
Creation of Abstract Syntax for Declarative Logic
Programming

Marco alberti1 and Marco Gavanelli and Evelina Lamma2

1CENTRIA, DI-FCT, universidade nova de lisboa, portugal
2ENDIF, universita di ferrara, italy

ABSTRACT

Abductive logic programming is a logical representation of abductive reasoning.
Most ALP frameworks express domain-specific logical relationships that the
abductive answers must satisfy. A priori, the integrity constraints are known.
However, for some applications (e.g., Interactive Abduction Logic Program-
ming, Multi-Agent Interactions, Contracting), it is reasonable to loosen this
assumption so that the abductive reasoning process starts incompletely aware
of the integrity constraints and continues without restarting when a new integ-
rity constraint is known. In the present paper, we provide an abstract syntax
for the declarative logic programming of abductive logic, with the addition of
integrity constraint during the process of abductive reasoning, an operational
implementation with formal termination, good and completeness properties,
and an implementation based on SCIFF language and proof procedure.

Keywords: Abductive Logic Programming, Abductive Reasoning, Declarative
Logic Programming, Abstract Syntax

1. Introduction

The philosopher Peirce divides the reasoning schemes of humans into three
types: deduction (reasoning from causes to eects), induction (synthesizing new
rules from examples) and abduction (making hypotheses on possible causes
from known effects).

Abductive Logic Programming [Kak93] is a computational representation of
abductive reasoning that lets one express relationships between eects and
possible causes (by means of a logic program), as well as logical constraints
over the hypotheses (integrity constraints). In ALP possible hypotheses are
represented by special predicates (called abducibles) that are not dened, but
can be hypothesized, as long as they satisfy the integrity constraints. A positive
answer to a query posed to an ALP system will typically contain the set of
abducibles that are hypothesized in order for the query to succeed. Such an
answer is called abductive answer in the ALP literature.

Received: 18 October 2023

Revised: 29 December 2023

Accepted: 8 January 2024

Copyright: with Author(s)

DLINE JOURNALS

JDP 2024; 14 (1)

https://doi.org/10.6025/jdp/2024/14/1/1-10

Journal of Data Processing Print ISSN: 2278 – 6481

Online ISSN: 2278-649X

dline.info/jdp 1

dline.info/jdp 2

Jo
ur

na
l

 o
f

 D
at

a
 P

ro
ce

ss
in

g
 V

ol
um

e
14

N

um
be

r
1

 M
ar

ch

20
24

Several instances of ALP have been proposed in the literature [Kak90, Fun97, Den98, Alf99, Wan00],
which dier for the logic language (and in particular for the type of abducibles and of integrity
constraints that can be expressed).

While in many applications integrity constraints are known at the beginning of the reasoning
process, it is sometimes useful to relax this assumption.

For instance, the classical application eld of abductive reasoning is the diagnosis. However, in a
realistic setting, a doctor does not simply listen to the patient enumerating all his/her symptoms,
but they have a bidirectional and multi-stage interaction: the doctor asks questions, and renes
his/her diagnosis based on the answers of the patient. So, there is the need to add information
dynamically, often in the form of rules, that can rule out unrealistic sets of explanations.

In multi-agent reasoning, agents that employ abductive reasoning could exchange integrity
constraints by a communication process, and continue operating with the newly acquired integrity
constraints. In contracting, two agents try to reach an agreement and each agent tries to reach
its goals. For example, one agent may want to buy a car, and the other wants to sell it; the rst
tries to get a price as low as possible, while the second has the opposite aim, and they negotiate
on the model, the optionals, etc. Of course, each agent is unwilling to send all of its own knowledge,
because the other would exploit it to get favourable conditions: if the buyer knew all the constraints
of the seller, it would be able to compute the minimum possible price for the seller, and then
propose such price. On the other hand, it is quite natural to tell some of the constraints only when
needed, in order to speedup the negotiation, and avoid lingering on small variations of a meaningless
solution. For instance, in case the buyer asks for a seat for children, the seller could reply: “Ok, but
you cannot install a children seat if you have the airbag”, and the client has to take into consideration this
constraint, when making new proposals. On the other hand, there is no reason for the seller to
state such knowledge immediately from the beginning, as it still does not know if the buyer is
interested at all in children seats.

An abductive reasoner might seek additional integrity constraints (possibly available from public
repositories), depending on its current computation; for example, the number of integrity constraints
could be very vast (as if one has to take into consideration all the EU rules for contracts), so only
those strictly needed should be downloaded. Moreover, depending on the current state of the
derivation one may choose to download regulations from one server or another: suppose I am
deciding whether to buy a good from a service in Italy or in Portugal; I may first try to get the best
price, but then check if the regulations of that country allow me to do such transaction. I will
download the regulations of such country, check if my transaction is allowed, and, if it is not, I will
backtrack and take the second choice.

Integrity constraints can also be obtained at runtime by means of an automated computational
process; for instance, by inductive reasoning. Recently, extensions of Inductive Logic Programming
techniques (ILP for short), and the DPML algorithm in particular [Lam07b], have been proposed to
learn integrity constraints from labelled traces (a database of events recording happened interactions
or activities, or a database collecting events at run-time). The DPML target language is the SCIFF
abductive logic language [Alb08], and this inductive approach has been experimented in various
contexts (business processes, among others; see [Che09, Lam07a]).

Such applications motivate an abductive logic programming framework where some of the integrity
constraints are known in advance, and some are added to the abductive logic program during the
computation.

In this paper we propose a declarative semantics for such an extension, and its implementation
based on the SCIFF abductive logic language [Alb08]. SCIFF is implemented using Constraint Handling
Rules [Frnu98]; in particular, integrity constraints are mapped to CHR constraints. Thanks to the
properties of CHR, adding a new constraint at runtime amounts to the single operation of calling the
new constraint, i.e., it can be delegated to the CHR solver.

dline.info/jdp 3

Jo
ur

na
l

 o
f

 D
at

a
 P

ro
ce

ss
in

g
 V

ol
um

e
14

N

um
be

r
1

 M
ar

ch

20
24

The paper is structured as follows. In Section 2, we propose a declarative semantics of ALPs with
dynamic addition of integrity constraints based on the SCIFF language, and we show that it
exhibits properties of termination, soundness and completeness. In Section 3 we describe the
CHR-based implementation. In Section 4 we show some experimental results. Discussion of
related work and conclusions follow.

2. Runtime Addition of Integrity Constraints in SCIFF

In this section, we give a semantics for the runtime addition of integrity constraints for the SCIFF
abductive logic language; however, the definitions can be easily generalized for other abductive
logic languages.

2.1. SCIFF Language
We first provide a brief introduction to the SCIFF language. A complete definition is available in
[Alb08].

SCIFF is a Computational Logic language, whose predicates can be defined or abducibles, and can
contain variables. Variables can be constrained as in Constraint Logic Programming [Jaf94a].

A SCIFF program P is composed of

 a knowledge base KB;

 a set IC
S
 of static integrity constraints.

A SCIFF knowledge base is a set of clauses of the form: Head Body, where Head is an atom built
on a defined predicate, and body is a conjunction of literals (built on dened predicates or abducibles)
and CLP constraints.

In SCIFF, integrity constraints have the form: Body Head, where Body is a conjunction of abducible
atoms, dened atoms and constraints, and Head is a disjunction of conjunctions of abducible
atoms and CLP constraints, or false.

SCIFF computations are goal-directed. A SCIFF Goal has the same syntax of the body of a clause
in the knowledge base.

2.2. Declarative Semantics
The declarative semantics for runtime addition of integrity constraints is given in terms of abductive
explanation as follows.

Given a SCIFF program P = KB, IC
S
 and a goal G, a pair , where is a set of abducibles and

is a substitution, is an abductive explanation for G with additional integrity constraints IC
D
 iff

(1) KB = G

(2) KB = IC
S
 IC

D

where the symbol |= is interpreted, in SCIFF, as in the 3-valued completion semantics [Kun87]. If

such conditions hold, we write KB, IC
S
 G.

Example 2.1.

 p(X) q(X, Y), a(Y)

q(X, Y) r(Y), d(Y)

r(2)

a(X) b(X) c(X) (2.2)

(2.1)

dline.info/jdp 4

Jo
ur

na
l

 o
f

 D
at

a
 P

ro
ce

ss
in

g
 V

ol
um

e
14

N

um
be

r
1

 M
ar

ch

20
24

Given the knowledge base in equation (2.1) and the integrity constraint in equation (2.2), where
a/1, b/1, c/1, and d/1 are abducibles, two abductive explanations are possible for the query
p(1): {a (2); b (2); d (2)} and {a (2); c (2); d (2)}.

However, with the additional integrity constraint

c(X), d(X) false,

only {a (2); b (2); d (2)} is an abductive explanation.

2.3. Operational Semantics
The SCIFF proof-procedure consists of a set of transitions that rewrite a node into one or more
child nodes. It encloses the transitions of the IFF proof-procedure [Fun97], and extends it in various
directions. A complete description of SCIFF proof procedure is in [Alb08], with proofs of soundness,
completeness, and termination.

Each node of the proof is a tuple T R,CS, PSIC,, where R is the resolvent, CS is the CLP constraint
store, PSIC is a set of implications (called Partially Solved Integrity Constraints) derived from propagation
of integrity constraints, and is the current set of abduced literals. The main transitions, inherited
from the IFF are:

Unfolding: replaces a (non abducible) atom with its denitions;

Propagation: if an abduced atom a (X) occurs in the condition of an IC (e.g., a (Y) p), the atom is
removed from the condition (generating X = Y p);

Case Analysis: given an implication containing an equality in the condition (e.g., X = Y p),
generates two children in logical or (in the example, either X = Y and p, or X Y);

Equality rewriting: rewrites equalities as in the Clark’s equality theory;

Logical simplications: other simplications like (true A) A, etc.

SCIFF also includes the transitions of CLP [Jaf94a, Jaf94b] for constraint solving.

To manage the run-time addition of integrity constraints, we extend SCIFF with an additional
transition defined as follows, and we call the resulting proof procedure SCIFF

D
.

Add-IC: Given a node T R,CS, PSIC, and an integrity constraint ic, transition addIC generates
one node T0 T’ R,CS, PSIC {ic}.

This transition picks integrity constraints from a queue of dynamic integrity constraints. The
transition is applicable to any node in the proof tree, and it can be executed whenever the queue
is not empty. More integrity constraints can be added to the queue during the computation.

A successful SCIFF
D
 derivation for an ALP KB, IC

S
, with additional integrity constraints IC

D
 and a

goal G is a sequence of nodes where

 The root node is G, , IC
S,

 Each node is generated from the previous by a SCIFF
D
 transition

 The leaf node is N true,CS, PSIC,

From the leaf node, a substitution is derived, that

 Replaces all variables in N that are not universally quantied by a ground term;

 Satises all the constraints in the store CS and the implications in PSIC.

dline.info/jdp 5

Jo
ur

na
l

 o
f

 D
at

a
 P

ro
ce

ss
in

g
 V

ol
um

e
14

N

um
be

r
1

 M
ar

ch

20
24

If such a derivation exists, we write KB, IC
S
 G..

2.4. Properties
In this section, we state some relevant SCIFF

D
 properties. Due to lack of space, we omit the

proofs, available in a companion technical report [Alb10].

Intuitively, SCIFF
D
 properties can be derived from SCIFF properties, by showing that a SCIFF

D

derivation for the program KB, IC
S
 with a nite set of additional integrity constraints IC

D
 can be

transformed into an equivalent one, where a node is the root node of a SCIFF derivation for the
.

The following proofs are based on these formal properties:

Proposition.2.2: Let N
2
 be the node generated from node N

1
 by transition T

1
, and N

3
 be the node generated from

node N
2
 by addIC. Then, if N

4
 is the node generated from node N

1
 by addIC, transition T

1
 is applicable to N

4
, and the

node N
5
 generated from N

4
 by T

1
 is equal to N

3
, modulo renaming of variables.

Proposition.2.3: Let D be a SCIFF
D

 derivation that has k applications of the addIC transition. Then there exists a
derivation D’ that has the following properties:

 The rst k transitions of D’ are addIC;

 Each node of D’, starting the transitions from k+1 is equal to the corresponding node of D.

2.4.1. Termination
Being SCIFF based on the 3-valued completion semantics, its termination is proven, as for SLDNF
resolution [Apt91], for acyclic knowledge bases and bounded goals and implications. Of course,
programs may also terminate in other cases as well. Other abductive proof-procedures are based
on other semantics and can address also non-stratied programs [Lop06].

Intuitively, for SLD resolution a level mapping must be defined, such that the head of each clause
has a higher level than the body. For SCIFF, as well as for the IFF, since it contains integrity
constraints that are propagated forward, the level mapping should also map atoms in the body of
an integrity constraint to higher levels than the atoms in the head; moreover, this should also
hold considering possible unfoldings of literals in the body of an integrity constraint [Xan03].

Termination is not affected in SCIFF
D

, as long as the newly added integrity constraints do not
violate the termination conditions.

Proposition.2.4: Let be a query to an ALP KB, IC
S
, with additional integrity constraints IC

D
, where KB, IC

S

IC
D

 and are acyclic w.r.t. some level mapping, and and all implications in IC
S
IC

D
 are bounded w.r.t. the level-

mapping. Then, every SCIFF
D

 derivation for each instance of is finite.

2.4.2. Soundness
 As usual, the soundness property states that the abductive answer computed in a successful
derivation is correct according to the declarative semantics.

Proposition.2.5: Given an , if

dline.info/jdp 6

Jo
ur

na
l

 o
f

 D
at

a
 P

ro
ce

ss
in

g
 V

ol
um

e
14

N

um
be

r
1

 M
ar

ch

20
24

then

2.4.3. Completeness
The completeness result states that SCIFF

D
 can compute a subset of any ground abductive answer

that is correct according to the declarative semantics.

Proposition.2.6: Given an and a set of integrity constraints, for any ground set such that

 there exist ’ and such that and .

3. Implementation

The SCIFF abductive proof procedure was implemented in Prolog, using extensively the Constraint
Handling Rules [Frnu98, Sch04] library. The implementation can be downloaded from the SCIFF web
site [SCI10] and runs on SICStus and SWI Prolog.

Constraint Handling Rules (CHR) is a logic language devoted to dene new constraint solvers; however,
it has been used as a general language for many dierent applications, not all strictly related to
constraints.

A new solver is defined in CHR by means of rules. There exist two main types of rules: propagation
and simplication1. A propagation rule is of the form

label@ Head
1
,...,Head

n
 Guard | Body

and means that, if the optional Guard and the Heads are true, then the Body must be true.
Operationally, whenever a set of constraints are in the store, matching Head

1
,...,Head

n
, the Guard is

checked; if it evaluates to true, the Body is executed (as a Prolog goal). The label is optional and
serves only as an identifier of the rule.

Simplication rules have a similar syntax:

label@ Head
1
,...,Head

n
 Guard | Body

and they state that if the Guard is true, then the conjunction Head
1
,...,Head

n
 is equivalent to Body.

Operationally, if Head
1
,...,Head

n
 are in the store (and Guard is true), they are removed and substituted

by Body.

SCIFF represents most of its data structures as CHR constraints:

 an abducible atom a(X) is represented with the CHR constraint abd(a(X))

 a (partially solved) integrity constraint a (Y), q (Y) p (Y) c (Y) is represented as the CHR
constraint

The Head can be any Prolog goal (it has the same syntax).

1 There are also simpagation rules, that are not logically necessary, but are important for efficiency;
we will not go into details for lack of space.

dline.info/jdp 7

Jo
ur

na
l

 o
f

 D
at

a
 P

ro
ce

ss
in

g
 V

ol
um

e
14

N

um
be

r
1

 M
ar

ch

20
24

The proof tree is explored in a depth-rst fashion, using the Prolog stack for this purpose. Transitions
are implemented as CHR rules; for example, transition Propagation is implemented with the
following propagation CHR:

 propagation @
 abd(A1),
 psic([abd(A2)|More],Head)
 ==> psic([A1=A2|More],Head).

Case Analysis handles the equality in the body of a PSIC

 case_analysis @
 psic([A=B|More],Head)
 ==> impose A=B
 psic(More,Head)
 ; % Open choice point
 impose A and B do not unify

and the logical simplication (true A) A manages implications with empty body:

logic_simplification @ psic ([],Head) <=> call (Head).

Thanks to this implementation, adding a new integrity constraint is just a matter of calling the
corresponding CHR constraint: if we want to dynamically add the integrity constraint (2.2) we
execute the goal:

psic([abd(a(X))], (abd(b(X));abd(c(X)))).

In this way, the newly added integrity constraint is automatically subject to all the applicable
transitions. Consider rule propagation: whenever two constraints matching the rule head (e.g., abd
(a (1)) and psic([a (X)],b (X))) are present in the CHR constraint store, the rule is red, it generates
psic([a (X) = a (1)],b(X)), that triggers case analysis, which in its turn generates two child nodes:

 One where unification is imposed between the abducible in the CHR constraint store and the
abducible in the partially solved integrity constraint, and a new partially solved integrity constraint
is imposed, with the abducible removed from the body;

 One where disunification between the abducible in the CHR constraint store and the abducible in
the partially solved integrity constraint is imposed.

In the previous example, psic([a (X)=a (1)], b (X)) is rewritten in the rst case as X=1 and b(X) is
executed; in the second case by imposing the constraint X1.

The relevant point, here, is that rule propagation is red whenever both the constraints (the abducible
and the psic) are in the CHR store, regardless of which one entered the store rst. So, if a partially
solved integrity constraint is added by addIC , and some abducible in its body is already in the
store, propagation will occur, as if the partially solved integrity constraint had been in the constraint
store from the beginning of the computation.

4. Experiments

To show the eectiveness of the approach, we tested a simple benchmark problem, that is a
simplied version of a contracting scenario. One agent needs to interact with some web service,
and choose one that is able to provide the expected reply. In this example, the agent will tell
message m and will expect n as reply. The agent knows the address of a series of web services,
given as facts:

known service (http://web.address.one/folder1/policy.ruleml).

known service (http://web.address.two/folder2/policy.ruleml).

dline.info/jdp 8

Jo
ur

na
l

 o
f

 D
at

a
 P

ro
ce

ss
in

g
 V

ol
um

e
14

N

um
be

r
1

 M
ar

ch

20
24

In order to nd the right service, the agent executes the following goal, where tell is abducible:

known service (Addr), download_ic (Addr), tell (me,S,m), not (tell (S,me,A), An)

meaning that it will non-deterministically choose a service, download its integrity constraints, and
then tell message m; it will fail if it gets any reply that is not n. We generated 252 services, each
with one integrity constraint

tell (Client,s,letter
1
) tell (s,Client,letter

2
)

where letter
1
 and letter

2
 are substituted with a ground term corresponding to one of the 25 letters of

the alphabet.

We tried the goal on a slow network (mobile phone) and it took 173.350s to nd the right service.
As a comparison, a solution that first downloads the IC of all possible services before starting the
solution takes 319.005s.

5. Related work

Among the many works on abduction in CHR by Christiansen and colleagues [Abd00, Chr05b], we
emphasize an inspiring position paper [Chr05a], in which preliminary experiments are shown with
integrity constraints mapped to CHR rules. In that work, Christiansen points out that through
meta-rules it is possible to dynamically add integrity constraints. Here we extend the idea within
the SCIFF framework, which gives us a set of properties deemed crucial in the computational logic
community. The operational semantics of SCIFF is not based on that of CHR, but on the sound and
complete semantics of the IFF [Fun97]: this allowed us to prove those properties also for SCIFF. In
this paper, we extend these proofs for the dynamic addition of integrity constraints, reaching the
objective pointed out by Christiansen, but with soundness and completeness results.

EVOLP [Alf02] is a language to define logic programs able to evolve. A special atom assert(Rule)
can occur in the head or in the body of clauses; in case the stable model semantics assigns value
true to some of these literals, the clause Rule is added to the program. Our instance can be
considered as an evolving abductive program, in which only integrity constraints (and not clauses
in the KB) can be added, and based on the three-valued completion semantics, instead of the
stable model semantics. Our language also features CLP constraints and, as the general CLP
framework [Jaf94a], it is parametric with respect to the specic sort. The proof procedure lets the
user choose the associated solver, and two state of-the-art solvers are available in the current
implementation: CLP (R), on the real values, and CLP (FD), on finite domains. EVOLP is a component
of the ACORDA prospective logic programming system [Lop06], which also integrates abductive
reasoning and preferences, to support interactive abductive logic programming, among other
applications.

We can also easily extend the language in order to incorporate dynamic integrity constraints in the
body of clauses, or in queries. Operationally, whenever an integrity constraint is part of the resolvent,
the addIC transition would be applied. However, the impact of such extension on termination must
be studied in future work. With reference to nested, dynamic ICs, and this extension of the SCIFF
language, it is worth to mention that in the literature, a lot of work was devoted to the treatment
of embedded implications (due to Miller, et al. see [Mil89, Hod94] and McCarty, see [McC88]) based
on the logic of Higher-Order Hereditary Harrop Formulas, a fragment of Intuitionistic logic. In this
logic, and the system implemented [Nad88], they allow arbitrary lambda terms with full higher-
order unification, and extend the formula language with arbitrarily nested universal quantiers and
implications. In our case, we can add integrity constraints at runtime, rather than program clauses
as they do. We can therefore support abductive reasoning in an extended set of constraints.

In CR-Prolog [Bal03], new (consistency-restoring) rules can be added dynamically, as a part of an
agent’s Observe-Think-Act loop; if some inconsistency is detected then these constraints can be
considered, according to their preferences. The semantics of CR Prolog programs is defined as a
transformation into abductive logic programs, where each consistency-restore rule has an abducible
associated with it, and holds (only) if such abducible is abduced. In our framework, dynamically
added integrity constraints must be satised, independently of the abductive answer.

dline.info/jdp 9

Jo
ur

na
l

 o
f

 D
at

a
 P

ro
ce

ss
in

g
 V

ol
um

e
14

N

um
be

r
1

 M
ar

ch

20
24

6. Conclusions

In this paper we proposed a declarative semantics for abductive logic programs where additional
integrity constraints can be added at runtime, based on the SCIFF language.

We described SCIFF
D
, an extension of the SCIFF proof procedure that supports runtime addition of

integrity constraints, and we proved formal results of termination, soundness, and completeness
for SCIFF

D
.

Such an extension can support interesting applications such as interactive abductive logic
programming and contracting in service-oriented architecture.

References

[1] Abdennadher, Slim., Christiansen, Henning. (2000). An experimental CLP platform for integrity
constraints and abduction. In Henrik Legind Larsen, Janusz Kacprzyk, Slawomir Zadrozny, Troels
Andreasen., Henning Christiansen (Eds.), FQAS, pp. 141-152. Physica-Verlag, Heidelberg.

[2] Alberti, Marco, Chesani, Federico, Gavanelli, Marco, Lamma, Evelina, Mello, Paola., Torroni,
Paolo. (2008). Verifiable agent interaction in abductive logic programming: The SCIFF
framework. ACM Transactions on Computational Logics, 9(4).

[3] Alberti, Marco, Gavanelli, Marco., Lamma, Evelina. (2010). Runtime addition of integrity
constraints in SCIFF. Tech. Rep. cs-2010-01, Universitadegli Studi di Ferrara, Dipartimento di
Ingegneria. Available at http://www.unife.it/dipartimento/ingegneria/informazione/informatica/
rapportitecnici-1.

[4] Alferes, José Júlio, Pereira, Luís Moniz., Swift, Terrance. (1999). Well-founded abduction via
tabled dual programs. In D. De Schreye (Ed.), ICLP, pp. 426-440.

[5] Alferes, José Júlio, Brogi, Antonio, Leite, João Alexandre., Pereira, Luís Moniz. (2002). Evolving
logic programs. In Sergio Flesca, Sergio Greco, Nicola Leone., Giovambattista Ianni (Eds.),
JELIA, Lecture Notes in Computer Science, vol. 2424, pp. 50-61. Springer.

[6] Apt, Krzysztof R.., Bezem, Marc. (1991). Acyclic programs. New Generation Computing, 9(3/
4), 335-364.

[7] Balduccini, Marcello., Gelfond, Michael. (2003). Logic programs with consistency-restoring
rules. In AAAI Spring 2003 Symposium, pp. 9-18.

[8] Chesani, Federico, Lamma, Evelina, Mello, Paola, Montali, Marco, Riguzzi, Fabrizio., Storari,
Sergio. (2009). Exploiting inductive logic programming techniques for declarative process
mining. T. Petri Nets and Other Models of Concurrency, 2, 278-295.

[9] Christiansen, Henning. (2005). Experiences and directions for abduction and induction using
constraint handling rules. In: Workshop on abduction and induction AIAI’05. Edinburgh,
Scotland.

[10] Christiansen, Henning., Dahl, Verónica. (2005). HYPROLOG: A new logic programming language
with assumptions and abduction. In Maurizio Gabbrielli and Gopal Gupta (Eds.), ICLP, Lecture
Notes in Computer Science, vol. 3668, pp. 159-173. Springer.

[11] Denecker, Marc., De Schreye, Danny. (1998). SLDNFA: An abductive procedure for abductive
logic programs. Journal of Logic Programming, 34(2), 111-167.

[12] Fruhwirth, T. (1998). Theory and practice of constraint handling rules. Journal of Logic
Programming, 37(1-3), 95-138.

[13] Fung, T. H.., Kowalski, R. A. (1997). The IFF proof procedure for abductive logic programming.

dline.info/jdp 10

Jo
ur

na
l

 o
f

 D
at

a
 P

ro
ce

ss
in

g
 V

ol
um

e
14

N

um
be

r
1

 M
ar

ch

20
24

Journal of Logic Programming, 33(2), 151-165.

[14] Hodas, Joshua S.., Miller, Dale. (1994). Logic programming in a fragment of intuitionistic
linear logic. Information and Computation, 110(2), 327-365.

[15] Jaar, J.., Maher, M. J. (1994). Constraint logic programming: A survey. Journal of Logic
Programming, 19-20, 503-582.

[16] Jaar, Joxan, Maher, Michael, Marriott, Kim., Stuckey, Peter. (1994). The semantics of constraint
logic programs. Journal of Logic Programming.

[17] Kakas, A. C.., Mancarella, Paolo. (1990). On the relation between Truth Maintenance and
Abduction. In T. Fukumura (Ed.), Proceedings of the 1st Pacific Rim International Conference on
Artificial Intelligence, PRICAI-90, Nagoya, Japan, pp. 438-443. Ohmsha Ltd.

[18] Kakas, A. C., Kowalski, R. A.., Toni, Francesca. (1993). Abductive Logic Programming. Journal
of Logic and Computation, 2(6), 719-770.

[19] Kunen, Kenneth. (1987). Negation in logic programming. Journal of Logic Programming,
4(4), 289-308.

[20] Lamma, Evelina, Mello, Paola, Montali, Marco, Riguzzi, Fabrizio., Storari, Sergio. (2007).
Inducing declarative logic-based models from labeled traces. In Gustavo Alonso, Peter Dadam, and
Michael Rosemann (Eds.), BPM, Lecture Notes in Computer Science, vol. 4714, pp. 344-359.
Springer.

[21] Lamma, Evelina, Mello, Paola, Riguzzi, Fabrizio., Storari, Sergio. (2007). Applying inductive
logic programming to process mining. In Hendrik Blockeel, Jan Ramon, Jude W. Shavlik, and Prasad
Tadepalli (Eds.), ILP, Lecture Notes in Computer Science, vol. 4894, pp. 132-146. Springer.

[22] Lopes, Gonçalo., Pereira, Luís Moniz. (2006). Prospective programming with ACORDA. In
Empirically Successful Computerized Reasoning (ESCoR’06) workshop at The 3rd International
Joint Conference on Automated Reasoning (IJCAR’06). Seattle, USA.

[23] McCarty, L. Thorne. (1988). Clausal intuitionistic logic I - Fixed-point semantics. Journal of
Logic Programming, 5(1), 1-31.

[24] Miller, Dale. (1989). A logical analysis of modules in logic programming. Journal of Logic
Programming, 6(1-2), 79-108.

[25] Nadathur, Gopalan., Miller, Dale. (1988). An overview of lambda-prolog. In ICLP/SLP, pp. 810-
827.

[26] Schrijvers, T.., Demoen, B. (2004). The K.U. Leuven CHR system: Implementation and
application. In T. Fruhwirth and M. Meister (Eds.), First Workshop on Constraint Handling Rules.

[27] The SCIFF abductive proof procedure. (2010). Retrieved from http://lia.deis.unibo.it/research/
sciff/.

[28] Wang, Kewen. (2000). Argumentation-based abduction in disjunctive logic programming.
Journal of Logic Programming, 45(1-3), 105-141.

[29] Xanthakos, I. (2003). Semantic Integration of Information by Abduction (Ph.D. thesis). Imperial
College London. Retrieved from http://www.doc.ic.ac.uk/~ix98/PhD

