaller than the half of the sample rate, for the given passband and
stop-band requirements, the filter order does not increase compared to the baseband filter with the same requirements. The
design methods presented in [2] and [3] can be effectively used for the design of bandpass polynomial interpolation filters
with minor modifications [6].

However, when the center frequency is (far) higher than the input sample rate, the polynomial degree would become
approximately proportional to the centre frequency. Therefore, we propose a new construct, the modulated Farrow structure,
which allows arbitrarily high centre frequencies without increasing the polynomial degree of the lowpass prototype Farrow
filter. The modulating function is constructed as a low-order polynomial in order to avoid costly generation of trigonometric
functions.

2. Polynomial Modulation

Bandpass filters can be implemented with lowpass filters as building blocks by applying frequency translation to the signal
before and after filtering which is equivalent to multiplying the impulse response by cosine whose frequency is equal to the
center frequency of the bandpass filter [4]. While this permits arbitrary and variable centre frequencies, generation of costly
cosine function is needed, this increases the implementation complexity. The same principle can be applied to the case of
polynomial-based filter, as well.

In order to minimize the implementation complexity, it may be beneficial to approximate the modulating function with a
piecewise polynomial. The modulating polynomial is chosen first, and the modulation is taken into account in the optimized
subfilter coefficients. The non-idealities of the modulating function can be compensated by the filter. This eliminates the
need for costly (co)sine generation.

Using Taylor polynomials a function can be approximated as closely as desired by a polynomial provided that the function
posses sufficient number of derivatives [7], [8]. Based on the definition, the modulating cosine function cos(0t) can be
approximated with following polynomial:

(1)

The above equation can be expressed in more suitable way for practical realization:

(2)

where

(3)

Ma=2*Ja+1 is a polynomial degree which is related to the approximation error, and t[0,T). Here, T is the input sampling
interval Tin in the interpolation case, and output sampling interval Tout in decimation case. Thus, we have obtained a polynomial
that approximates the cosine function over one polynomial segment. It is possible to generalize the approximation of the
cosine over a longer interval by making it a piecewise having N polynomial segments, and in each segment the order of the
polynomial is Ma. The piecewise polynomial approximation of the cosine can be written as:
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(4)

where

(5)

Here, a(n) determines the initial phase of the approximated cosine function in each polynomial segment. The value of a(n)
can be selected in such a manner that overall approximated cosine function is symmetric around N/2, a(n) = n + 0.5, for n = 0, 1…
N-1. In this way, the impulse response of modulated lowpass prototype filter is also symmetric. In the actual implementation, the
symmetry can be exploited in a similar way as for polynomial-based filters, the polynomial in t can be transformed to polynomial
in (2t-1) thus we obtain

(6)

The modulated impulse response of the polynomial based filter is obtained by multiplying the impulse response of the
lowpass prototype filter by cosine:

(7)

yielding to:

(8)

The modulated impulse response is a piecewise polynomial with the same number of polynomial segments as the lowpass
prototype filter and polynomial order of M+Ma in each segment. The polynomial order increases as the central frequency of
the passband increases. Furthermore, the obtained bandpass filter is not configurable, as the new set of coefficients is
calculated for different value of passband central frequency.

If we calculate the output sample according to hybrid analogue/digital model, the lth output sample can be expressed, after
some manipulations, in the following form [2], [3]:

(9)

where

(10)

Alternatively, the lth output sample can be expressed as:

(11)

with
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(12)

Here l(n) is a modulating term. There are altogether N modulating terms l(n), one for each polynomial segment. Equations
(12) and (13) can be used to define a bandpass modulated modified Farrow structure, which is shown in Figure 1. The
structure can be used for different passband central frequencies, with a single prototype filter.

3. Special Cases of Modulated Farrow Structure

There are several special cases of polynomial modulation, in which the process of building the bandpass Farrow structure can
be further simplified. These special cases are derived from mutual relation between the desired central frequency f0= 0/2
and the sample frequency of the bandpass filter Fs=1/T. If the central frequency is an integral multiple of the sample frequency,
integral multiple of the half or quarter of the sample frequency then the modulating term l(n) has special values as shown in
a sequel.

The most straightforward case of modulated Farrow structures is that with the modulating frequency of kFs. All that is
needed is to multiply the output of the lowpass Farrow structure with a cosine at kFs, i.e., when the modulation frequency is
an integral multiple of Fs, the cosine generation is simplified by:

(13)

Therefore, bm depends only on polynomial order m, and integral multiple k, reducing (12) to

(14)

Figure 1. The modulated modified Farrow structure
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Figure 2. depicts the modulated Farrow structure for modulation frequencies kFs. Impulse response modulation at kFs is
attained simply by implementing modulation of Farrow structure by l .

When the modulation frequency is an odd multiple of Fs/2, the modulating function has the same shape in every polynomial
segment, but its sign alternates between adjacent segments. The calculation of the modulating term reduces to

Figure 2. The modulated Farrow structure for center frequencies kFs.

and, thus

(15)

(16)

Figure 3. illustrates the modulated Farrow structure for modulation frequencies (2k+1) Fs/2. As above, modulation at
(2k+1)Fs/2 is attained simply by multiplying by l(n). and by alternating the sign of coefficients cm(n) for odd n.

Let us consider modulating the impulse response by a cosine at the frequency (2k+1)Fs/4. In each polynomial segment, the
modulating function has a similar shape:(1) between the nth and (n+2)th segment, the shape is the same but the signs are
opposite; (2) adjacent segments are timedomain mirror images of each other with the same or opposite signs. The modulating
functions can be written as

After applying series of trigonometric identities, the coefficients bm(n) are reduced to:

(17)

(18)

for odd n, and

(19)
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for even n. These coefficients can be further simplified based on the value of modulating integer k as shown in a sequel: for
n even, k even in (20); for n even, k odd in (21); for n odd, k even in (22); for n odd, k odd in (23);

(20)

(21)

(22)

Figure 3. The modulated Farrow structure for center frequencies (2k+1)Fs/2.

(23)
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(24)

In this way, two interleaved Farrow structures are obtained:

(25)

In each interleaved Farrow structure the sign of coefficients is determined by n and k, and the output is multiplied by
corresponding value of l0 or l1. Figure 4. shows the modulated Farrow structure for modulation frequencies (2k+1)Fs/4.

It is possible to see from (20)-(23), that the values of coefficients bm(n) in this case depend only on the polynomial order m,
and sign is determined by n, and k. The main consequence is that all bm(n)s are the same for given m, while the sign alternates
according to (20)-(23). In order to reduce the number of operations needed for modulation, it is beneficial to decompose the
mth-degree subfilter into two polyphase branches:

(26)

In this way, two interleaved Farrow structures are obtained:

(27)

In each interleaved Farrow structure the sign of coefficients is determined by n and k, and the output is multiplied by
corresponding value of l0 or l1. Figure 4. shows the modulated Farrow structure for modulation frequencies (2k+1)Fs/4.

Figure 4. The modulated Farrow structure for center frequencies (2k+1)Fs/4
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4. Design Examples

In order to illustrate the effectiveness of the proposed modulation method for the design of bandpass Farrow structure we use
several illustrative examples. The first step is the design of the lowpass prototype filter with passband edge fp= 0.3Fs, stopband
edge fs = 0.5Fs, required stopband attenuation As = 60dB, and passband tolerance p=0.1. The filter, with performance shown in
Figure 5., is designed using minimax design of [2], having N = 14 polynomial segments, and polynomial degree M = 4.

The next step is to build the bandpass filter by modulating the obtained lowpass prototype. We use two example cases, with
central frequencies of 3Fs/4 and 2Fs. The corresponding polynomial-based modulation function that approximates cosine
has the same length N = 14, and polynomial order Ma= 7 for 3Fs/4, and Ma=19 for 2Fs. According to Section 3, there are 10
additional multiplications to produce modulation by frequency 3Fs/4, and also 10 to produce modulation by frequency 2Fs.
Frequency domain performances of modulated bandpass filters are shown in Figures 5 and 7 respectively. Though there is a
slight degradation of performance in stopband, the filtering requirements can be met by over designing the lowpass prototype
filter.

Figure 5. The frequency response of the lowpass prototype.

Figure 6. The frequency response of the filter modulated by 3Fs/4.
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5. Conclusion

We have presented a modulated Farrow structure, which allows band-pass realization with arbitrarily high centre frequencies
without increasing the polynomial degree of the lowpass prototype Farrow filter. The modulating function is constructed as
a low-order polynomial in order to avoid costly generation of trigonometric functions. The non-idealities of the modulating
function are then mitigated by taking them into account when optimizing the filter coefficients.
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Figure 7. The frequency response of the filter modulated by 2Fs


