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ABSTRACT

Higher-order property comes into play in some aspects of climatological im-
pact research. For instance, vulnerability measures, which are essential in
determining the vulnerability to climate change of different regions and places,
must satisfy certain conditions best expressed by quantifying the overall
increasing functions of the appropriate type. This type of property is often
considered to be “cognitive”, but for the measures used in practice, it is
relatively easy to code the property as a dependent type and prove it correct.
In scientific programming, it is common to care about the “correctness” of
the program up to the “implicit”: for example, the program would perform as
expected, for example, if real numbers were used instead of floating point
values. These “counterfactuals” are impossible to test, but they are easy to
code and prove as types. We show examples (encoded in AGDA) encountered
in actual vulnerability assessment.

Keywords: Vulnerability Data Assessment, Climate Change, Weather Condition
Measurement

1. Introduction

Climate impact research is not the same as climate research: it does not
deal, for example, with building the detailed simulations of the climate system
that run on massively parallel machines of incredible, yet always insufficient
computational power. Rather, climate impact research attempts to analyze
the broad, first-order effects of various policies meant to mitigate or alleviate
the problems caused by human-induced climate change. The Potsdam Institute
for Climate Impact Research (the acronym PIK comes from the more compact
German version: Klimafolgenforschung) has on its web page the following
introduction:
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 At PIK researchers in the natural and social sciences work together to study global change and
its impacts on ecological, economic and social systems. They examine the Earth system’s capacity
for withstanding human interventions and devise strategies for a sustainable development of
humankind and nature.

 PIK research projects are interdisciplinary and undertaken by scientists from the following Research
Domains: Earth System Analysis, Climate Impacts and Vulnerabilities, Sustainable Solutions and
Transdisciplinary Concepts and Methods.

 Through data analysis, computer simulations and models, PIK provides decision makers with
sound information and tools for sustainable development. In addition to publishing results in scientific
journals the Institute gives advice to national and regional authorities and, increasingly, to global
organisations such as the World Bank.

The important point here is the following: many complex systems are studied together by
scientists from many different disciplines. In this kind of enterprise, the concepts that tend to be
most used across disciplines have a high intuitive content, which ensures that they are quickly
grasped by all the different parties (“vulnerability” will be our running example, but consider also
“stability”, “resilience”, “global change”, “sustainable growth”, “green path”, and so on). The
danger is that each party will grasp it in a different way, hence the importance of definitions. In
general, the more formal the definition, the less the risk it will be misunderstood (though the
chance of being understood might also decrease), and here is where a first connection to logic and
computer science appears.

Additionally, such “fulcrum” concepts that leverage our everyday intuitions and help structure the
interdisciplinary discourse also provide natural candidates for assessments, for measurement and
comparison, which then, in turn, can be used as the basis for “giving advice to national and
regional authorities”. Many of these assessments are computer-based, and subject to the usual
concerns of reuse, genericity, efficiency and correctness (especially important, one would think,
when giving advice “to global organizations such as the World Bank”).

This is the computer scientists’ playground, and the game plan is: formalize the concepts involved
in order to be able to write specifications against which to assess program correctness. Do it
generically, in order to unify and reuse as much as possible of the existing code. Since the subject
is largely mathematical, use a high-level language with an expressive type system, in order to
minimize the distance from specification to implementation. Hopefully, the end-result will be a
domain-specific language, which will simplify writing the particular sort of programs we started
with, while at the same time making their correctness easier to assess.

This paper presents some of the results we obtained while playing this game within the field of
(computer-assisted) vulnerability assessment. The next section is a whirlwind tour of definitions of
vulnerability and the resulting (simplified) Haskell formalization. We then take up the question of
correctness: we want to ensure that key conditions are met by an implementation. The first idea,
presented in Section 3, is in tune with current software engineering best practices: apply automatic
property-based testing (for example, using QuickCheck [8]). It turns out that writing good tests is
somewhere between hard and impossible, but proving on paper that the conditions hold is really
easy. Therefore, we re-implemented parts of the system in a dependently-typed programming
language (Agda1, [21, 26]) and found that expressing the conditions as types was at least as easy as
thinking up good tests, and that convincing the type checker that the conditions were met was at
least as easy as implementing those tests. Moreover, things that were impossible before become
not even hard. This is presented in Section 4, which raises questions such as: if proving things is
so easy, why does it get such a bad reputation? We have an opinion about this, and you can read it
in the conclusions.

1 The choice of Agda over, say, Coq, was motivated partly by similarity with Haskell (since we could
translate our Haskell code-base), partly by aesthetic considerations and by ease of use. Perhaps
the largest role was played by the fact that PIK has quite close ties to Chalmers, where Agda was
developed.
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2. Vulnerability

In the past decade, the concept of “vulnerability” has played an important role in fields such as
climate change, food security and natural hazard studies. Vulnerability studies have often been
successful in alerting policymakers to precarious situations. The importance of theconcept in the
particular field of climate change is described, for example, as follows [13]:

. . . Studies based primarily on the output of climate models tend to be characterized by results
with a high degree of uncertainty and large ranges, making it difficult to estimate levels of risk. In
addition, the complexity of the climate, ecological, social and economic systems that researchers
are modeling means that the validity of scenario results will inevitably be subject to ongoing
criticism. . . . Such criticisms should not be interpreted as questioning the value of scenarios;
indeed, there is no other tool for projecting future conditions. What they do, however, is emphasize
the need for a strong foundation upon which scenarios can be applied, a foundation that provides a
basis for managing risk despite uncertainties associated with future climate changes. This foundation
lies in the concept of vulnerability.

No doubt, vulnerability is one of the “fulcrum” concepts mentioned in the introduction and, alerted
to the importance of definitions in an interdisciplinary context, we expect this one to be very well
defined. Unfortunately, this is only the case if by “well defined” we mean “defined many times”.
Figure 1 contains a sample of vulnerability “definitions” found in the literature:

[16]: Vulnerability is defined as the extent to which a natural or social system is susceptible to
sustaining damage from climate change. Vulnerability is a function of the sensitivity of a system
to changes in climate (the degree to which a system will respond to a given change in climate,
including beneficial and harmful effects), adaptive capacity (the degree to which adjustments in
practices, processes, or structures can moderate or offset the potential for damage or take advantage
of opportunities created by a given change in climate), and the degree of exposure of the system
to climatic hazards.

[28]: The conditions determined by physical, social, economic, and environmental factors or
processes, which increase the susceptibility of a community to the impact of hazards.

[7] Vulnerability, therefore, is a human-induced situation that results from public policy and
resource availability/distribution, and it is the root cause of many disaster impacts. Indeed, research
demonstrates that marginalized groups invariably suffer most in disasters. Higher levels of
vulnerability are correlated with higher levels of poverty, with the politically disenfranchised, and
with those excluded from the mainstream of society.

[6] Vulnerability (in contrast to poverty which is a measure of current status) should involve a
predictive quality: it is supposedly a way of conceptualizing what may happen to an identifiable
population under conditions of particular risk and hazards. Is the complex set of characteristics
that include a person’s: initial well-being (health, morale, etc.); self-protection (asset pattern,
income, qualifications, etc.); social protection (hazard preparedness by society, building codes,
shelters, etc.); social and political networks and institutions (social capital, institutional environment,
etc.).

[9] Vulnerability (V ) = Hazard Coping, with Hazard = H (Probability of the hazard or process; shock
value; predictability; prevalence; intensity/strength);and Coping = C (Perception of risk and potential
of an activity; possibilities for trade; private trade, open trade).

There are many, many more such definitions, a large percentage of which wouldn’t pass Pascal’s
requirement of “application of a name to things which are clearly designated by terms perfectly
known” [25]; the curious reader is referred to Thywissen’s summary of some thirty-odd definitions
[27].

There is a corresponding diversity in the way in which vulnerability is measured. Examining the
technical details of computer-assisted vulnerability assessments is tedious, but has a clear advantage
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over reading definitions such as the above: one can unambiguously determine what is being
measured.

Virtually all vulnerability assessments have the following structure. First, one tries to estimate the
evolution of various parameters of interest, for example, the average temperature in a given
region, the gross domestic product of a country, the sea-level of some coastal area, but also less
immediately relevant values, such as literacy rate or number of telephone lines in a region [17].
Sometimes, the result of this forecasting analysis is a list of values, one element for each time
period (week, month or year) of the time horizon (typically measured in decades). Most times, the
result will consist of several such trajectories, perhaps with some additional information about
their likelihood. Thus, one can have lists of possible trajectories, or a probability distribution over
trajectories, or a fuzzy set of trajectories, etc.

Next, each trajectory is examined in order to determine the harm that befalls the region or population
under consideration: damages, negative impacts, losses caused by the factors of interest (for
example, human-induced climate change). Harm is represented in many ways, but it is always
assumed that the resulting values can be at least partially compared, i.e., that they are members
of a preordered set.2

Depending on how the forecast of the parameters was achieved, we have so far a list of harm
values, or a probability distribution over harm values, or a fuzzy set, etc. Now comes the final
step: aggregating all these harm values, obtaining the final vulnerability assessment. This is
usually done either by taking some representative value, for example the maximal or the likeliest
harm, or by an integral measure of the possibilities (such as their sum or average). The final value
does not need to lie in the same set as the harm values, but vulnerability values also need to form
at least a preorder: the purpose of the assessment is often to compare the relative vulnerabilities
of regions, or of the same region under different scenarios.

In Haskell, these explanations can be expressed more concisely and precisely:

2 The reason for not requiring anti-symmetry is that harm values are often compared via cost
functions.

Possible trajectories are collected together in a functorial structure. Besides the fact that all our
examples (probability distributions, fuzzy sets, lists) are functors, this makes sense because of
the need to apply the harm evaluation function to each trajectory. Otherwise, the code follows
literally the description above.
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Most of the work in a vulnerability assessment is put in computing the structure of possible
trajectories. To do this, existing models are used (and reused), which are usually written by
specialists in the relevant disciplines: economists, climate scientists, geographers, social scientists,
etc. The models are then combined by the team that does the vulnerability assessment. Sometimes,
these models have different types: a climate model might yield a deterministic trajectory of the
average global temperature, while a demographic model might offer only a list of possible evolutions
of the population, and an economic model a probability distribution over possible future values of
the gross domestic product. Accordingly, most of the work we have done was in extracting the
general structure of these models and of the means of combining them, in order to simplify the
task of the vulnerability assessment in its most difficult part. The result was a domain-specific
language for describing and combining monadic dynamical systems, described extensively by
Ionescu [11] and concisely by Lincke et al. [14].

Here, however, we concentrate on the computationally less intensive part: the interplay between
the evaluation of harm and the measurement of vulnerability. There is very little one can say to
better describe the possible candidates for these functions: one cannot claim, for example, that
only certain preordered sets are suitable and exclude others. But there is a condition which virtually
everybody agrees on: if the harm evaluations along all trajectories in a structure are increased,
then the vulnerability measure should also increase. This kind of monotonicity can be taken as
the defining condition for a vulnerability measure:

Definition.1: Let V and W be two preorders, and F a functor. A function m : FV  W is called a vulnerability measure if,
for any increasing function i : V  V (that is,   i  for all : V ), and any x : FV we have m x  m (F i x).

If we use the order x  y = m x  m y on F V we can say that m is a vulnerability measure if “(F i)
is increasing when i is increasing”. We will use this formulation in Section 4. No matter how good
the models used to forecast the possible trajectories are, no matter how well combined, if a
vulnerability assessment uses a function which is not a vulnerability measure in order to aggregate
the harm values, then it must be regarded as flawed.

Are there any vulnerability assessments which fail in this respect? Unfortunately, yes. The “likeliest
harm value” we mentioned above does not fulfill this condition, and neither do other “democratic”
methods (the most frequent result of harm values, for instance). There is, therefore, scope for
error, and so we come to the idea of testing, for a given implementation, that the vulnerability
measure condition holds.

3. Testing Vulnerability Measures

To test a candidate vulnerability measure m : F V  W we first turn to the question of the functoriality
of the structure of type F V that collects the harm values. How do we know that the implementation
of the mapping function preserves identities and compositions? The Haskell type system does not
detect the problem with

mapTry :: (a  b)  [a]  [b]
mapTry f [ ]          = [ ]
mapTry f (a : as)    = mapTry f as

The problem is that mapTry id = const [ ]  id, so the first functor law fails (but the second functor law
holds). As an aside, mapTry is the version suggested by Agda’s automatic theorem prover / type
inhabitant searcher, called Agsy [15]. (To Agsy’s defence should be said that it only aims at, and
succeeds in, finding some value of the correct type.)

If we want to test if polymorphic properties like the functor laws hold for a polymorphic function
like mapTry, we need to pick some monomorphic type to test them on. It is not in general enough
to pick a trivial type like () or a small type like Bool, but most often it is enough to test with the
type of natural numbers. For the functor laws the results of Bernardy et al. [2] allow us to reduce
testing the polymorphic map function to just one type (and in fact, just we can even fix the
function argument f ), but there is still the question of coverage:
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map :: (a  b)  [a]  [b]
                                                                   map f [ ]         = [ ]

                                                                  map f (a : as)  = if length as  bigNumber

                                                                                               then map f as
                                                                                              else f a : map f as

Granted, this is a malicious example, but the problem remains, especially in the case of functors
that require more complex implementations (such as the simple probability functor). Still, let us
accept for now that the implementation of the mapping function is likely to be used in many
programs and therefore verified in so many different cases that we can take it to be correct.

For concreteness, let us fix the functor to be the non-empty list functor given by

data List a = Wrap a | Cons a (List a) deriving (Ord, Eq, Show)

                                        fold :: (a  b)  (a  b  b)  List a  b

                                        fold w c (Wrap a) = w a

                                       fold w c (Cons a as) = c a (fold w c as)

                                       instance Functor List where

                                       fmap f = fold (Wrap  f ) ( a bs  Cons (f a) bs)

A typical type for harm values is a tuple: pairs of floating-point numbers representing (monetary)
damages and natural numbers representing lost lives. The least controversial way of comparing
such values is given by the dominance relation:

instance POrd a where

                                                                      leq :: a  a  Bool

                                                                  instance (POrd a, POrd b)  POrd (a, b) where

                                                                    (a1 , b1) ‘leq‘ (a2 , b2) = a1 ‘leq‘ a2  b1 ‘leq‘ b2

We defined a new type class for preorders, similar to the Ord class provided by Haskell. Instances
of the Haskell Ord class are required to be total orders, while instances of POrd should be preorders.
Neither of these requirements can be expressed in Haskell, so there is no automatic check that
instances really satisfy them. Anyway, let us grant that the preorder properties also do not need to
be tested here (either because they are tested elsewhere, or because the implementation can be
trivially seen to be correct).

The biggest problem that we encounter in testing vulnerability measures is its higherorder nature,
namely the quantification over all possible increasing functions. In QuickCheck notation, one might
write

testMonotonicity m i x = increasing i ==> m x ‘leq‘ m ( fmap i x)

This naive translation of the requirement would check that i is an increasing function, and then
check that  assigns an increased measure to the increased x. Even assuming the unlikely case in
which the property of being increasing is decidable (this only works for functions with finite domain
 not the case in our example), we still have the problem that arbitrarily generated functions are
unlikely to be increasing, and QuickCheck will stop with an inconclusive result once it reaches the
maximum number of attempts for which it is configured.

Thus, we need to use a custom generator which guarantees that the functions it generates are
increasing:

testMonotonicity m genInc x = forAll genInc ( i  m x ‘leq’ m ( fmap i x))

The problem of coverage will still stay with us, but at least we can ensure that we reach the test of
m. For the concrete example we have taken, we can, for example, implement a custom generator
by:
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genInc :: Gen ((Float, Int)  (Float, Int))

                                                                      genInc = do dx  choose (0 , 10)

                                                                                         dn  choose (0 , 10)

                                                                                       return ( (x, n)  (x + dx, n + dn))

and, in fact, we have done so [11]. Unfortunately, this can cause an error: large integers can
overflow and result in large negative integers. To do a proper job, the generator has to examine
its arguments, and make sure that the returned values really fulfill the desired condition.

Even with the best generator, we still have a problem. Consider a measure which just sums up the
elements of the list of potential results:

sumList :: List (Float, Int)  (Float, Int)

                                                          sumList = fold id f

                                                             where f (x, n) (x’, n’ ) = (x + x’, n + n’ )

This should be a vulnerability measure: increasing the values in a list increases their sum. However,
testing it can again fail if the integral part overflows, or if summing up the floating point leads to
round-off errors. This means that we need to control also the generation of the arguments, not
just the generation of the increasing functions. This is particularly annoying, considering that an
alternative popular measure, taking the maximal elements on components, has the same structure
as summing the values:

supList :: List (Float, Int)  (Float, Int)

                                                          supList = fold id f

                                                           where f (x, n) (x’, n’ ) = (max x x’, max n n’ )

The similarity of their names reflects the similarity of their implementations: both functions are
folds, the only difference being the use of max instead of +. Nevertheless, we cannot with impunity
use the generators for supList when testing sumList. Moreover, in writing more and more complicated
generators, we mix up the test for the “interesting” monotonicity condition, with the
“implementational” defending against overflow or round-off errors. And we still have a coverage
problem, because only with knowledge of the implementation of the measure can we estimate
how well the sampling of the space of increasing functions is achieved.

It might be thought that we can always get around implementational aspects by choosing better
representations for numerical values. For example, we can avoid round-off errors by replacing
Float with rational numbers. Unfortunately, we cannot do that if the vulnerability measure requires
computations which cannot be carried out on rational numbers, such as the geometric mean.
Resorting to exact real numbers does not solve our problem either, because the order relation on
these is not decidable, and we just trade one type of interference from the implementational
aspects (defending against round-off errors) for another (guarding against undecidable
comparisons).

To sum up:

We need detailed analysis of the implementation of the function under test, and, in particular,
of the datatypes they act on.

We often need to write different custom generators even for very similar cases (such as sumList
and supList).

3 We use everywhere the propositional equality type (_) provided by Agda as if it were the only
equivalence relation of interest. Parameterising by different equivalence relations (using setoids
instead of sets) does not introduce difficulties, but makes the examples more tedious and wastes
space. Similar remarks apply to universe-polymorphism.
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We mix the conceptual part of the tests with the implementational part.

Good coverage is hard to achieve.

4. Proving Correctness of Vulnerability Measures

It is tempting to point an accusing finger at the higher-order nature of the formalization of the
vulnerability measure condition. If we hadn’t used Haskell, with its functional nature and expressive
type system, we might not have run into so much trouble testing the resulting implementations.
Testing higher-order functions is not a topic in common textbooks on software testing [1,20].

On the other hand, thinking about the problems we saw in the discussion of testing functoriality, it
might just be that the culprit is not the exaggerated expressivity of Haskell, but on the contrary:
the fact that it is not expressive enough!

In a dependently-typed programming language such as Agda, we can formulate the functor laws
as types via the Curry-Howard isomorphism3:

_ :{A B : Set}  ( f g : A  B)  Set
f =g =  a  f a  g a
record Functor (F : Set  Set) : Set1 where
field
fmap : {A B : Set}  (A  B)  F A  F B
idLaw : {A : Set}  fmap (id {A}) = id {F A}
compLaw : {A B C : Set}  (f : B  C)  (g : A  B)  fmap (f  g) = (fmap f  fmap g)

Now we can also prove that the mapping function we defined is indeed functorial. The implementation
of non-empty lists is virtually identical to the Haskell version:

data List (A : Set) : Set where
[ _ ] : A  List A
_::_ : A  List A  List A
fold :{A B : Set}  (A  B)  (A  B  B)  List A  B
fold w c [a] = w a
fold w c (a :: as) = c a ( fold w c as)
map :{A B : Set}  (A  B)  (List A  List B)
map f = fold ([ _ ]  f ) ( a bs  f a :: bs)

Proving that the map function defined preserves identities and composition is actually almost
entirely performed by Agsy, the only nudging it needed was to “use the congruence of something”
in the inductive step.

mapId : {A : Set}  map (id {A}) = id
mapId [a] = refl
mapId (a :: as) = cong ( as  a :: as) (mapId as)
mapComp : {A B C : Set}  ( f : B  C )  (g : A  B)  map ( f  g) = (map f  map g)
mapComp f g [a] = refl
mapComp f g (a :: as) = cong (as  f (g a) :: as) (mapComp f g as)

Therefore, we can construct an element of type Functor List and clinch the proof that our map is
a suitable choice:

.

.

.
.

3We use everywhere the propositional equality type (__) provided by Agda as if it were the only equivalence
relation of interest. Parameterising by different equivalence relations (using setoids instead of sets) does not
introduce difficulties, but makes the examples more tedious and wastes space. Similar remarks apply to universe-
polymorphism.
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FunctorList : Functor List
FunctorList = record { fmap = map;
                                 idLaw = mapId;
                                 compLaw = mapComp}

No problems with the polymorphism or higher-order nature of map, and, of course, no coverage
problems. Motivated by this easy success, we proceed to formalize the vulnerability measure
condition, starting first with the definition of increasing functions. We use the Agda standard
library IsPreorder record for preorders, which is parameterized on the underlying equivalence (for
which we use __ throughout):

IsIncreasing : {A : Set } ( _ _ : A   A  Set)  (A  A)  Set
IsIncreasing ( _ _ ) f =  a  a  f a
VulnMeas : {F : Set  Set}  Functor F 
                {V : Set}  {_ _ : V  V  Set}  IsPreorder __ _ _ 
                 {W : Set}  {_ _ : W  W  Set}  IsPreorder __ _ _ 
                  (m : F V  W )  Set
VulnMeas {F } fF {V } {_ _} p  {W } {_ _} p  m =

(i : V  V )  IsIncreasing _ _ i  IsIncreasing _ _ (fmap i)
where fmap = Functor.fmap fF
_ _ : F V  F V  Set
x  y = m x  m y

This is a virtually literal translation of Definition 1, and not more trouble to write than the test
Monotonicity function above.

The Agda versions of our vulnerability measure candidates are also cut & paste productions from
the Haskell code, except for renamings due to the lack of type classes in Agda:

sumList : List (Float × Int)  Float × Int
sumList = fold id f
where f : Float × Int  Float × Int  Float × Int
f (x, n) (x’, n’ ) = (x +f x’, n +i n’ )
supList : List (Float × Int)  Float × Int
supList = fold id f
where f : Float × Int  Float × Int  Float × Int
f (x, n) (x’, n’ ) = (maxf x x’, maxi n n’)

In both cases, the arguments (id and f ) that fold receives are monotonic functions, and it is easy
to see that this is a sufficient condition for a vulnerability measure. Formulating this property in
Agda raises no unexpected difficulties:

IsMonotonous : {A : Set}  {_ A_ : A  A  Set}  (pA : IsPreorder __ _ A_ ) 
                         {B : Set}  {_ B_ : B  B  Set}  (pB : IsPreorder __ _ B_ ) 
                         (A  B)  Set
IsMonotonous {A} {_ A_} pA {B} {_ B_} pB f = (a

1
 a

2
 : A)  (a1 A a2 )  f a

1
 B f a

2

IsMonotonous
2
 : {A : Set}  {_ A_ : A  A  Set}  (pA : IsPreorder __ _ A_) 

                           {B : Set}  {_ B_ : B  B  Set}  (pB : IsPreorder __ _ B_) 
                           {C : Set}  {_ C_ : C  C  Set}  (pC : IsPreorder __ _ C_) 
                           (A  B  C)  Set
IsMonotonous

2
 {A} {_ A_} pA {B} {_ B_} pB {C} {_ C_} pC f =

(a
1
 a

2
 : A)  (a

1
 A a

2
 ) 

(b
1
 b

2
 : B)  (b

1
 B b

2
 )  f a

1
 b

1
 C f a

2
 b

2

foldMeas : {A : Set}  {_ A_ : A  A  Set}  (pA : IsPreorder __ _ A_) 
                {B : Set}  {_ B_ : B  B  Set}  (pB : IsPreorder __ _ B_) 
                 (w : A  B)  IsMonotonous pA pB w 
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(c : A  B  B)  IsMonotonous
2
 pA pB pB c 

                 VulnMeas FunctorList pA pB (fold w c)

Folding monotonic functions over non-empty lists produces vulnerability measures: how hard is it
to convince the type checker of this fact? Perhaps surprisingly, not hard at all. Agsy finds out all
by itself that increasing the elements of a singleton list and applying a monotonic function to the
result is going to result in an increased measure:

foldMeas pA pB w monw c mon
2
c i isInc [a] = monw a (i a) (isInc a)

More impressively, in the inductive case, after the gentle nudge to apply the monotonicity of the
second argument to fold, Agsy can fill in all the arguments to mon2c except for the last one, the
induction hypothesis:

foldMeas pA pB w monw c mon2c i isInc (a :: as) =
                                                                            mon

2
c a (i a) (isInc a)

                                                                                          (fold w c as)
                                                                                          (fold w c (fold ( x  [i x]) ( x  _::_ (i x)) as))
                                                                                           ?

which we fill in and, after tempering a bit Agsy’s eagerness to reduce every term to normal form,
we reach the final version:

foldMeas pA pB w monw c mon
2
c i isInc (a :: as) =

                                                    mon
2
c a (i a) (isInc a)

                                                 (fold w c as) (fold w c (map i as)) (foldMeas pA pB w monw c mon
2
c i isInc as)

All that remains to do in order to ensure that our candidates, sumList and supList are indeed
vulnerability measures is to prove the monotonicity of id,+f ,+i, maxf , maxi. Well, we cannot!
Float and Int are machine built-in types, which Agda allows us access with a bit of builtin-trickery:

postulate Float : Set {- # BUILTIN FLOAT Float # -}

                                                primitive

                                               primFloatPlus : Float  Float  Float

                                               primFloatLess : Float  Float  Bool

                                                _+_ : Float  Float  Float

                                                _+_ = primFloatPlus

                                                _ _ : Float  Float  Bool

                                                _ _ = primFloatLessThan

And the same thing again for Int. But, beyond the signature of these functions, the type checker
knows nothing about them, and any additional property must be postulated, for example:

postulate  fRef l : (x : Float)  x  f x

postulate  fTrans : (x y z : Float)  x  f y  y  f z  x  f z

postulate +fmon : (x y x’ y’ : Float)  x  f x’  y  f y’  (x +f y)  f (x’ + f y’ )

where  f is a suitably lifted representation of the primitive boolean relation. The type checker
accepts then (but does not guarantee) that these properties hold, and we obtain thus a conditional
proof of correctness, with the implementational aspects nicely tucked away and signalled by the
postulate keyword.

Alternatively, we can use Peano naturals instead of Int and rationals instead of Float, for which
we can prove the required properties, and obtain an unconditional result (and a less efficient
program). Eventually, one expects such properties to be part of standard libraries, and have an
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even easier time switching from one datatype to another. In any case, the most difficult part of
the job, proving that a fold gives a vulnerability measure, is independent of the specific datatype
considered.

To sum up, formulating the vulnerability measure condition via the Curry-Howard isomorphism is
not more difficult than coming up with the corresponding tests, while proving it for the cases we considered
is easier and more general than implementing those tests. The conceptual and implementational aspects
are cleanly separated, and the problematic spots highlighted by the postulate keyword.

5. Conclusions

There have been several papers lately that show the advantages of dependently-typed programming
languages for embedded domain-specific languages [5, 19, 24], and we have just provided another
example.

A feature that distinguishes our work from the others is that it brings us in contact with scientific
programming: the kind of programming that covers the models used to generate the possible
trajectories to be measured. The scientific programming community often tackles problems with
the sort of features our example illustrates, where exhaustive testing is not feasible and formal
proofs of correctness might be easier. Scientific programmers tend also to be familiar with
mathematical proof in an informal context: many numerical methods are justified by some sort of
informal proof of correctness, which is then a candidate for translating to a formal context. The
question therefore is, why is formal proof not used more frequently in scientific programming?

One reason is probably that usable implementations of dependently-typed programming languages
have not been around very long. Moreover, the experience we have accumulated with them has
been more on the discrete, algebraic side and rather less on the continuous, real analysis side
which is important for scientific programming. The Agda standard library [26], young as it is (currently
at version 0.6), implements many kinds of algebraic structures, but has no mention of the Float
datatype or real numbers. There are, to our knowledge, no dependently-typed libraries available for
doing the sort of things that a scientific programmer takes for granted: solving linear systems,
factorizing matrices, interpolating real functions, optimization, and so on.

Developing such libraries in a dependently-typed programming language is quite challenging.
Consider, for example, that in order to implement an optimization method, one has to specify
exactly what is meant by “optimization”: does the method return the exact solution or just an
approximation of it?

We can attempt to obtain the exact solution if we work with constructive real numbers in the
realm of constructive real analysis, as suggested, for example, by Bishop [3]. There are several
representations of exact real numbers: the ones most used in constructive numerical analysis are
based on the work of Russell O’Connor in Nijmegen [22, 23]. Validated numerical methods via
constructive analysis is still a research subject. There are promising results [12], but they are quite
far from providing a usable basis for scientific programming. In particular, there are no library
functions available yet for solving a linear system of equations.

An alternative approach is to content ourselves with an approximate solution. After all, the vast
majority of numerical libraries available today work with floating point numbers and thus abandon
the search for an exact solution from the beginning. Here the challenge is to specify what is being
computed: what guarantees are made about the quality of the approximation delivered? Existing
libraries tend to be surprisingly vague here, encouraging a trial-and-error approach and relying on
the expertise of the user. The arguments for why a certain method should lead to a good
approximation of the solution are also often expressed in terms of exact real numbers and therefore
can only be formalized with the help of postulates, as we have done above.

To do better, one has to formalize the properties of floating-point numbers as expressed in the
IEEE 754 or 854 floating-point arithmetic standard. Several such formalizations have been achieved
in PVS [18], HOL [10], and Coq [4], and have been used to verify the implementation of algorithms for
fundamental and relatively simple functions, such as the square root or the exponential. To our
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knowledge, no substantial numerical methods have might have to wait until industry is motivated
enough to fund it.

Until such a time, the best that we can do is to separate the problems that require the continuous
/ analytic from those that deal more with the discrete / algebraic, and prove the correctness of the
latter conditional on (postulated) correctness of the former, which we can at most test. In this
sense, in the above examples, we were indeed lucky, having to deal only with algebraic structures
such as preorders and lists, and being satisfied with correctness conditioned on the field structure
of floating-point numbers and integers (a structure they, in fact, do not have!).
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