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ABSTRACT

In this paper, we attempt to review some of the most commonly used directional
transforms in terms of their use in image coding, as well as some
recommendations for improving their integration into full compression algorithms
in the future. We compare DDCTs, DWHTs, DDWTs and others to each other
based on image quality and execution time as well as memory efficiency when
used for image compression. These transforms are even more efficient when
used with some spectral coefficient rearrangement, as suggested for further
discussion.
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1. Introduction

One of the most popular and widely used idea in image coding (compression) is
the decorrelation of the intensity (color) values and possibly removing non-
significant portions of the transformed data for which the human eye is less
sensitive. Such classical techniques are the Discrete Cosine Transform (DCT)
used in JPEG compressors and Discrete Wavelet Transform (DWT) in JPEG2000
algorithm [1]. Due to their separability along horizontal and vertical direction it is
possible to apply them by using 1D masks reducing the amount of memory
needed in one computational pass and reducing the complexity of the code
structure, e.g. by using simpler look-up tables, etc.

Nevertheless of these enhancements there are large amount of cases where
inside the coded image exist periodic structures with one and the same pattern
alternating along an arbitrary direction different from horizontals and verticals,
e.g. stripes, slopes, etc. In these cases it is appropriate to apply a transform in
the same direction in which the dominant pattern spreads, that is a directional
transform.

Two large groups can be defined for the existing directional transforms – the
group of the linear orthogonal transforms [7-15, 17-22] and that of the directional
wavelet transforms [2-6, 16]. Here a brief review is made for
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both groups revealing their basic principle, advantages and range of applicability in image coding.
The rest of this paper is organized as the following – in section 2 a description of some of the most
popular directional linear orthogonal transforms is given followed by directional wavelet transforms
in section 3 and then in section 4 –conclusion is made.

2. Directional Linear Orthogonal Transforms

One of the simplest 2D-transforms is considered to be the Hadamard transform which is generalized
in [10] by using the following jacket matrix:

which later is used by Monadjemi and Moallem [17] for texture classification where the case of
sequency-ordered matrix of rank=3 (8x8 size) is applied to extract features from the image. They
achieved classification accuracy of 90.5 % against 90.0 % for approach using the Gabor filter and
only 77.5 % for the ordinary Walsh-Hadamard transform-like features. More than that, the execution
time for the Directional Walsh-Hadamard Transform (DWHT) is more than 10 times less than for
the Gabor filter which is considerable difference.

The more advanced transform – DCT – has been extended to its directional form by Zeng and Fu
[8, 15] by modifying the weighting factors according to:
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where N is the size of the transform vector and k – the current number of the direction the
transform is being applied. They also introduce a DC correction given in [15] by:

DC = N
k
 BQ (0, k) /  N

k 
 ,

2N-2

k=0
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where B denotes a column-vector with the spectral coefficients along the current direction.

Figure 1. Different DDCT modes: a) Diagonal Down-Left, b) Diagonal Down-Right, c) Vertical-Right,
d) Horizontal-Down, e) Vertical-Left, f) Horizontal-Up

(1)

(2)

(3)
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Depending on the direction type, e.g. diagonal down-left, diagonal down-right, etc. a certain amount
of modes is defined, usually 8. In Figure 1 some of the possible modes are given by their basic
direction. Combining the proper ones inside different images Zeng and Fu [15] obtain difference
for the Peak Signal-to-Noise Ratio (PSNR) from 0.5 to 1.5 dB compared to that produce by the
JPEG coder. This is true for static images compressed inside the range from 0.1 to 2 bpp where
the actual PSNR changes between 31 and 42 dB and the transform block size is fixed to 8x8
pixels. Similar experiment is done for motion pictures where the comparison is made between the
H.263 codec and its modified version using the DDCT. The compression ratios achieved are between
0.1 and 6 bpp for the different videos where PSNR varies between 28 and 45 dB. The advantage
of using DDCT is obvious along all the selected range where the PSNR dominance is from 0.1 to
1.5 dB.

Some simplified form of the DDCT using only diagonal directions is fully described in [7] showing
that it is actually optimal ortho normal transform because of the minimized object function
maximizing smoothness. Also it is proven that no separability can be achieved here and thus it
has no explicit functional form and any fast algorithm.

More productive attempts to speed up the DDCT are developed using lighting-based schemes. In
[11] Xu et al. use factorization of 8-point DCT into 35 primary operations formalized in:

Y = DCT (X) = O
35

 o O
34

 o...o O
2
 o O

1
 ( X ) ,

 

where X is the input vector and Y – the transformed one. There are two types primary operations
– the first represents direct connection between two pixels along a direction of processing and is
defined according [14] by:
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where  = 1 and  =  ; the second type is when direct path could not be selected and scale
parameter  is equal to  while  = 0 representing the crossings over mid-lying pixels (Figure 2).

Experimental results based on that approach are presented in [11, 12, 14] concerning the quality
comparison with the JPEG algorithm in the range from 0.5 to 2.5 bpp for lossy compression. The
PSNR for static images changes generally from 28 to 42 dB. In virtually all the cases DDCT
produces PSNR positive difference from 0.2 to 2.0 dB.

Drem eau et al. propose in [13] a new compression algorithm based on extended DDCT to
rectangular bases and then use bin tree segmentation along with dynamic programming for optimal
bases selection according to a rate distortion criterion. They compare their approach with the

(4)

(5)


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JPEG and JPEG 2000 coders. The test images compression ratios achieved are between 0.01 and
2 bpp while the PSNR is changing between 15 and 44 dB. All along this range their approach proves
to be better than both the other with between 1 and 5 dB.

Figure 2. Two types of pixel connections determining the primary type operations in the Fast DDCT: a) direct
and b) non-direct

Another approach employing the directional linear transforms is described in [9] for predicting
visual residuals in a large number of cases – moving vehicles, people and other objects in city
environment, landscapes, etc. The approach is tested with videos for both intra and inter coding
and the results show enhancement as for the total PSNR with 1 to 7 dB in comparison to AVC
coder. The direction in which the transform is going to be applied is found adaptively in each
frame.

Some considerable expanding of the directional transforms is done when considering the challenges
met in high resolution image coders design. In coders such as HD Photo overlapping is introduced.
In [18] similar technique is undertaken in combination with DDCT and the achieved results are
very promising. In a range from 0.1 to 7 bpp the PSNR benefit here is from 1 to 20 dB over the HD
Photo itself which is remarkable result.

In [19] a hierarchical class structure is introduced for the I and B-frames from video processed by
1D directional unified transform along with bidirectional intra prediction. There are 5 classes –
from A to E. The total rate gain only for the bidirectional prediction is 3.72 %, for the directional
unified transform – it is 5.64 % and the cumulative effect for both is 8.76 %. This scheme is
currently used by the Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T.

Some further development of the spatial prediction inside a video frame is done in [20] where
such an optimal prediction is looked for along with an adaptive transform by Han et al. Here a
hybrid transform is constructed alternating between sinusoidal transform regarding the frequencies
and phases of the harmonics which are precisely defined by the boundary effects between adjacent
blocks inside the frame. Inter-block correlations are exploited in an effective manner which is
proven by the fact that PSNR is higher by 1 to 5 dB over the classical approaches using DCT for
video in a range of 0.3 to 1.8 bpp compression ratios.

Some comparable results are presented in [21] and in [22] where sparse ortho normal transforms
and direction-adaptive partitioned block transform are introduced.

3. Directional Wavelet Transforms

The second large group of directional transforms includes the wavelet ones. All of them are based
on the classical wavelet transform realized by the lifting implementation (Figure 3) [6].
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Figure 3. One-pass link for the lifting scheme of the wavelet transform: a) analysis filter bank and b) synthesis
filter bank

The prediction P(z) and update U(z) filters are at the base of the analysis and synthesis filter
banks of the DWT. One of the most often filters used in this process are the 9/7 biorthogonal
wavelet filters described in [6] by:

P
1
 = +1.58613(1+z-1)

U
1
(z) = -0.05298(1+z+1)

P
2
 = -0.88291(1+z-1)

U
2
(z) = +0.44350(1+z+1)

s
1
 = 1.23017    s

2
 = 1/s

1

Here the odd samples are predicted by two neighbouring even pixels which are first averaged and
then the result is scaled while the even ones are predicted by averaging of two neighbouring odd
pixels of the prediction residual.

In [2] an efficient embedded coding is suggested for medical image compression using the contour
let transform. It is an extensive scheme which incorporates discrete contour let transform, laplacian
pyramid, directional filter bank, some post noise removal steps, optionally extraction of region of
interest (ROI), modified fuzzy C means segmentation, ROI based modified EZW algorithm ending

(6)
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with modified Huffman coding. The authors managed to raise the compression ratio from almost 2
times at relatively constant PSNR around 33 dB for the test MRI images in comparison to the
classic EZW approach and the SPIHT algorithm.

Another approach is the robust adaptive directional lifting wavelet transform used for image denoising
in [3] by Wang et al. The adaptive directional lifting is at the base of this method combining the
directional spatial prediction and the conventional lifting scheme which removes the spatial
redundancy leaved by the directional attributes. Additional novelty here is the classification at
pixel level and the interscale correlation which assure more robustness of the orientation estimation
algorithm. The transform itself is applied at pixel level and affecting only those pixels which
belong to texture regions of interest. The PSNR for filtered images is increased by 7 dB for some
typical for the practice cases.

In [4] some optimization is done for the directional lifting with reduced complexity. While the
major disadvantage of the direction-adaptive discrete wavelet transform is the need of exhaustive
search for the optimal prediction direction which makes it too complex in contrast to the classical
DWT, here lowering of this complexity is aimed. Prediction of the optimal direction is done using
gradient-based technique over a formal model of the prediction errors generated by the directional
lifting of input wedge image. Stevens et al. [4] proved practically that the prediction step remains
very simple and fast and the total complexity reduction has a factor of 11/4 preserving the
prediction accuracy. The difference with the original test images and the coded ones with exhaustive
search and with the optimized algorithm is about or less than 0.5 dB.

Similar algorithm to that described in [3] is presented in [5] by Chang and Girod. They use local
adaptation of the filtering directions to the image content based on directional lifting. The advantage
is that energy compaction is more for sharp image features. Additionally anisotropic statistical
image model is created for quantifying the gain achieved by adapting the filtering directions. In
such a way the authors claim that this algorithm is even more effective than similar ones developed
earlier and gain of up to 2.5 dB for the PSNR is achieved. No loss of image structure is reported in
the processed pictures.

Kamisli and Lim propose in [6] the directional wavelet transform to be used for prediction residuals
in the video coding process. They clearly distinguish the coding of prediction residuals of frame
intensities such as the motion compensation residual and the resolution enhancement residual.
Special attention is dedicated to the specific characteristics of the different prediction residuals
and how they differ from those of the image (frame) itself. Adapting the model for the directional
transforms used then produce better results than to unify one and the same algorithm for both.
The experiments carried out by Kamisli and Lim indicate that coefficient savings over the classical
DWT are between 1 and 40 % with an average close to 30% and considerably more in some cases
when DDWT model is adapted to the specific type of residual being processed.

4. Conclusion

In this paper a brief review is presented of the directional transforms used in image coding. They
can be divided in two large groups consisting of linear orthogonal transforms and wavelet approaches
respectively. A lot of combinations exist with other popular in practice techniques such as local and
holistic decompositions, lifting schemes, groupings based on spatial and time correlation, etc.
Depending on the application being developed all of them have their place in practice revealing
even broader opportunities for future study and addendum. Some especially perspective approach
is considered the hierarchical spectral multistage decomposition of the wavelet spectrum of an
image where classical linear orthogonal and wavelet transforms are combined together. Substituting
transforms represented of fixed matrix coefficients with adaptive ones such as Karhunen-Loev
transform will produce even more efficient algorithms as for the quality and compression ratios of
the coded images.
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