
Fault Tolerant Power Consumption Analysis Measures in
Intelligent Systems

Sandra Djosic, Milun Jevtic and Milunka Damnjanovic
The University of Nis, Faculty of Electronic Engineering
Aleksandra Medvedeva 14, 18000 Nis, Serbia
{sandra.djosic@elfak.ni.ac.rs}
{milun.jevtic@elfak.ni.ac.rs}
{milunka.damnjanovic@elfak.ni.ac.rs}

ABSTRACT

In this paper, we look at power consumption for fault-tolerant real-time systems.
Specifically, we look at real-time systems where fault tolerance is reached by
repeatedly running a task affected by the transient fault with time redundancy.
We conduct a power consumption analysis for real-time fault tolerant systems
using a heuristic-based dynamic voltage and frequency scaling algorithm that we
developed. Simulation results demonstrate that our algorithm can be used
successfully for power consumption based on fault tolerance analysis.

Keywords: Dynamic Voltage And Frequency Scaling, Fault Tolerance, Real-time
Systems

1. Introduction

Real-time systems (RTSs) have been designed in order to be safe and extremely
reliable. They are usually realized as real time systems with the ability of tolerating
some faults. A fault-tolerant RTS has to ensure that faults in the system do not
lead to a failure. Faults could be transient, permanent or intermittent faults.
Among these, the transient faults are much more common than faults of other
two types. Transient faults have the feature that they occur and then disappear
so fault tolerance can be achieved running the task affected by a transient fault
again (i.e. re-executing the task). It means that time redundancy can be used as
fault-tolerance techniques by using free slack time in the system schedule to
perform recovery executions, [1], [2].

Energy efficiency is also crucial to many real-time systems. Dynamic Voltage
and Frequency Scaling (DVFS) is the most popular and widely deployed technique
for reducing power consumption of processors [3], [4], [5]. Nowadays, DVFS is
a commonly used technique for energy management and is supported by many
commercial processors [6].

Fault tolerances through time redundancy as well as energy management through
frequency and voltage scaling have been well studied in the context of real-time

Received: 3 September 2023
Revised: 6 December 2023

Accepted: 19 December 2023
Copyright: with Author(s)

DLINE JOURNALS https://doi.org/10.6025/jes/2024/14/1/10-16

Journal of Electronic Systems Print ISSN: 2278 – 652X
Online ISSN: 2278 – 6538

dline.info/jes 10

dline.info/jes 11

systems. But simply applying fault recovery techniques and energy minimization techniques one
after the other results in inferior quality. These techniques use free slack time and since free slack
time is a limited resources, it is obvious that more slack time for DVFS technique means less time
for fault tolerance, and vice versa. Therefore, there is a tradeoff between low energy consumption
and high fault-tolerance. In accordance with that, we designed one heuristic-based DVFS algorithm
and used it for RTSs analysis. The analysis refers to the power consumption and fault tolerance
through time redundancy for different number available operating frequency levels of the processor
used in the RTSs.

The rest of the paper is organized as follows. The first part of Section 2 describes real-time system,
power, fault and feasibility models we used in the paper. The second part of Section 2 introduces
our proposed heuristic-based DVFS algorithms. Section 3 gives the simulation results and finally,
Section 4 presents our conclusions.

2. Models and Algorithm Description

2.1. Models Description
For a system model, we assume one uniprocessor RTS with variable processor’s operating frequency
fj (j = 1, ..., m) where fj <fj+1. Changing the operating frequency of the processor the voltage also
changed and it could be switched between m values. This system can be used for one real-time
task set execution. We assume a set of n periodic real-time tasks, �= {�, ...,�n} where each
tasks are defined by a period Ti, worst case execution time (WCET) Ci , deadline Di and priority pi.
We assume that Di  Ti , for i = 1, 2, ..., n. The WCET of real-time tasks corresponds to executing the
task at the maximum frequency fm. For simplicity, we assume that the WCET of a task scales
linearly with the processing speed. So, if we scale the operating frequency by a factor  , then
WCET must be scaling by factor 1/�, i.e.

Ci (fj) = Ci (fm) fm / fj .

Power consumption of an active processor can be modeled as

PA(f) = Pd (f) + Pind ,

where Pd(f) and P in d are frequency dependent power and frequency independent power respectively
[7]. Frequency dependent power is

Pd (f) = V 2(f) Cef f

where V is supply voltage and it is a function of operating frequency, Cef is the switch capacitance
and f is the operating frequency. Beside power, for DVFS techniques energy is equally important
and it is defined as the integral of power over time.

We assume that faults can occur during execution of any task. We consider transient faults and
assume that the consequences of a fault can be eliminated by simple reexecution of the affected
task at its original priority level and at its original opearting frequency. The re-execution of the
corrupted task must not violate timing constraints of any task in .

For checking the feasibility of fault tolerant real-time task set we use the response time analysis
(RTA). In the RTA, the fault-tolerance capability of a RTS is represented by a single parameter, TF,
which corresponds to minimum time interval between two consecutive faults that the RTS can
tolerate. More about RTA can be found in [8], [9]. The basic equation characterize for RTA is
Equation (1).

Ri
n+1 = Ci + 

jhp(i)

Ri
n Ri

n

Tj TF

Cj + max (Cj)jhp (i)�i
(1)

dline.info/jes 12

With Equation (1) the response time Ri of a task i could be calculated. This equation has three
main addends. The first is WCET Ci for a task i. The second presents interference due to preemption
by higher priority tasks. We use hp(i) to denote the set of tasks with higher priorities than i,
hp(i)={i ���pj > pi}. The third addend refers to possible faults in the system. If we assume that

inter-arrival time between faults is TF then there can be at most faults during the response

time Ri of task i. Since these faults could occur during the execution of task i or any higher priority

task which has preempted i, each fault may add to the response time of task i. So,
the third addend in Equation (1) presents an extra time needed tasks recovery due to faults.

Since Ri appears on both sides Equation (1) is recurrence relations which starts with Ri
0 = Ci . The

solution is found when Ri
n+1 = Ri

n. If during the iteration process we get that Ri
n+1 > Di then task i

is infeasible and iteration process must be terminated.

2.2. Algorithm Description
In order to solve the tradeoff problem between low energy consumption and high fault-tolerance,
we propose one heuristic DVFS algorithm. The proposed algorithm has to find appropriate execution
frequency for each task, from the real time tasks set, such that energy consumption is minimal
when faults are presence. Figure 1 gives the algorithm in pseudo code form.

For this purpose we created a heuristic-based algorithm to The RTA is the basic of our proposed
algorithm. This analysis is used to guarantee feasibility of real-time tasks set and fault tolerance.
The input parameters for the algorithm are:

�frequency fj (j = 1,..., m) where fj < fj+1 and m is number of frequency levels;

�characteristics for all n real-time tasks from the set: period Ti, worst case execution time Ci,
priority pi and deadline Di, for i = 1,..., n;

�minimum time interval between two consecutive faults TF.

Input: operating frequency levels fj (j=1..m),
characteristics for n real time tasks (Ci , Di , Ti , pi),
fault tolerant constraint (TF)

(1) for each Task in TaskSet set Task’s_Freq to fm and set Task’s_Key to true;

(2) repeat step (3) to (7) until there are true Task’s_Key in the TaskSet;

(3) for each unlock Task in TaskSet do

(4) temporarily set Task’s_Freq to Lower_Task’s_Freq;

(5) if new TaskSet is not feasible

(6) then set Task’s_Key to false;

(7) else calculate �Power as Power(Task’s_Freq) – Power(Lower_Task’s_Freq);

(8) find Task with maximum �Power and set Task’s_Freq to Lower_Task’s_Freq;

Output: TaskSet with new frequency assigne to each Task

Figure 1. Pseudo code of the proposed algorithm

dline.info/jes 13

The algorithm starts with assigning the maximum operating frequency, fm, to each real-time task,
step (1). Also, at the beginning, all tasks are allowed to change the frequency - we say that all
tasks are unlocked. An iteration of the algorithm decreases the frequency of one task for one
frequency level. The chosen task is one for which the frequency decrement yields maximum
power reduction among all unlocked tasks provided that tasks set remains feasible. To find such
task, the algorithm checks all currently unlocked task. For example, frequency index of one unlock
task i is temporarily decreased for one frequency level, i.e. from fj to fj-1, step (4), and feasibility
of task-set is tested using Equation (1), step (5). If task set is not feasible, i is locked, step (6).
Otherwise, if task-set is feasible, the difference between power consumption of i at lower (fj-1)
and higher (fj) frequency is calculated, step (7). Then, i’s frequency is changed back to fi. After
checking all tasks, one that remains unlocked and provides the maximal power reduction is selected,
and its frequency index is decremented, step (8). Additionally, the selected task is locked if its
new frequency equals 1, i.e. corresponds to the lowest execution frequency, f1 . After that, the
algorithm enters the next iteration. The algorithm finishes when there are no more unlocked
tasks. The frequency assignment to each task is algorithm’s output. We previously proved the
proposed heuristic algorithm and more about that can be found in [10].

3. Simulation Results

We realized simulator based on our proposed heuristic DVFS algorithm. The input parameters of
the simulator are number of real-time task and their real-time characteristics: minimum inter-
arrival time Ti , worst case execution time Ci on maximum operating frequency fm, deadline Di and
priority pi. Also, input parameters are processor’s voltage and frequency levels and fault constraints
TF .

i

Nav_Status

BET_E_Status_Update

Display_Stat_Update

Display_Keyset

Display_Stores_Update

Nav_Steering_Cmds

Tracking_Target_Upd

Display_Hook_Update

Display_Graphic

Nav_Update

pi

1

2

3

4

5

6

7

8

9

10

Ti =Di (ms)

1000

1000

200

200

200

200

100

80

80

59

Ci (ms)

1

1

3

1

1

3

5

2

9

8

Table 1. Tasks set from generic avionics platform

We performed simulations with a number of synthesized real-time task sets and few real-world
applications. The characteristics of one real-world application are summarized in Table 1. It is a
task set taken from the Generic Avionics Platform (GAP) used in [11]. For the processor’s frequency
levels we used data for Transmeta Crusoe processor from [12]. The relevant parameters for the
processor are listed in Table 2.

dline.info/jes 14

CPU Frequency (MHz)

300

400

533

600

667

Voltage (V)

1.2

1.225

1.35

1.5

1.6

CPU Power (W)

1.3

1.9

3

4.2

5.3

Table 2. Processor Frequencies, Voltages And Power

First, we assumed that there were no faults in the system. With this assumption, we used our
proposed algorithm to find the appropriate execution frequencies for each real-time task that lead
to the maximum energy savings. Figure 2 shows the simulation results for GAP task set and
Transmeta Crusoe processor. We performed simulation for different number of available frequency
(voltage) levels. That is represented on the x-axis where 2, 3, 4 and 5 frequency levels include set
of frequencies (667MHz, 300MHz), (667MHz, 600MHz, 300MHz), (667MHz, 600MHz, 400MHz,
300MHz), (667MHz, 600MHz, 533MHz, 400MHz, 300MHz) respectively. The y-axis represents
the power reduction calculated in percents. This reduction is presented as power saving with
respect to the power consumption at maximum frequency.

Figure 2. Power consumption according to number of frequency levels in the absence of faults in the RTS

It can be concluded that power reduction is better when more voltage levels are included. The
maximum energy savings is 42.8% for 5 levels and the minimum savings is 31.5% for only 2
frequency levels. The energy reduction is significant even for low number of frequency levels and
this clearly shows the effectiveness of our proposed algorithm.

Our next step, in the simulation process, was to consider possible faults appearance in the RTS.
This is represented by a single parameter, TF, which corresponds to minimum time interval between
two consecutive faults that the RTS can tolerate. For the input parameters of the simulator we
used the same task set and the same processor. Figure 3 shows the simulation results for different
number of available frequency levels. We used the same sets of frequencies (667MHz,300MHz),
(667MHz, 600MHz, 300MHz), (667MHz, 600MHz, 400MHz, 300MHz), (667MHz, 600MHz, 533MHz,
400MHz, 300MHz). The x-axis of the Figure 3 represents the ratio of TFmax to TF. TFmax is
minimum time interval between two consecutive faults that the task set can tolerate on maximal

dline.info/jes 15

executing frequency and TF is input simulation parameter. This axis represents the normalized TF
value which is proportional to fault tolerance of the task set. As fault tolerance proportional to
time redundancy this axes also could represent free slack time in the systems. The y-axis represents
the power saving with respect to the power consumption at maximum frequency calculated in
percents.

According to number of available frequency levels the simulation was done for four possible
scenarios. All four scenarios indicate the same fact that power reduction leads to less fault tolerance
and vice versa. Now due to simulation results, we can better perceive the tradeoff between power
consumptions and fault tolerance. For example, let’s suppose that power reduction demands are
between 40% and 45%. It can be seen, from the Figure 3, that processor with 4 or 5 frequency
levels could fulfill these demands. Also, fault tolerances vary for the given power reduction interval.
The best is to choose one with maximal tolerances.

Also, it can be concluded that power reduction is better when more voltage levels are included.
With larger number of frequency levels there are more possible task-frequency mapping, so the
chance of finding solutions with lower energy becomes higher.

Figure 3. Power consumption according to fault tolerance for different number of frequency levels

4. Conclusion

In this paper the power consumption of the real-time systems according to fault tolerance through
time redundancy analysis are given. The analysis is based on the heuristic DVFS algorithm which
we realized. The proposed algorithm offers the possibility to study the trade-off between energy
efficiency and fault tolerance for real-time task sets. Generally, this trade-off in discrete systems
is NP-hard, so the heuristic-based approach is imposed as possible solution for RTSs analysis.

On the basis of proposed heuristic-based algorithm we realized simulator. Our simulations results
show that power reduction is better when more operating frequency levels are included. This is
valid for the case of the absence or the presence of the faults, in the RTS. Our opinion is that this
simulator could be successfully used in the RTS design process.

Acknowledgement

This paper is supported by Project Grant III44004 financed by Ministry of Education and Science,
Republic of Serbia.

dline.info/jes 16

References

[1] Jevtic, Dosic, S. M. (2004). Scheduling in RTS Using Time Redundancy for System Recovery
After Faults. In Proceedings of papers, Indel 2004 (pp. 146-149). Banja Luka.

[2] Jevtic, Dosic, S. M., Damnjanovic, M. (2011). Analysis of possibilities to overcome the transient
faults in real-time systems with time redundancy. In XLVI International scientific conference on
information, communication and energy systems and technologies, ICEST 2011, Proceedings of
Papers, volume 2 (pp. 417-420). Serbia, Niš.

[3] Woonseok, K., Dongkun, S., Han-Saem, Y., Jihong, K., Sang, M. (2002). Performance Comparison
of Dynamic Voltage Scaling Algorithms for Hard Real-Time Systems. In Proceedings of the Eighth
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02) (pp. 219–
228).

[4] Ahmadian, A. S., Hosseingholi, M., Ejlali, A. (2010). A Control-Theoretic Energy Management
for Fault-Tolerant Hard Real-Time Systems. In 2010 IEEE International Conference on Computer
Design (pp. 173-178).

[5] Santos, R. M., Santos, J., Orozco, J. D. (2009). Power saving and fault tolerance in real-time
critical embedded system. Journal of System Architecture, 55, 90-101.

[6] Intel Corporation. (2005). Intel PXA270 Processor Electrical, Mechanical and Thermal Specification
Data sheet. Retrieved from www.phytec.com/pdf/datasheets/PXA270_DS.pdf

[7] Dakai, Z., Melhem, R., Mosse, D. (2004). The Effects of Energy Management on Reliability in
Real-Time Embedded Systems. In: Proceedings of the 2004 IEEE/ACM International conference
on Computer-aided design (pp. 35-40).

[8] Jevtic Dosic, S. M. (2010). Analysis of Real-Time Systems Timing Constraints. In SSSS2010,
3rd Small Systems Simulation Symposium 2010 (pp. 56-60).

[9] Lima, G., Burns, A. (2003). An Optimal Fixed-Priority Assignment Algorithm for Supporting
Fault-Tolerant Hard Real-Time Systems. IEEE Transactions on Computers, 52(10), 1332-1346.

[10] Jevtic Dosic, S. M. (2012). Dynamic voltage scaling for real-time systems under fault
tolerance constraints. Accepted for publication in 28th International Conference on
Microelectronics, MIEL2012.

[11] Locke, C. D., Vogel, D. R., Mesler, T. J. (1991). Building a Predictable Avionics Platform in Ada:
A Case Study. In: Proceedings of IEEE Real-Time Systems Symposium (pp. 181–189).

[12] Zhang, Ying., Chakrabarty, Krishnendu. (2004). Task Feasibility Analysis and Dynamic Voltage
Scaling in Fault-Tolerant Real-Time Embedded Systems. In: Proceedings of Design, Automation
and Test in Europe Conference and Exhibition, Vol.2 (pp. 1170–1175).

