
Model and Instance Diagrams for Meta-modelling and
Model-driven Engineering

Johan G. Granström
Google
Brandschenkestrasse 110
8002 Zürich, Switzerland
{georg.granstrom@acm.org}

Department of Computer Science
King’s College London Strand,
London, WC2R 2LS, U.K.

ABSTRACT

Sometimes, a diagram can contain more than 1000 lines of code. Unfortunately,
most software engineers abandon diagrams after the design stage and do all
the actual work in code. If diagrams were code, the superiority of code over
diagrams would be even greater. This paper proposes that model and instance
diagrams, or equivalently class and object diagrams, become the first-level
entities in a well-expressed programming language, namely type theory. The
proposed semantics of diagrams are compositional and self-describing (reflexive,
meta-circular). Furthermore, it is well-suited for meta-modelling and model-
driven engineering, as model transformations can be proven correct in type
theory. Encoding diagrams into type theory also makes them immediately useful,
provided that an implementation is implemented.

Keywords: Meta-modelling, Instance Diagrams, Model-Driven Engineering,
Object Diagrams

1. Introduction

The semantics of visual modelling languages, such as UML class diagrams, is
surrounded by much confusion [21]. On the other hand, much is gained from
using diagrams, as the same diagram can be understood to different degrees
and from different angles by collaborators. In addition, with today’s rapidly
changing codebases, any documentation external to code is doomed to soon be
out of date [30]. Consequently, documentation, in the form of diagrams, that is
guaranteed to be in synch with code, because it is code, is worth much more
than mere documentation.

Model diagrams can be translated to linear notation (Figure 1 and Sect. 4), and
this linear notation can be completely formalized (Sect. 5) in a suitably
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Figure 1. A modelling language (M, I) with corresponding model and instance diagrams

expressive programming language like intuitionistic type theory [24, 16] or the calculus of constructions
[8]. A benefit of translating into an expressive language is that model transformations can be
proved correct [29, 14]. In addition, a direct translation into an executable language, such as type
theory, has the pragmatic value of making models immediately useful when programming.

One important property of the suggested translation, from diagrams to linear notation, is that the
resulting semantics is compositional. That is, a small addition to the diagram cannot give rise to a
large change in its meaning. For example, the notion of inheritance is difficult to understand
compositionally, as adding an inheritance relation between two classes (a small addition) may
create an inheritance cycle (a large change in meaning). This phenomenon is further discussed in
Sect. 8, and the modelling language of Figure 9 uses generalisation instead of inheritance to
preserve compositionality.

Table 1. Examples of modelling languages of different kinds: syntax description languages, like EBNF [35],
XML schema languages, like DSD [26], the language of relational databases (RDB) [7], and any type system,

fit the definition of modelling language

The translation from diagrams to type theory will first be applied to a simple modelling language
(Figure 4) with only three notions, and then to a less simple language (Figure 9). Both of these
modelling languages are self-describing (Sect. 2 and the Theorem). That is, there is a particular
model of the language, that describes the whole language.

Turing’s discovery [34] of the universal machine, capable of interpreting any program, was of

UML

MOF

DSD

EBNF

RDB

Types

an element of M is

a class diagram

a metamodel

a DSD schema

an EBNF grammar

a database schema

a type

an element of I(m) is

an instance of m

a metamodel instance of m

a document valid w.r.t. m

a string conforming to m

a database instance of m

an object of type m
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paramount importance as it lead to the design of the stored program computer [11]. The dichotomy
between code and data makes it plausible that analogues of Turing’s universal machine in the
space of data, i.e., self-describing modelling languages, are more important than currently
appreciated. This is one reason for studying self-describing modelling languages: further motivation
is given in Sect. 2.

2. Self-Describing Modelling Languages

A pair

will be called a modelling language.1 In a given modelling language (M, I), an element of M is called
a model, and an element of I (m), for a model m, is called an instance of m. An example of a
modelling language is displayed in Figure 2. It has two models, and each model has two instances.
There are many interesting examples of modelling languages according to this definition, not all
of them with a corresponding visual notation. Some noteworthy examples are given in Table 1.

A universal model of a modelling language (M, I ) is a model u : M where the set I (u) is isomorphic
to M. The parts of the isomorphism will be named  (reflection) and  (reification), i.e., the
diagram

commutes. In particular, (u) : I (u). A modelling language will be called self-describing, metacircular,
or reflexive, if it has a universal model.2

1 Or, to be more precise, a formal modelling language. This structure is known elsewhere in the
literature as world [19, 17] or container [22].

2 To be precise, we should say that a model u : M of a modelling language (M, I ), is universal with
respect to an isomorphism (, ) between I(u) and M. If the isomorphism is, as it were, unnatural, so is
the universality of u.

Figure 2. The leftmost oval shape represents the set of all models M in a modelling language (M, I)

(1)

(2)
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For example, the DSD schema language for XML is self-describing in the sense that an XML document
is a well-formed DSD schema if and only if it validates against the universal DSD schema [26, § 4].
Other schema languages for XML lack this feature. Wirth succinctly describes the gist of EBNF’s
syntax by a universal EBNF grammar (Table 2). The only notions that remain to be explained are
character and identifier. See Wirth’s communication [35] for details. EBNF is probably the most
concise self describing language in current use.

There are at least three reasons why a modelling language should admit a (natural) universal
model.

3 OMG (Object Management Group) is an international not-for-profit computer industry consortium
and standards organization, responsible for, among other things, UML (Universal Modelling Language)
and MOF (Meta-Object Facility).

Syntax Production

Expression term
factor literal

= { production }. = identifier “=” expression “.”.

= term { “ |” term}. = factor { factor }. = identifier | literal | “(“ expression “)”
|”[“ expression “]” |  “ {“ expression “} “. = “””” character { character } “”””.

Table 2. The syntax of EBNF described by a EBNF grammar, verbatim after Wirth [35]

(1) The same query language can be used to query user models and metamodels alike. Relational
database administrators have used this feature for decades to query the information schema [23].
Strictly speaking, only reification () is required for this to work. But at least a partial inverse  of 
is needed if the results are to be useful.

(2) A modelling language that is not self-describing lacks, in a sense, expressivity, viz., the
features necessary to describe itself. Moreover, a universal model exhibits a consistency among
the notions used to explain the modelling language, and works as a kind of sanity check. The
discussion about the notion of identifier in Sect. 7 exemplifies this form of sanity checking.

(3) The four layers of the OMG3 pyramid [33] can be reduced to three, viz., the level of real-world
entities (M0), the level of model instances (M1), and the level of models (M2). Given a modelling
language (M, I ), elements of M are M2 models and elements of I (m), for an M2 model m, are M1
models. Clearly, a universal model u: M resides in the M2 layer, despite being, as it were, a meta
model.

3. A Simple Type System

Another example of a self-describing modelling language is the type system (D, T ), that will be
used in the definition of the simple modelling language (Sect. 5). It is defined by D = {string, money,
type}, (3) and

D = {string, money, type},

and

T(string) = {character strings}
T(money) = {monetary amounts}

T(type) = {string, money, type}.

In particular, T (type) = D, so ‘type’ is a universal model with  and ’the identity function.

This rudimentary type system can be extended in several directions. For example, any number of
basic types can be added, and the set D can be made closed under sum, product, and function
space.

(3)

(4)



dline.info/jio            23

Jo
ur

na
l 

of
 I

nf
or

m
at

io
n 

O
rg

an
iz

at
io

n 
 V

ol
um

e 
14

  
N

um
be

r 
 1

  
M

ar
ch

  
20

24
However, there are limitations on how the set of data types can be extended while maintaining
the rule that type : T (type). It is for example known that the addition of the rule U : T (U ) to the rules
for the type-theoretic universe U [24] leads to the paradox discovered by Girard [15].

4. From Model Diagrams to Telescopes

Data modelling is first and foremost a process: relational modelling [7], entity-relationship modelling
[6], object-role modelling [18], model driven engineering [30], etc. This process typically results in a
set of diagrams. However, we are not trying to formalize the modelling process or the resulting
diagrams, but the meanings underlying the diagrams. This is nontrivial, as, what a diagram refers
to, denotes, or means, is elusive.

Figure 3. The model EP in the simple modelling language consists of two classes with attributes and a function
between them

A first attempt is to say that a diagram refers to a state of affairs, so that, e.g., the symbol Employee
of Figure 3 refers to a set of employees, etc. The problem with this explanation is that the
diagram’s state of affairs typically changes over time, so the diagram does not refer to any
particular state of affairs: rather, the diagram signifies something general that various states of
affairs fall under. That is, the entities of a diagram are variable, just as the relations of relational
databases [10, pp. 17–18], [7, p. 4].

The next observation is that, if there is to be any hope of systematically assigning meanings to
diagrams, the meaning of a diagram somehow has to be composed of the meanings of its
constituent parts. That is, the language behind the diagram has to adhere to the principle of
compositionality, familiar from the philosophy of language [16, pp. 6–8]. Put differently, the meaning
of a diagram should not change much due to a small change in the diagram.

To simplify the interpretation of diagrams, the following conventions will be adopted.

(1) A slanted font is used for uninterpreted symbols (e.g., Employee) and an upright font for
interpreted symbols (e.g., string).

(2) Interpreted symbols (e.g., money) may occur any number of times, whereas, if an uninterpreted
symbol occurs more than once, it must be possible to disambiguate it.

(3) Uninterpreted symbols of a diagram range over certain categories of a formal language (e.g.,
salary ranges over money and Project ranges over the category of classes).

Figure 4. The universal model U of the simple modelling language: note that each construct of the modelling
language (class, attribute, and function) is used by U
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These conventions are best explained by taking Figure 3 as an example. Imagine a simple modelling
language with only three notions: class, attribute of class, and function between classes.

In this language, Figure 3 is completely described by the following six assertions:

(1) Project is a class.

(2) Employee is a class.

(3) budget is an attribute of Project of type money.

(4) name is an attribute of Employee of type string.

(5) salary is an attribute of Employee of type money.

(6) managedBy is a function from Project to Employee.

The same assertions can be succinctly expressed using a yet to be defined formal language:

                                                           Project : class

                                                           Employee : class

                                                           budget : attrib(Project, money)

                                                           name : attrib(Employee, string)

                                                           salary : attrib(Employee, money)

                                                           managedBy : fun(Project, Employee)

Such a sequence of assertions is similar to what a mathematician would write on the black board
at the outset of an investigation: much like setting the stage for a play.

Now, we take a step back and recognize the above as a sequence of variable declarations. Thus,
we have arrived at what de Bruijn [12] called a telescope and completed the informal path from
model diagrams to telescopes. The reader is not required to be familiar with de Bruijn’s telescopes,
as the notion will only be used for purposes of comparison.

5. A simple Modelling Language

The simple modelling language is a fragment of UML’s or MOF’s class diagrams, with only three
notions: class, attribute, and function. The benefit of treating such a limited language is that the
semantics can be worked out in full detail without becoming too lengthy.

A class is the extension of a concept of the application domain;4 and the first category of the
simple modelling language is ‘class’.

An attribute of a class is a characteristic applicable to every object in the extension of the class.
Each attribute of  a class is typed by a data type drawn from the set D, called the value type of the
attribute. For any given object of the class, the value of the attribute is of this type. The second
category of the simple modelling language is attrib (A, ), where A : class and  : D.

A function from one class to another is an assignment of exactly one object of the second class to
each object of the first class. The third category of the simple modelling language is f : fun(A,B). The
classes A and B will be called, respectively, the domain and value classes of the function f.

4 This, and other explanations of UML concepts, serve only to guide the modelling process. They
have no impact on the formal treatment. The use of the word class in logic originates with Peano
who defines it as an “aggregation of entities” [28, p.x].

(5)
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A model is a sequence of uninterpreted symbols (variables) declared to be of categories of the
language, i.e., a telescope [12]. The categories of a model have to be well-formed in virtue of
previously introduced uninterpreted symbols.5 Thus, in general, a model has the form

                                                       X
1
 : class, . . . , X

m
 : class,

                                                       Y
1
 : attrib (X

c1
 , 

1
), . . . , Y

n
 : attrib (X

cn 
, 

n 
),

                                                       Z
1
 : fun (X

d1
 , X1

), . . . ,Z
p
 : fun (X

dp
 , Xp

 ),

where the symbols X
i
 are distinct, as are Y

i
 and Z

i 
; moreover, 1  c

i 
, d

i 
, v

i
  m, and 

i
 : D. If needed,

this can be encoded in type theory by

where ‘enum’ is the set of finite collections of names, the curly braces denote a standard record
type, and X Y means the same as Y  X.

Figure 5. The instance ep of the model EP in the simple modelling language. The names of the instances are
written before the class names, the values of the attributes are written after their declarations, and the value

of a function at an instance is indicated by an arrow

A class diagram (Figure 3) is the representation of a model as boxes and arrows according to the
correspondence  explained above. From this point onwards, the class diagram and the formal
notation for the model will be considered interchangeable  as two expressions of the same
thought.

This formalisation of the notion of class diagram means, in particular, that it is easy to decide
whether a given diagram is well-formed or not: simply write down the corresponding model and
make sure it is well-formed.

An instance i of a model m is an interpretation of its uninterpreted symbols according to the
following scheme:6

5 So that, e.g., a class has to be introduced before its attributes, and the domain and value classes
of a function have to be introduced before the function. Cf., the notion of context [16, 32].

6 Using the terminology of logic, a model is an uninterpreted language and an instance is an
interpretation of its uninterpreted symbols. Cf. [31] and [2].

(6)
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(1) a class symbol A : class is interpreted by a finite set Ai;

(2) an attribute symbol a : attrib (A,) is interpreted by a function ai : Ai  T ();

(3) and a function symbol f  : fun (A,B) is interpreted by a function f i : Ai  Bi.

Note that there is at least one instance of any model, viz., the empty instance, in which all class
symbols are  interpreted by the empty set, and all attribute and function symbols by the “empty”
function (from the empty set).

Figure 6. The instance u of the universal model U with the property that (u) = U and ’(U) = u. Compare with
Figure 4

Instances can also be displayed as diagrams. For example, the instance ep (Figure 5) of the model
EP (Figure 3) is defined as follows:

                                                     Employeeep  = {P,M, J},

                                                     Projectep = {Acc, Fin},

                                                     nameep  = {P 7  “Peter”,M 7  “Mary”, J 7  “John”},

                                                     salaryep = {P 7  2, 000,M 7  4, 000, J 7  3, 000},

                                                     budgetep = {Acc 7  30, 000, Fin 7  20, 000},

                                                     managedByep  = {Acc 7  M, Fin 7  J}.

Encoded in type theory, the set of instances of a given model is defined by

       

Recall that  and  stand for disjoint union and Cartesian product of indexed families of sets.

6. A universal Model for the Simple Modelling Language

A universal model, written U, of the simple modelling language is presented in Figure 4. It
corresponds to the following sequence of assertions:

(7)
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                                         Class : class,

                                          Attrib : class,

                                         Fun : class,

                                         : attrib (Attrib, type),

                                         C : fun (Attrib, Class),

                                         D : fun (Fun, Class),

                                        V : fun (Fun, Class).

 Theorem: The simple modelling language described in Sect. 5 is self-describing.

Proof: We must show that U is a universal model, i.e., we must define  and  and show that they
are inverse of each other. Let s be a instance of the model U. Assume that

                                         Classs = {A
1
, . . . , A

m
},

                                         Attribs = {a
1
, . . . , a

n
},

                                          uns = {f
1
, . . . , f

p
},

                                          : Attribs  T (type),

                                         C s : Attribs  Classs,

                                         D s : Funs  Classs,

                                         V s : Funs  Classs.

Recall that a model is a sequence of uninterpreted symbols declared to be of certain categories.
The model (s) is defined as follows:

                                         A
1
 : class, . . ., A

m
 : class,

                                       a
1
 : attrib(C s(a

1
), s(a

1
)), . . ., a

n
 : attrib(C s(an), s(a

n
)),

                                        f
1
 : fun(Ds( f

1
), V s( f

1
)), . . ., f

p
 : fun(Ds( fp), V s( fp)).

This model is always well-formed in the sense described above, i.e., symbols are unique within
each form of category (class, attrib, and fun).

Conversely, let S be a model of the simple modelling language, given by

                                        B
1
 : class, . . ., B

m
 : class,

                                        b
1
 : attrib(B

c1
 ,1), . . ., b

n
 : attrib(B

cn 
,

n
),

                                        g
1
 : fun(B

d1
 ,B1

 ), . . ., g
p
 : fun(B

dp
 ,Bp

),

where 
1
, . . . , 

n
 are elements of the set D = T (type), and each of the numbers c

1
, . . . , c

n
, d

1
, . . .

, d
p 
, and 

1
, . . . , 

p
 are in the range 1, . . . , m. Then (S) is an instance of U given by

                                         Class(S) = {B
1
, . . . ,B

m
},

                                         Attrib(S) = {b
1
, . . . , b

n
},

                                         Fun(S) = {g
1
, . . . , g

p
},

                                         (S)(b
x
) = 

x
 : T(type),
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                                                                 C(S)(b
x
) = B

cx
 : Class(S),

                                                                 D(S)(g
y
) = B

dy
 : Class(S),

                                                                 V (S)(g
y
) = By

 : Class(S).

To show that ((s)) = s, let s and S be defined as above, and consider ((s)), where S =(s).
Comparing the definition of S with the definition of (s), we get A

i
 = B

i
 (as symbols), a

i
 = b

i 
, f

i
 = g

i
, C s(a

x
)

= B
cx

 ,  s(a
x
) = 

x 
, Ds( f

y
) = B

dy
 , and V s( f

y
) = By

 . The result follows from a comparison with the
definition of (S).

To show that is also a right inverse of , let S be given as above and plug (S) into the definition
of . The result is S.

An obvious use of this Theorem is to apply the function to the model U. The resulting instance,
Figure 6, should be studied carefully. It is also instructive to compare it with Table 2.

Figure 7 shows the reification of the diagram of Figure 3.

7. A Less Simple Modelling Language

This Section is deliberately brief, and many details are left to the reader. It is best viewed as an
extended example of how to apply the techniques introduced earlier in the paper. The example is
based on Figure 9, showing the universal model of a significant fragment of the class diagrams of
xUML [25].7 The main differences between this less simple language and the previously introduced
simple language are outlined below.

First, there is one more data type, viz., ‘mult’, of multiplicities, i.e.,

D = {string, money, type,mult},

              T(mult) = {a..b | a : N, b : N  {}, a  b},

7 xUML is a fragment of UML that is designed to facilitate the execution of models.

Table 3. The forms of assertion of the less simple modelling language, together with
their interpretations in an instance

where a..b is the set {a, a + 1, . . . , b} if b is finite, and a.. stands for {a, a + 1, . . .}. The datatypes
‘string’ and ‘money’ are as before, and ‘type’ is still universal.

Table 3 lists the forms of assertions used when translating a less simple diagram to linear notation,

(8)
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together with their interpretations in an instance. Classes and attributes work exactly as for the
simple modelling language.

Figure 7. The instance ep of the universal model U with the property that (ep) = EP and ’(EP) = ep. Compare
with Figure 3

Instead of functions, the less simple modelling language uses associations, which may have two
kinds of roles: left and right. An association R : assoc (A,B) is interpreted in type theory by a binary
relation Ri on Ai and Bi. A right role r : rrole (A,B,R,o), where o is a multiplicity, is interpreted as a
triple valued function ri(x) = (ri

1
(x), ri

2
(x), ri

3
 (x)), where x : Ai. The first component ri

1
 (x) : o gives the

multiplicity of x; the second component ri
2
(x) : ri

1
 (x) , Bi is an injection of the multiplicity into Bi;8

the third component is a proof that an element y of Bi is related to x by Ri if and only if y is in the
image of ri

2
(x). Another way to put it is that ri(x) identifies the subset of Bi, with a finite cardinality

drawn from the set o, that is related by Ri to x : Ai. Left roles are treated analogously to right roles.

As a special case, when the multiplicity is o = 1..1, a right role induces a normal function Ai  Bi.
The virtue of this  treatment of roles is that it is compositional, i.e., a left or right role can be
added to a diagram without changing the interpretation of the original diagram. In fact, formally,
nothing prevents an association from having several left or right roles.

Identifiers in xUML serve the same purpose as unique keys in relational databases, i.e., they
make it possible to retrieve an instance (row or tuple in database parlance) from the value of an
attribute. For example, if there were an identifier of the name attribute of the Employee class of
Figure 3, names would have to be unique, and it would be possible to retrieve the instance
corresponding to a name, if any.

An identifier e : ident (A, a, ) of an attribute a indicates that the values of the attribute are
different for  different instances of the class A.9 The identifier e is interpreted in an instance i as a

8 Here the number ri
1
(x) is identified with the set on ri

1
(x) elements.

9 This paper makes a significant departure from xUML identifiers (and database uniqueness
constraints) by only allowing one attribute to participate in an identifier; a faithful encoding would
require the multiplicity of the role key of Figure 9 to be one to many. However, if the multiplicity
was simply changed, the model of Figure 9 would no longer be universal, as instances would
include identifiers combining several attributes of different classes. Thus, the modelling language
would have to be significantly strengthened to cater for identifiers with higher multiplicity.



dline.info/jio 30

Jo
ur

na
l 

of
 I

nf
or

m
at

io
n 

O
rg

an
iz

at
io

n 
 V

ol
um

e 
14

  
N

um
be

r 
 1

  
M

ar
ch

  
20

24

Figure 9. The universal model of a fragment of the modelling language xUML, capable of expressing the
notions class, attribute, association, generalisation, association class, identifier, and left and right role

Figure 8. The interpretation a right role r : rrole(A,B,R, 1..3) in an instance i, where Ai has an element a

related to exactly two elements b
0
 and b

1
 of Bi. In particular, ri

1
 (a) = 2, and ri

2
 (a) : {0, 1}  B, with

ri
2
 (a)(j) = b

j

8. Related Work

There are several approaches to the semantics of UML and MOF class diagrams, e.g., logic based
[3], graph based [33], coinductive [29], or, like this paper, algebraic [5, 13].

Our modelling languages depart from the MOF in two important respects. We consider generalisation
instead of inheritance; and, as opposed to UML and MOF, we have no common genus of datatypes
and classes.

function ei from T () to the set Ai+{}, such that ei is a partial inverse of ai, i.e., for all x : Ai and y
: T (), ei(x) = inl(y) if and only if ai(y) = x. Here ‘inl’ denotes the canonical injection Ai  Ai + {}.

A generalisation g : gen(A, S
1
, . . . , S

n
) is interpreted in an instance i as an isomorphism between the

interpretation of the superclass Ai and the interpretations of its subclasses Si
1
 × · · · × Si

n
.

An association class s : assclass (C,A,B,R) between a class C and an association R is interpreted as
an isomorphism  between Ci and the set of pairs (x, y) in Ai × Bi that are related by Ri.
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Generalisation and inheritance are sometimes taken as synonymous, but I think there is an
important distinction to be made. By inheritance, I mean the relation B inherits from A, that would
be interpreted by Bi  Ai in an extensional framework. This is difficult to formalize in type theory
as there is no subset relation. However, the relation B is generalised by A can be interpreted by an
injection Bi  Ai.

As regards the existence of a common genus of datatypes and classes, it is interesting to review
what Date [9, p. 865] calls the great blunder. There are three notions involved: the notion of datatype,
i.e., our D or what Date calls domain; the notion of relational variable (relvar in relational database
theory); and the notion of class. Date’s main point is that datatype  relvar, and this distinction is
maintained in this paper. In fact, our notion of class is similar to the notion of relvar to begin with,
both are variables.

However, what Date actually calls the great blunder is the identification relvar = class (made here):
that is, he considers the identification datatype = class correct. Date’s identification is based on the
conception of a class as a record type.

In this paper, the notion of class is identified with the notion of relvar (rather than with the notion
of datatype) because object-oriented programming is based on the idea that a program can
create a new instance of a class. The classes of this paper support the new operation, and relvars
support the insert operation: in both cases, one element is added to the set interpreting the
variable. Datatypes, on the other hand, are more like mathematical sets, and, e.g., the idea of
creating a new number is repugnant. To conclude, this paper makes the great blunder in words, but
not in spirit.

My approach to the translation of model diagrams into type theory differs from that of Poernomo
et al. [29, 14] in one important respect: type-theoretic concerns have influenced my design of the
modelling languages, while Poernomo et al. have taken the MOF at face value. Encoding the full
MOF requires coinductive datatypes and definitions by corecursion, which soon lead to rather
complex formalisations. In addition, the semantics becomes noncompositional, due to the outer
most fixpoint operator in the definition of models. I have avoided these problems by simplifying
the modelling language.

An analog to the notion of class diagram, with respect to how its semantics has evolved from a
mere “blackboard” semantics, is the notion of state chart, as expounded by Harel [20]. A precise
constructive semantics for a species of state charts is given by André [1].

9. Conclusion and Future Work

In my opinion, one of the main obstacles to model driven approaches gaining wide acceptance in
the industry is insufficient tool support. One step in the right direction would be to formalize the
simple (or less simple) modelling language inside a proof assistant like Coq [4] or Agda [27].

In addition to allowing formal manipulation of models, such a tool could make it possible to
generate a diagram from a possibly annotated model instance, thus reinforcing the point that
diagrams are valid formal expressions and, with time, changing a view held by many software
engineers, viz., that diagrams are inherently vague [31].

The reader may have noticed that the two modelling languages presented in this paper, although
using the notation of UML class diagrams, are semantically more akin to the entity-relationship
model [6] or ORM [18]. It would be interesting to find out what characterises features of data
modelling and object-oriented programming that can be interpreted using the direct approach of
Sect. 4.

A difference between Figure 4 and Figure 9 is that, in the forme, all features of the modelling
language are used to define the universal model, whereas, in the latter, the four notions class,
attribute, association, right role would suffice. That is, the notions generalisation, association class, left role,
and identifier are like appendices to a smaller modelling language. Does a modelling language with
an irreducible universal model have any advantage over a modelling language with redundant
features?
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One potential direct application of the simple modelling language is as a data model for a non-
relational database management system, using the identification database schema = model. Several
database maintenance operations could be simplified by using the universal model U. For example,
to define a new database schema one would simply have to define an instance of U. This definition
would use the same syntax as the definition of an instance of any other model.

In this context, it would also be interesting to consider how data manipulation operations interact
with  and . For example, creating a new instance of the class Class in an instance of U could
create a new class in the corresponding model.
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