
Formal Verif ication of Systemc Using Error-Free
Translation

Claude Helmstetter
Verimag – CNRS
2 Avenue de Vignate, 38610 Gières, France
claude.helmstetter@gmail.com

ABSTRACT

SystemC/TLMs are C++ programs that simulate embedded software before the
hardware low-level description is available and are used as gold-plated models for
hardware verification. Verification of SystemC/TLMs is important because a
mistake in the model can deceive the system designers or reveal a defect in the
specifications. There is an open-source simulator, but there are no formal
verification tools. To apply model checking to System-C/TML models, you must
provide semantics for standard C++ code and specific System-C/TML features.
The usual approach is translating the SystemC/TML code into a formal language
with a model checker. However, we suggest a different approach that eliminates
the risk of error-prone translation. In the case of a system-C/TML program,
transitions are obtained by running the original code using G++ and an extended
systemC library. We ask the user to provide additional functions to store the
current model state.These extra functions are typically less than 20% larger
than the original model and allow applying all CADP verification capabilities to the
SystemC/TLM model.

Keywords: Systemc/TML Code, Formal Verification Procedures,  Model Checkers

1. Introduction

The design of abstract models written in SystemC/TLM has become more common
in the development of embedded systems. These models allow the simulation of
the embedded software before the hardware RTL description is available, and are
used as golden models for hardware verification. The verification of the SystemC/
TLM models is an important issue since an error in the model can mislead the
system designers or reveals an error in the specifications.

ASI (Accellera Systems Initiative, previously OSCI: Open SystemC Initiative)  provides an
open-source simulator for SystemC/TLM and a library SCV (SystemC Verification) to
ease test generation. However, ASI does not provide tools for formal verification.
Moreover, while the SystemC specification allows many schedules for a given
test case, the ASI simulator always exhibits the same schedule. Thus,
even if an execution leads to the expected result, another execution with
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a different schedule may be erroneous. To find these kind of bugs, many publications have
experimented with the use of model checking. The problem of verifying C++ and SystemC codes
could be avoided by writing transactional models in a formal language directly. However, in order
to model embedded systems at the transaction level, engineers of industrial companies prefer to
use SystemC/TLM. One reason is that SystemC/TLM provides all the useful features directly, like
shared memory and transactional communication channels. Another reason is that a SystemC/
TLM program is mainly C++ code, so engineers can learn SystemC/TLM quickly, and existing C
code can be reused easily.

In order to apply model checking to a SystemC/TLM program, the usual approach relies on the
translation of the SystemC/TLM code into a formal language for which a model checker is available.
A lot of languages and tools have been tested so far (see Subsection 3.1.2). Nonetheless, there
have been few successes with industrial case studies.

We propose another approach that suppresses the translation effort. Basically, an explicit model
checker must be able to execute transitions and store states. Given a SystemC/TLM program, we
assume that the states are the places where processes yield back to the scheduler. Consequently,
transitions correspond to pieces of C++ code delimited by yield points: either wait statements or
return statements from the process main function. We obtain the transitions by executing the
original code using g++ and a SystemC library, as in any simulator. Storing the state could be
done by copying the whole memory used by the simulator, but would be inefficient. Therefore, we
ask the user to provide additional functions to store the current state and restore a previous state.
Part of the state, including the SystemC kernel, is stored automatically; so in general the user can
only store the SystemC module data members.

Following this approach, we have developed a new front-end for the CADP tool suite. The CADP tool
suite includes many tools useful for formal verification and bug finding; the main tool is an explicit
model checker. This article does not introduce a new verification technique (we did not change
anything in CADP) except a pragmatic and efficient way to use existing tools to verify programs
written in a language that has not been designed to ease formal verification. The new front-end we
have developed is not fully automatic since the user must provide some additional functions;
these additional functions generally represent less than 20% of the size of the original model.

The model checking technique is known to be limited by the state space explosion. Because we
rely on this technique and there are no changes in the core algorithm, we are limited in this area.
Nevertheless, model checking has been applied to many real-life case studies (over 150 using
CADP in many application fields1 most of the times, using model checking allowed to verify properties
or discover bugs. We have written our new front-end in a way that avoids to make the state space
explosion even worse by adding intermediate states and transitions, which was the case using a
previous approach [16]. Experiments which were first made with benchmarks, then with a single
SystemC module, and finally with a basic system, show that we can indeed find bugs and prove
some properties on real-life TLM models.

The remainder of this article is organized as follows. We present briefly SystemC and TLM in
Section 2. Section 3 gives an overview of the related work and presents the existing CADP toolbox.
Section 4 describes our technique to connect SystemC/TLM with CADP. The performances of
TLM.open are evaluated in Section 5 and Section 6 concludes this article.

2. SystemC and TLM

SystemC [1] is a C++ library published by the Accellera Systems Initiative (ASI ) and defined by an IEEE
standard which provides classes to describe heterogeneous systems composed of hardware and
software. The architecture of a system is defined by a set of modules connected by synchronous
or asynchronous ports and channels (sc_module, sc_port, ...). Each module contains zero, one, or
various processes (SC_THREAD or SC_METHOD) describing the system’s behavior. SystemC processes
interact using shared memory or communication channels and are synchronized using SystemC
events (sc_event e, e.notify(), wait (e)) with timing annotations (sc_time t, wait (t)).

1 Case studies achieved using the CADP toolset: http://www.inrialpes.fr/vasy/cadp/case-studies.
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Each SystemC process is a C++ method that is executed by the SystemC scheduler communicates
with other processes using shared memory and may explicitly suspend itself by executing a wait
statement. When the process is resumed by the scheduler, its execution continues from the wait
statement. Each SystemC process is eligible or running or waiting for a SystemC event. There is,
at most, one running process simultaneously. If the running process notifies an event, then all
processes waiting for this event move from waiting to eligible.

The Transaction Level Modeling (TLM) library [10] built upon SystemC, provides a transaction
mechanism that encapsulates communication protocols (data transfer and synchronization) between
modules and accelerates both model design and simulation. Using a transaction, a process in an
initiator module can directly call the methods exported by a target module. Thus, a process can
read many values from a memory, or set many registers of a peripheral without any costly inter-
process synchronization (no context switch is required). At the TLM level of abstraction, processes
inside the same module communicate using SystemC events and shared variables. A TLM model
can be timed or untimed: a timed model contains timing annotations (sc_time t, wait(t)) whereas an
untimed model does not. An untimed model includes more possible behaviors than a timed model,
increasing the coverage, but also the cost, of the verification.

Because SystemC and TLM are C++ libraries, simulating a SystemC/TLM model does not require a
dedicated SystemC/TLM parser. A SystemC/TLM model is parsed and compiled as with any C++
program, using a regular C++ compiler, such as g++.

3. Related Works

3.1. Verification of SystemC/TLM Models
In order to provide formal verification for SystemC/TLM programs, two approaches were
investigated: stateless model checking of a SystemC/TLM program and a translation of a SystemC/
TLM program into a language for which a state ful model checker is available.

3.1.1. Stateless Model-Checking
A stateless model-checker explores the set of all the possible executions of a given program
without storing the states. Because the states are not stored, a stateless model-checker can
execute the same transition many times. Moreover, if the program under verification has at least
one possible execution that does not terminate then the stateless model-checker will not terminate
either. However, stateless model-checkers have benefits: 1. naive stateless model-checkers are
easy to implement because one just needs to modify the functions used for non-deterministic
choices; 2. their memory consumption is limited (linear in terms of execution lengths).

Many stateless model checking tools have been implemented for SystemC/TLM programs [15, 21,
2]. In order to reduce the number of executions explored, these model-checkers select a subset
for the possible executions; this subset is guaranteed to detect all the errors of a particular
family; such as all the assertion failures or all the deadlocks. All these stateless model-checkers
implement dynamic partial order reduction [5]; the selection of the executions explored is based
on the analysis of detailed execution traces. The dynamic partial order algorithm was specifically
adapted for the particularities of the SystemC scheduling policy.

In particular, [14, 15] show how to validate programs with loose timing annotations encoded by
bounded intervals. This technique extracts a finite subset from the infinite set of the timings
allowed by the specification. Given a program that always terminates and without non-deterministic
data choices, this technique detects all the assertion failures and the deadlocks.

These tools give interesting results for small and medium sized industrial examples. Using SCRV
[13], a synchronization error was found in a model of a video decoder provided by STMicroelectronics.
However, stateless model-checkers can only be applied to terminating programs without non-
deterministic unbounded data inputs.

3.1.2. Translate then Verify
For programs that do not terminate, a second approach was investigated. The idea was to translate
the SystemC/TLM program to be verified into another language, and then verify the translated
program using an existing stateful model checker. This approach has first been applied to the RTL
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level SystemC descriptions [4, 11]. Many translations and languages have been proposed for the
validation of transactional models, as in [25], which translates SystemC/TLM programs into finite
state machines (FSM), similarly [20], which describes abstraction techniques and a translation from
SystemC/TLM to labeled Kripke structures. Most of these translations are manual, the first exception
being the LusSy tool chain [24], which automatically translates TLM models into synchronous
automata with variables; it provides some simple abstraction techniques (e.g., abstract address
representation). The LusSy tool chain has been connected to many model checkers, including
symbolic model checkers based on BDD or SAT. Some minor examples have been successfully
verified, but industrial examples face the state space explosion problem. There are now other
automatic translation tools starting from SystemC, including [17] that can translate SystemC/TLM
models into Uppall models, and allow verification of liveness properties and timing constraints. [12]
translates TLM models into sequential C programs, in order to use verification tools dedicated to
software.

The state space explosion problem appears mainly because TLM models are mostly asynchronous.
Thus, after each transition, there are many valid scheduling choices that should be explored. It is
therefore suitable to use the model checkers for asynchronous programs as these model checkers
have been specifically optimized to fight state space explosions arising from asynchrony. Translation
of TLM programs into Promela [27] has allowed TLM models to be verified using the SPIN checker
which uses partial orders to reduce state spaces. Since then other translations into Promela have
been presented [22, 3], allowing the verification of larger models. Note that the translation defined
in [3] was implemented in an automatic tool where other back-ends were available.

Furthermore, we firstly proposed a translation of TLM to LOTOS [16, 26] that enables verification of
the benchmark of [27] for a slightly greater number of processes than using SPIN. The translation
was fully manual, preventing the approach to scale up.

Next, [7] presented both an extension of our TLM to LOTOS translation and an application to an
industrial case study. As shown in Figure 1, part of the SystemC/TLM code was translated into
LOTOS while data-types and related operations were kept as C++ code, thus strongly reducing the
translation effort. This paper showed that some properties can be checked on industrial code, but
the amount of manual work still limited the efficiency of the approach.

3.2. The CADP Verification Toolbox
Our goal is to detect synchronization errors between asynchronous processes of SystemC/TLM
programs or to guarantee that the communication protocol they use is correct. For this kind of task
one of the best techniques is model checking and in particular explicit model checking.

Figure 1. Verification of hybrid LOTOS/C++ models
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Figure 2. Basic algorithm for LTS generation

A well-known explicit model-checker is SPIN. In this work, we investigated the use of another
model-checker; namely CADP.

CADP (“Construction and Analysis of Distributed Processes”) [9] is a toolbox for the validation of
communication protocols and distributed systems.

The usual entry point for CADP is the language LOTOS. The ISO standard LOTOS [18] (Language Of
Temporal Ordering Specification) is a process algebra used to describe asynchronous concurrent
processes communicating and synchronizing by rendezvous on gates. This language is well suited
for designing communication protocols.

The semantics of a LOTOS specification is formally defined by a state graph, also called an LTS
(labeled transition system) – i.e. a set of states and transitions labeled by gates and offers between
states.

CADP [8] includes a compiler from LOTOS to LTS with many tools exploiting the LTS for simulation
as well as model checking of modal -calculus formulae, equivalence checking, test generation
and performance evaluation. The LOTOS to LTS compiler generates the LTS by executing all transitions
of the system under verification; each visited state is recorded, so that each transition is executed
once only. The algorithm is shown in Figure 2.

4. Connecting SystemC/TLM with Formal Methods

4.1. The Architecture of TLM.Open
The CADP toolbox architecture is similar to the GNU compiler tool suite, with many front-ends and
back-ends. There is one front-end per input language; the front-end reads a program and
implements some basic analysis (e.g., type checking). Then there is one back-end per CADP
feature, such as simulation, LTS generation, or on-the-fly property checking. The most used
frontends are caesar.open which manages LOTOS programs and bcg_open which reads compressed
and explicit LTS (bcg stands for “binary coded graphs”). All CADP front-ends connect with CADP back-
ends using the OPEN/CÆSAR interface [6].

In this section, we present TLM.open which is a new CADP front-end allowing the use of the same
back-ends as caesar.open and bcg_open. TLM.open is a C and C++ library that implements two
interfaces: the SystemC interface and the OPEN/CÆSAR interface. The architecture of TLM.open is
shown in Figure 3.

A SystemC/TLM program communicates with TLM.open through the SystemC interface as a
SystemC/TLM program communicates with a SystemC simulator. The library TLM.open provides
the same classes as the ASI SystemC simulator, including the sc_module, sc_port, sc_event, sc_signal,
etc.

R  { initial state }  // set of remaining states

E     // set of explored states

while (  x  R ) do

      for each transition x  y do

        add the transition x  y to the LTS

        if ( y  E  R ) then R  R  { y }

   R   R \ { x }

  E   E  { x }

end while
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Figure 3. Overview of the verification framework. The model is linked with the SystemC TLM.open library
instead of the ASI library

The OPEN/CÆSAR interface provides the operators required by the CADP model-checker itself. In
order to implement the algorithm described by Figure 2, the following operators are required and
must be provided by the TLM.open front-end:

 Generation of the initial state.

 Enumeration and simulation of the transitions starting from a given state.

 Efficient storage of a state (requires comparison and hash functions).

To simulate a transition, TLM.open executes the corresponding C++ code of the SystemC/TLM
program. This C++ code is compiled with an unmodified C++ compiler such as g++. TLM.open does
not parse the C++ code itself and does not produce LOTOS code.

The most difficult task is to store and restore the states of the SystemC/TLM program. The person
who writes and verifies the SystemC/TLM program, called user in this paper, has to provide some
additional functions that allow TLM.open to store the states of each SystemC module. To date,
these additional functions have had to be written by hand. Thus, our approach is not fully automatic.

When TLM.open is used with the LTS generator of CADP, the result is an LTS with two kinds of
transitions. Here, offers are only used to add information to the transitions, and have no impact on
synchronizations or communications.

TE transitions indicate that time has elapsed; the offer gives the duration and the list of events
triggered and processes awakened. For example, “TE !o(+41ms, VGAC.compute)” means that the
SystemC clock has advanced 41 ms and the process “VGAC.compute” is now awake.

EXEC transitions represent the execution of a SystemC process; the offers name the executed
SystemC process, the inputs of this process if the special rand () function of TLM.open was called
(cf. Section 4.3.2) and the outputs generated using the overloaded puts () function. For example,
“EXEC !VGAC.compute !o(image updated, IRQ sent)” means that the SystemC scheduler has executed the
process “VGAC.compute” and this process has printed two messages “image updated” and “IRQ sent”.

4.2. Storing and Restoring Program States
The TLM.open library includes a SystemC simulator. The state of this simulator consists of the
state (i.e., the current value) of each object that has been instantiated. Some objects are described
by SystemC classes (such as: sc_event, sc_signal, ...) and others are described by user classes.
SystemC modules are hybrid: some class members are inherited from the base class sc_module but
other members are defined by the user.

A stored state contains a copy of each value of the simulator state that may change during the
simulation. A stored state must be as small as possible and does not use the same types as the
simulator states: constant values are not stored, Boolean values can be grouped in one byte using
bit fields.
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Figure 4. Memory layout: simulation state and stored states

All objects which are defined by a SystemC class are stored automatically by the TLM.open library.
The other objects are stored using callback functions implemented by the user. Each SystemC
module must provide the following functions:

 size_t size () const: number of bytes needed to store a copy of the SystemC module.

 size_t alignment () const: specify whether padding bytes are needed.

 void store (char *dest) const: store the current state of the module in dest.

 void restore (const char *src): restore the state of the module according to the copy stored in src.

The store () function must generate a canonical representation, so that state comparison can be
done using memcmp () and hash functions can be generated automatically.

Implementing the functions size () and alignment () generally requires only one line of code for each.
The store () function implementation contains two lines of code per module member on average;
similarly the restore () function. Implementing these functions requires some manual work, but less
than translating the whole model into another language.

Theoretically, generating automatically the store () and restore () functions should be simpler than
translating the whole code, because it is not necessary to manage the code describing the behavior.
However, such a generator would have to parse and manage a large part of C++, and the generated
functions would likely be less efficient than those hand-written.

4.2.1. Storing Modules using Flat State
The user has many possibilities to implement the store and restore functions. The basic solution
is to define a new struct type with one field per member of the SystemC module that is not
constant and not managed directly by TLM.open. To store the state, the user filled this new type by
copying values from the C++ class, and inversely, the user filled the C++ class by copying values
from the struct type when the state must be restored. This is shown in the example below.
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SC_MODULE(Foo) {
sc_event e;        // state stored by the tlm.open library
bool flag;          // dynamic data uint32_t data;  // dynamic data
const sc_time period; // static data, not stored
... // module implementation

// code below is used only by TLM.open
struct State { // container type
   bool flag; uint32_t data;
   void set(Foo *f ) const { f->flag=flag; f->data=data;}
   void set(const Foo *f ) { flag=f->flag; data=f->data;}
};
size_t size() const {return sizeof (State);}
size_t alignment() const {return 4 /*alignmentof (State)*/;}
void store(char *dst) const {
   reinterpret_cast<State*>(dst)->set(this);}
void restore(const char *src) {
   reinterpret_cast<const State*>(src)->set(this);}
}; // Foo

In this example, storing the state of an instance of Foo requires 8 bytes (i.e., sizeof (Foo::State)). If a
program contains n modules M

1
, . . . , M

n 
, each module being stored using a type M

i 
::State, then each

state stored consumes at least sizeof (M
i 
::State) bytes.

4.2.2. Storing Module using Hierarchical State
Most of the time, a transition modifies the state of only one or two modules. If storing a module
consumes a lot of memory, it is then mostly better to use a hierarchical state. Using hierarchical
states, the main state contains a pointer to the module state instead of the module state itself.
When a transition is executed and the module has not been modified, then the new stored state
contains only a pointer to the previously stored value.

Moreover, checking whether the module has been modified by the last transition is not enough.
Even if the module has been modified, it is possible that we already have a copy of its current
state. At the end of a transition, we search all the previous states of this module, which are stored
in a container (hash table or binary tree). If this module state is encountered for the first time,
then it is added to this container, or else we reuse the existing module state.

Here is how the Foo state could be recorded using a hierarchical state:

typedef std::set<const State*, StateCmp> state_set;
static state_set foo_states;
size_t Foo::size() const {return sizeof (State*);}
void Foo::store(char *dst) const {
    State *s = new State(); s->set(this);
   std::pair<state_set::iterator,bool> p = foo_states.insert(s);
   if (!p.second) delete s;  // This Foo state already exists,
                                     // so we reuse the previous version.
   *reinterpret_cast<const State**>(dst) = *p.first;}

To compare two states of the whole program, we just need to compare the pointers because
identical module states are never stored in distinct memory locations.

In some cases, hierarchical states can significantly reduce the memory consumption. Moreover,
whereas the OPEN/CÆSAR interface requires the main state to have a fixed size, hierarchical states
allow a module to be stored whose size is not statically bound.

Internally, for all objects that are stored automatically, the TLM.open library uses a flat state for all
objects except SystemC threads (SC_THREAD). Moreover, storing the state of a thread is done by
copying its execution stack. Note that when yielding, the Quick Threads library used by SystemC



dline.info/jio            9

Jo
ur

na
l 

of
 I

nf
or

m
at

io
n 

O
rg

an
iz

at
io

n 
 V

ol
um

e 
14

  
N

um
be

r 
 1

  
M

ar
ch

  
20

24
pushes the register contents and the program counter on top of the thread stack. As thread stack
sizes vary during simulation because stacks may become large, and because at most one thread
stack is modified during a transition, the hierarchical state technique here is more efficient than
flat states.

4.3. Implementation of the OPEN/CÆSAR Interface

4.3.1. Generation of the Initial State
The generation of the initial state faces a technical problem. Moreover, SystemC and CADP do not
use the same control flow:

 A SystemC simulator creates the initial state by calling the function sc_main, which is implemented
by the user, and the simulation starts when the user calls back the function sc_start from the
sc_main function.

 A CADP back-end creates the initial state by calling the function CAESAR_START_STATE, which is
implemented by the front-end and the verification starts after the function CAESAR_START_STATE
returned.

Thus, the CADP back-end calls the function CAESAR_START_STATE of TLM.open, and this function
calls sc_main. The function CAESAR_START_STATE must return when sc_start is called, before sc_main
returns. If one returns in advance of sc_start using a return statement or a C long jump or a C++
exception then the modules allocated on the stack are destroyed before they are used. The solution
is to execute the sc_main function in a separated thread, which has its own stack and suspends
this thread when sc_start is called. As we do not need real concurrency, this thread is implemented
using the collaborative Quick Threads library, which is used to implement the SystemC threads
too.

4.3.2. Enumerating the Transitions
The key function of the OPEN/CAESAR interface is CAESAR_ITERATE_STATE. This function must
enumerate the transitions starting from a given stored state x. A transition is defined by a label s
(a C string) and the successor state y.

There is at least one transition per eligible process. Assuming all transitions are deterministic, the
TLM.open library behaves as follows:

1. A SystemC process is selected.

2. The simulator is set according to the stored state x, by calling the restore function of each
stored object (either a user function for modules, or a TLM.open library function for other SystemC
objects).

3. The transition is executed, until the elected process yields back to the scheduler.

4. The new simulator state is stored in y, by calling the store function of each stored objects. The
label s is created using the name of the elected process, and the outputs generated by the user
using the puts () function.

5. This transition is sent to the back-end.

6. If there is another eligible thread, then go back to step 1.

If no processes are eligible, then TLM.open can let  the time elapse until a process is awoken, just
like a regular SystemC simulator. In this case, a specific transition is generated with the label
“TE”. If no process can be awoken by a time elapse, then this means that x is in a deadlock state.
In order to simulate inputs or a non determinism, the TLM.open library provides a rand (int MAX)
function. From the user point of view, this function returns a number between 0 and MAX. In case
of a simulation, an implementation would choose a number randomly. On the contrary, model
checking requires an enumeration of all values. In order to generate the full LTS, each time
TLM.open encounters a call to rand (), it records that another transition exists for the same process
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for which values have already been tried. Thus, the same code will be executed MAX+1 times,
generating as many LTS transitions. Because a transition may call rand () many times, TLM.open
uses a stack to remember its position in the transition tree. Thus, all input combinations are finally
generated (e.g., “x=rand (2); y=rand (3); wait ();” generates 3 × 4 = 12 transitions).

4.4. Features and Limitations
Most SystemC, TLM and C++ features can be used normally. However, some features require
special care. As aforementioned, the functions puts () and rand () have a special meaning when used
with TLM.open.

4.4.1. The sc_stop Function
SystemC provides a function sc_stop() to stop the simulation. Because all states that can be reached
using a simulator must be reached using TLM.open, calling sc_stop() may not stop the generation of
the LTS. With respect to the SystemC specifications, the effect of executing sc_stop() in a transition
x  y is to eliminate all the successors of y. If other transitions are pending, then they are
explored normally.

4.4.2. Recording the Current Time
A SystemC simulator, such as the ASI simulator, records the current date. The user can read this
data using the function sc_timestamp (). Because this value is stored in the state, the state space
becomes infinite for all programs containing a timed instruction in an unbounded loop. An example
of such program is:

SC_THREAD(compute); ...
void compute() {
while (true) {wait(1, SC_SEC);}}

To allow the verification of this program, TLM.open provides an option to record only relative
durations. This option disables the function sc_timestamp(). Using this option, the LTS of the program
above has only two states and two transitions: a transition with gate “EXEC” leads from the initial
state to the second state and another transition with gate “TE” leads back to the initial state.

Figure 5. Source code of the chain benchmark for n = 1
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4.4.3. Pointers and Dynamic Allocations
It is perfectly safe to use pointers when verifying a SystemC/TLM program with TLM.open. Both
the pointer and the pointed value must be stored (respectively restored) when the module is
stored (resp. restored).

However, dynamic allocations should not be used because a transition can be executed many
times, calling new creates a memory leak (a second object will be created if the transition is
executed again), and calling delete corrupts the memory (memory can be freed twice). There is
one exception: a new statement can be used safely if the corresponding delete statement is
found in the same transition.

If using dynamic allocation is necessary, then the user must define its own memory allocator.
Next, the user must provide store and restore functions to manage the state of the memory
allocator itself. Thus, when a state is restored, the memory allocator knows which objects are
allocated and which memory locations are available.

5. Examples

5.1. The chain Benchmark
We evaluate our new front-end on the benchmark proposed in [27] and reused in [16]. This benchmark
consists of a chain of interrupt transmitter modules, whose length is parametrised by n. Modules
communicate through transactions, and processes synchronize with events.

Figure 5 presents the SystemC original benchmark for n = 1. To increase n, one adds a transmitter
module between the last transmitter and the sink module. There are always n+2 threads (functions
named compute and process) and n+1 events (private attribute e of each module).

It is very easy to use TLM.open to verify this benchmark because the modules do not contain any
dynamic members. Thus, the store and restore functions can be left empty. The state of the
SystemC events and of the SystemC threads (possibly including local variables) are stored
automatically.

We have also tried TLM.open on a modified version of this benchmark. The modified version uses
the SC_METHOD instead of the SC_THREAD. Using SC_METHOD makes the code more difficult to
read, but accelerates the simulation and reduces the memory consumption. When replacing a
SC_THREAD by a SC_METHOD, local variables have generally to be replaced by module members,
and thus must be stored and restored by the user callback methods.

Figure 6. Screen-shot of the OCIS simulator of CADP (chain benchmark, n = 1)
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17

193 s

62 s

1,048,574

786,431

19

844 s

268 s

4,194,302

3,145,727

n =

LTS generation (SC_THREAD)

LTS generation (SC_METHOD)

state number

state number after minimization

3

1.1s

1.1s

62

47

7

1.2 s

1.1 s

1022

767

11

2.3 s

1.5 s

16,382

12,287

15

35.3 s

11.8 s

262,142

196,607

21

4314 s

1445 s

16,777,214

n.a.

Table 1. Results of the experiments using TLM.open

Among the CADP tools that can be used, there is ocis, an interactive simulator with backtracking.
Figure 6 provides a screen-shot of this tool. Also, for small values of n, the LTS can be fully
generated and displayed (cf. Figure 7).

Table 1 presents the results for the generation of the full LTS, using a Macbook machine with 4 GB
of memory. For comparison, [27] verifies this benchmark up to n = 15 (47 seconds), and [16] verifies
this benchmark up to n = 19 (8293 seconds for n = 19, 60.2 seconds for n = 15). These results show
a significant improvement compared to the previous approach based on the translation into Promela
or LOTOS. The efficiency of TLM.open can be explained by two points:

 One transition in the LTS corresponds exactly to one SystemC transition (i.e., the execution of a
process between two wait statements.) There are no additional transitions used to mimic the
behavior of the SystemC scheduler.

 The memory size of a state is kept as small as possible, allowing the model checker to store
more states.

Figure 7. The LTS of the chain benchmark for n = 1 (output of bcg_edit)
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The modified benchmark in which SC_THREADs have been replaced by SC_METHODs gives identical
LTSes. However, the generation is three times faster, and the memory consumption is reduced:
for n = 19, generating the LTS for the original benchmark requires 650 MB whereas the modified
version requires only 387 MB.

In this experiment, SC_THREADs are stored using hierarchical states. We have tried another
implementation using only flat states. Using the original benchmark with SC_THREADs, the flat
state technique leads to an explosion of the memory consumption: 700 MB instead of 3.5 MB for
n = 12 and the LTS generation is about 1.5 times slower.

5.2. The LusSy Benchmark
The thesis [23] describes another SystemC/TLM benchmark, which is similar to the chain benchmark.
The main difference is that the LusSy benchmark uses real transactions which are routed by a bus
model.

It is worth noting that LusSy has a special interpretation of the timing annotations [23]. TLM.open
provides an option to mimic the semantics of LusSy. This allows a greater number of schedules
than the official specification, because it considers that all durations are equal.

Using TLM.open, instrumenting this benchmark with store () and restore () functions is trivial for all
modules but the bus model because the whole state is contained in SC_THREAD stacks, which are
automatically stored and restored. The bus model requires about 40 additional lines of code, used
for storing and restoring the list of pending transactions. When using LusSy, no additional code is
needed. However, LusSy does not use the bus model code. Indeed, LusSy is currently restricted to
a few bus models for which a corresponding automaton model has been manually provided.
Modeling a bus using automata requires more work and knowledge than adding store() and restore()
functions. Therfore using LusSy is not easier than using TLM.open.

Table 2 provides the results obtained with TLM.open. It appears that TLM.open uses less memory
than LusSy combined with SMV. Thus, TLM.open can verify this benchmark up to n = 18, whereas
LusSy does not work over n = 13 (with a common memory limit fixed at 512 MB). For n = 12,
TLM.open needs only two seconds where LusSy+SMV spends over one hour.

n

n = 15

n = 16

n = 17

n = 18

Memory Consumption

30.8 MB

64.6 MB

136.1 MB

289.8 MB

Time

11.3 sec

24.1 sec

52.6 sec

116.3 sec

Table 2. Results for the LusSy benchmark verification using TLM.open

5.3. Application to a Timer
This subsection illustrates the features provided by TLM.open by showing how it can be applied to a
simple but realistic example. We consider a timer with two registers; PERIOD and ACK.

 Writing a non-null value to PERIOD starts the timer.

 When enabled, the timer generates an interrupt periodically.

 Writing to ACK acknowledges the interrupt.

 Writing 0 to PERIOD stops the timer.

We have 4 TLM models for this timer. The first comes from the SimSoC project [19]; the second
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is identical to the first with a bug fix; the third and the fourth were provided respectively by an
engineer and a PhD student.

In order to verify the first TLM model, which contains 80 lines of code, we had to write 17 additional
lines of code to implement the store () and restore () functions. The timer verification requires the
design of an environment modeling the commands generated by the embedded software. For this
example, we decided to describe the environment using SystemC code. Here, the code of the
environment process:

void compute () {
switch (rand(5)) {
case 0: puts(“stop”); port->write(Timer::PERIOD_REG_OFFSET,0); break;
case 1: puts(“start”); port->write(Timer::PERIOD_REG_OFFSET,5); break;
case 2: puts(“ack”); port->write(Timer::ACK_REG_OFFSET,1); break;
case 3: {
std::ostringstream oss;
oss <<“read_period:” <<port->read(Timer::PERIOD_REG_OFFSET);
puts(oss.str().c_str());
break;}
case 4: {
std::ostringstream oss;
oss <<“read_ack:” <<port->read(Timer::ACK_REG_OFFSET);;
puts(oss.str().c_str());
break;}
case 5: puts(“wait”); next_trigger(5,sc_core::SC_MS); return;
}
next_trigger(sc_core::IMMEDIATE_WAKE_UP);
}

Note that we trigger the timer with only one specific period. Explicit model-checking does not
permit the verification of this model for all values of the period. Thus, we have to assume that the
presence of bugs does not depend on this particular period.

The last line uses a special feature of TLM.open: the process yields back to the scheduler but
remains eligible. This statement is similar to the yield () statement introduced in [15]. The rationale
of this statement is to break critical sections that would exist in the model but not in the real
system.

Firstly, we applied on-the-fly property checking. The property checker of CADP revealed an error in
the first version: for some particular schedules, the timer could generate an interrupt after it was
stopped. A counter-example was automatically shown, allowing us to fix the bug. Another minor
bug was found in the third version.

Secondly, we applied equivalence checking. We generated the LTS of each timer TLM model, we hid
the internal transitions and we minimized them according to the branching equivalence. We got
the proof that the second and the forth version are bisimilar modulo branching equivalence. It
means that if one contains an error, the other contains the same error. Obviously, the first and
third versions are not bisimilar, since they contain distinct errors.

5.4. Application to a Basic System
In order to evaluate the behavior of TLM.open on a system made of many modules, we studied a
basic system that was originally used for practical work. This system was implemented on FPGA.
It contains a MicroBlaze processor, a VGA controller, plus the usual and mandatory peripherals:
bus, memory, timers, interrupt controller. In the SystemC/TLM model, the user can model the
processor, by either using a native wrapper or an instruction set simulator (ISS). The embedded
software compute images and manage the configuration of the peripherals.

For the validation of the embedded software, we decided to use the native wrapper instead of the
ISS. On the one hand, there is nothing that prevents us using the native wrapper for this software
(i.e., no inline assembly code and no dynamic code loading). On the other hand, using the ISS



dline.info/jio            15

Jo
ur

na
l 

of
 I

nf
or

m
at

io
n 

O
rg

an
iz

at
io

n 
 V

ol
um

e 
14

  
N

um
be

r 
 1

  
M

ar
ch

  
20

24
would multiply the number of states: 1 state per binary instruction with the ISS instead of one
state per explicit synchronization point with the native wrapper.

Thus, we have instrumented all modules with store () and restore () methods. Then, we changed the
output functions so that traces are added to LTS labels instead of sent to the terminal. Finally, we
made some simplifications: 1. we have disconnected the graphical library used by the VGA module,
which means that during model checking we do not display the simulated VGA screen. 2. We have
simplified the TLM protocol so that it no longer uses a transaction pool because the transaction
pool mechanism is only a trick to make simulations a little faster.

Using TLM.open, we generated the LTS corresponding to this basic SystemC model for one embedded
software. Using the bcg_min tool of CADP, the LTS can be reduced to a minimal LTS. This minimal
LTS is small enough to be read by human. By observing this LTS, we notice that in some cases the
processor was receiving an interruption before any other module raised one. The rationale was a
missing dont_initialize() in the SystemC code. Because the occurrence of this error depends on the
scheduling, this bug had not been noticed before we used TLM.open. After fixing this bug, we
generated the minimized LTS again. This second LTS is represented by Figure 8.

Finally, we tried to add some errors in the embedded software, such as changing an initial value or
disabling a register write in order to verify that all errors can be discovered during model checking.
For each error, we got either a SystemC error message (such as assertion failure coming from the
TLM code) during LTS generation, or an LTS that was not equivalent to the reference once (equivalence
checked using the CADP tool bisimulator).

Figure 8. LTS generated for the basic system, after minimization

6. Conclusion

We presented a new framework for the verification of SystemC/TLM programs. Our new System-
C/TLM front-end avoids the need to translate the whole SystemC/TLM program into another
language. Compared to approaches based on manual translation, the verification using TLM.open is
much simpler: there are less lines of code to write and the engineers do not need to learn a new
modeling language. Moreover, TLM.open allows better scaling than previous works. Thanks to the
numerous tools of CADP, it is now possible to check complex properties and to test the equivalence
of two SystemC/TLM programs.

Note that TLM.open can be used with pure SystemC programs also (i.e., programs not using TLM).
The rationale of calling our tool TLM.open instead of SystemC.open is related to the abstraction
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level: the CADP verification toolbox is optimized for asynchronous processes. SystemC/TLM models
use asynchronous processes, but SystemC programs modeling a system at a lower level of
abstraction use synchronous processes. In order to verify synchronous processes, symbolic model-
checker based on BDD or SAT, are in general more efficient than CADP. Thus, TLM.open can be used
for pure SystemC programs, but is not likely to be the most efficient tool. As explained in [7], the
most difficult task when verifying a SystemC/TLM program is to extract an abstract model that is
simple enough to be formally verified. Thus, the main further work is to integrate TLM.open in the
design flow in such a way that this task becomes simple and safe. Additionally, it would help to
automatize the generation of the store () and restore methods.
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