
Abstraction Techniques from Shape Analysis and
Program Analysis

Bjorn Wachter

Saarland University, Im Stadtwald
Saarbrucken, Germany
{bwachter@cs.uni-sb.de}

ABSTRACT

Automatic formal validation of systems with a large or infinite number of com-
ponents is challenging due to prohibitively large state space. Abstraction tech-
niques automatically build finite approximations of an infinite-state system
from which safety information about the original system can be derived. This
paper explores two abstractions: shape analysis, a technique derived from pro-
gram analysis. Data type reduction is a technique originating from model check-
ing. Until recently, we did not fully understand how shape analysis relates to
data type reduction. In this paper, we explain this relationship comprehen-
sively.

Keywords: Shape Analysis, Program Analysis, Abstraction Techniques, Data
Type Reduction

1. Introduction

We consider analysis techniques for parameterized systems such as protocols
where the number of participating processes is a parameter These models are
composed of processes that run in a parallel, interleaved fashion. The state of
the model consists of the local states of all constituent processes. Typically
one wants to verify first-order temporal properties, i.e. safety properties such
as mutual exclusion and liveness properties such as lack of starvation.

Finitary abstraction techniques generate a finite state model that approximates
the original infinite state model preserving certain properties. A finitary
abstraction technique has typically two constituents (1) a state abstraction
function that maps states of the original model to states of the abstract model
and (2) a method to compute transitions between abstract states, i.e. the
behavior of the abstract model. The finite state model is subject to reachability
analysis or to a finite-state model checker. Several finitary abstractions have
been proposed, such as counter abstraction [PXZ], canonical abstraction
[SRW02,Yah01] and data type reduction [McM00,DW03].

In previous work [Wac05], we have studied a model checking framework for

DLINE JOURNALS

PCA 2024; 13 (1)

https://doi.org/10.6025/pca/2024/13/1/1-6

Progress in Computer
Applications

Print ISSN: 2278 – 6465

Online ISSN: 2278 – 6473

dline.info/pca            1

Received:  2 October 2023

Revised: 29 December 2023

Accepted: 19 January 2024

Copyright: with Author(s)



dline.info/pca 2

Pr
og

re
ss

  i
n 

 C
om

pu
te

r  
A

pp
lic

at
io

ns
  V

ol
um

e 
 1

3 
 N

um
be

r  
1 

 M
ar

ch
  2

02
4

parameterized systems based on canonical abstraction that lends ideas from data type reduction.
Notably, data type reduction can be expressed in the same framework which is the topic of this
work.

1.1. State Abstractions
Predicate abstraction: Predicate abstraction approximates the state of a program by a tuple of
Boolean values that record if certain properties hold or not. For example, instead of storing an
integer variable x one only keeps track of whether or not x > 0 holds. Predicate abstraction has been
successfully applied to sequential programs.

Running Example: To demonstrate the abstractions, we consider as an example a parameterized
system in which each process p has a program counter PC( p) giving the process’ current control
location; a control location is a member of the set {a, b, c, d}. The example state consists of 9
processes.

Counter Abstraction: Counter abstraction [PXZ] assumes that processes are finite state, i.e.
there exists a finite set  of local states. For each local state  , a counter variable C is used
that records the number of processes currently in state . To obtain a finite abstract domain the
counters are typically cut off at two. An abstract state is a mapping C :  {0, 1,  2}. As the size of
the abstract state space is exponential in the size of , counter abstraction falls short of infinite or
very large local state spaces.

Figure 1. Counter abstraction

Figure 1 shows, left to the arrow, a concrete state with 9 processes that is abstracted to the
abstract state right of the arrow. The circles denote concrete processes and the letters in the
circles the value of the program counter. Note that in this example the set of local states is
 = {a, b, c, d}. The abstract state has four counters one for each element of . We think of the non-
zero counters as abstract processes, as they stand for concrete processes. We symbolize each
abstract process by a circle with a thin border if the counter is one, and by a circle with a thick
border if the counter has at least value 2.

Canonical abstraction: As opposed to counter abstraction, canonical abstraction is applicable to
systems where the local state space is infinite. Intuitively, canonical abstraction first abstracts local
state per process, then processes with the same abstract local state are collapsed to one abstract
process similar to counter abstraction. Local state is abstracted to a vector in which each position
encodes the truth of a predicate ranging over processes. Predicates have defining formulas that
may refer to local and global state, informally stated predicates can refer to the environment of a
process.

Canonical abstraction admit predicates ranging over pairs of processes. For the sake of brevity, we
omit these aspects of canonical abstraction for now.



dline.info/pca            3

Pr
og

re
ss

  i
n 

 C
om

pu
te

r  
A

pp
lic

at
io

ns
  V

ol
um

e 
 1

3 
 N

um
be

r  
1 

 M
ar

ch
  2

02
4

Returning to the running example, we define two predicate: one predicate at
a
( p) is true of a

process if it is in control location a, at
a
(p)  PC( p) = a, the other predicate atb holds for a process

that is is control location b, at
b
  PC( p) = b. Figure 2 depicts the concrete state and its canonical

abstraction. Abstract processes are two-component boolean vectors where the first components
stands for the truth of predicate at

a
 and the second component for at

b
. The process in location a is

mapped to the abstract process (1, 0), the one of the processes in location b is (0, 1) all other
processes have (0, 0).

Figure 2. Canonical abstraction

1.2. The Migration Problem
The previously described abstractions are sufficient to verify and infer invariants, yet, let alone,
too coarse to verify first-order properties. For example, they would not allow us to check if every
process will eventually reach location b. Consider the process in Figure 2 that is at control location
a. Let us assume it moves on to location b. In an abstract successor state, our process would
become part of the abstract process consisting of all processes being at location b. The example
shows that in two states that each have an instance of an abstract process like (0, 1) these two
instances may correspond to different collections of concrete processes. This is depicted in Figure
3. The problem is caused by canonical abstraction and counter abstraction collapsing processes to
abstract processes. By a state change, a process migrates between instances of abstract processes.
Abstraction takes away process identities and thus the means to track evolution of processes
across transitions.

Figure 3. Process migrating between abstract processes



dline.info/pca 4

Pr
og

re
ss

  i
n 

 C
om

pu
te

r  
A

pp
lic

at
io

ns
  V

ol
um

e 
 1

3 
 N

um
be

r  
1 

 M
ar

ch
  2

02
4

1.3. Abstraction for First-Order Properties
One solution to the migration problem is to reduce the first-order model checking problem to an
equivalent problem in which explicit tracking of process evolution is not necessary anymore. The
semantics of universal quantification is usually given inductively in terms of the semantics of the
subformula without the outermost quantifier. One combines the results of evaluating that
subformula under all the different possible values the quantification variable can take on. In the
domain of parameterized systems, that leaves us with an infinite number of cases to check. By
applying abstraction, the infinite number of cases can be reduced to a finite, tractable number of
cases.

Each subproblem only requires one to show the property for a distinguished process rater than for
all processes. The abstraction can be adapted such that it is centered around the distinguished
process, in that it retains more information pertaining to the distinguished process and abstracts
the other processes more coarsely, and further precisely models the relation of the other processes
to the distinguished process.

Note that properties which involve multiple quantifiers, like mutual exclusion, can be shown in the
same way. Then there is a number of distinguished processes rather than just a single distinguished
process.

Variations of this idea of decomposition are present in data type reduction, and in the shape
analysis for JDBC in Ramalingam et al. [YR04].

Data type reduction: Data type reduction relies on a separation of processes into two classes : a
fixed number of distinguished processes and all other processes, let us call the other processes
environment processes. Data type reduction retains the distinguished processes and abstracts all
environment processes into one summary abstract process. The summary abstract process mimics
the behavior of all the processes it represents, it is non-deterministic and memoryless, i.e. the
analysis does not compute information concerning environment processes.

Figure 4 shows the data type reduction of the state from the running example. The reference
process is colored black. It retains its local state a. All other processes, the environment processes,
are abstracted to one abstract summary process. The local state of the summary process is
abstracted away as indicated by the question tag.

Figure 4. Data type reduction

1.4. Results
[SRW02] characterizes canonical abstraction in the framework of three-valued logic analysis underlying
shape  analysis. Abstract states are compared by a partial order, named embedding. A state being
embedded in another state implies that information derived from the state that is larger in the
order also holds for the smaller state. A state is always embedded in its canonical abstraction.
Canonical abstraction is an abstraction which retains the optimal amount of information in the
abstract. Formally, it is a tight embedding. Data type reduction is coarser. A state can be embedded
into its data type reduction, however, all information about the environment process is



dline.info/pca            5

Pr
og

re
ss

  i
n 

 C
om

pu
te

r  
A

pp
lic

at
io

ns
  V

ol
um

e 
 1

3 
 N

um
be

r  
1 

 M
ar

ch
  2

02
4

lost, and therefore it is not a tight embedding.

A more detailed treatment of the topic can be found in [Wac05] which is also available in the
proceedings and on my website http://rw4.cs.uni-sb.de/‘bwachter/thesis.pdf

2. Related Work

Originally, canonical abstraction was designed as an abstraction technique to infer invariants of
heap-manipulating programs by a technique called Three-valued Logical Analysis [SRW02] , vulgo
shape analysis. The innovation of canonical abstraction for shape analysis was the generic
summarization of objects, where objects were originally thought of as heap cells, and means to
compute precise points-to information between abstract heap cells. This precision allows it to
automatically prove partial correctness of heap-manipulating programs.

In [MYRS05], a comparison of canonical abstraction and predicate abstraction in the domain of list-
manipulating programs is given. They pointed out that in principle every finitary abstraction can
be expressed with predicate abstraction. However, the number of predicates needed for the
encoding can be prohibitively high so that specialized abstractions can be better.

Yahav discovered [Yah01] that the algorithms from shape analysis can be generalized to
parameterized protocols and Java programs. First, an abstract finite-state transition system is
produced that simulates the (infinite) transition system induced by the original system. Then LTL
properties are checked on the obtained transition system.

The obtained transition systems could be used to infer invariants, such as mutual exclusion,
however they did not allow checking first-order temporal properties, as it suffers from the Migration
Problem described in Section 1.2. In a subsequent paper, Yahav gave a more powerful method
that is able to check properties formulated in a richer logic, termed ETL [YRSW03]. The idea was to
explicitly store the evolution of processes in state transitions.

For the sake of higher efficiency and precision, later work aimed at adapting the abstraction to the
particular first-order property to be checked. Ramalingam et al. describe a framework for typestate
checking for Java programs [YR04], i.e. a method for checking invariants. In the context of concurrent
systems, [Wac05] gave a more general model checking framework for first-order temporal properties
of concurrent systems based on canonical abstraction and decomposition.

Acknowledgments

This work was partly supported by the German Research Council (DFG) as part of the Transregional
Collaborative Research Center “Automatic Verification and Analysis of Complex Systems”
(SFB/TR 14 AVACS). See www.avacs.org for more information.

References

[1] Clarke, Edmund, Talupur, Muralidhar., Veith, Helmut. (2006). Environment Abstraction for
Parameterized Verification. In VMCAI, pages 126–141.

[2] Damm, Werner.,  Westphal, Bernd. (2003). Live and Let Die: LSC-based verification of UML-
models. In Formal Methods for Components and Objects, FMCO 2002, volume 2852 of Lecture
Notes in Computer Science, pages 99–135. Springer.

[3] McMillan, Kenneth L. (2000). A methodology for hardware verification using compositional
model checking. Sci. Comput. Program., 37(1-3):279–309.

[4] Manevich, Roman., Yahav, Eran., Ramalingam, G., Sagiv, Mooly. (jan 2005). Predicate abstraction
and canonical abstraction for singly-linked lists. In RadhiaCousot, editor, Proceedings of the
6th International Conference on Verification, Model Checking and Abstract Interpretation, VMCAI
2005, Lecture Notes in Computer Science. Springer.

[5] Pnueli, Amir., Xu, Jessie., Zuck, Lenore. Liveness with (0, 1, ?)-counter abstraction.



dline.info/pca 6

Pr
og

re
ss

  i
n 

 C
om

pu
te

r  
A

pp
lic

at
io

ns
  V

ol
um

e 
 1

3 
 N

um
be

r  
1 

 M
ar

ch
  2

02
4

[6] Sagiv, Mooly., Reps, Thomas., Wilhelm, Reinhard. (2002). Parametric shape analysis via 3-
valued logic. ACM Transactions on Programming Languages and Systems.

[7] Wachter, Bjorn. (2005). Checking universally quantified temporal properties with three-valued
analysis. Master’s thesis, Universit¨at des Saarlandes, March.

[8] Yahav, E. (2001). Verifying safety properties of concurrent Java programs using 3-valued logic.
ACM SIGPLAN Notices, 36(3):27–40, March.

[9] Yahav, E., Ramalingam, G. (2004). Verifying safety properties using separation and heterogeneous
abstractions. In: Proceedings of the ACM SIGPLAN 2004 conference on Programming language
design and implementation, pages 25–34. ACM Press.

[10] Yahav, E., Reps, Thomas., Sagiv, Mooly.,  Wilhelm, Reinhard. (2003). Verifying Temporal Heap
Properties Specified via Evolution Logic. In European Symposium on Programming, volume 2618
of Lecture Notes in Computer Science, pages 204 – 222. Springer-Verlag.


