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ABSTRACT

Computation Offloading has been developed to enhance the performance of
Embedded Systems by transferring the execution of specific tasks, especially
computationally intensive tasks, to Servers or clouds. This paper explores com-
putational offloading for real-time tasks in embedded systems, provided the
servers guarantee response time. To decide which tasks to offload to get re-
sults in real-time, we consider frame-based real-time tasks with equivalent
periods and relative deadlines. When an execution order is provided for the
tasks, the problems can be solved in linear time; however, when no execution
order is provided, we prove the problems to be NP-completable. To derive
feasible schedules if they exist, we develop a pseudo-projective-time algo-
rithm. We also develop an approximation scheme to trade off the algorithm’s
error and complexity. We extend our algorithms to minimize the periods/ rela-
tive deadlines of the tasks for maximum performance. The algorithms are tested
using a case study for a surveillance system and synthesised benchmarks.

Keywords: Embedded Systems, NP-Complete, Real-Time Systems, Time
Algorithms

1. Introduction

In the recent years, a significant increase in the development of mobile devices
has been achieved. They have become devices that provide various computation-
intensive services and applications, including video, audio, images, etc. Also,
mobile robots have become more and more popular and important in the recent
years. For instance, the sales of service robots for personal and household
purposes have been increased significantly in the past years, i.e., 35% increase
in 2010 [7]. Furthermore, the number of service robots sold per year is also
expected to  increase in the next few years [7].

However, due to the resource constraints on both mobile devices and robots,
their computation capabilities are still quite limited. For some applications on
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these devices, if the peak performance requirement happens rarely or is not always required,
designing the embedded system for the extreme case to achieve the peak performance is usually
too pessimistic, as most resources will be wasted. Moreover, when increasing the performance of
an embedded system, we will also usually increase the power consumption, the weight, and also
the cost of the devices.

Improving the embedded systems just for extreme cases, for executing some  computation intensive
applications, may waste the device resources in normal cases if the extreme case is needed
rarely. Therefore, computation offloading can be used to move a task from a resource-constrained
device (here, we call it a client) to one or more devices (here, we call them servers).

Figure 1. Offloading Mechanism

Figure 1 illustrates the computation offloading mechanism. The task can be a part of an active
program (e.g., function,  class, etc.) or a complete one. The servers can either provide faster
execution in general (e. g., powerful desktop, an array of high-performance blade servers, cloud of
computers, etc.) or accelerate the execution for some specific tasks (e.g., digital signal processing
(DSP) units for signal decoding/encoding, General-purpose computing on graphics processing units
(GPGPU) for accelerating, etc.). Furthermore, the server may be slower than the client. For such a
case, the offloading may also be beneficial. Because the computation is done remotely, the en-
ergy consumption of the client can be reduced, or another task can be executed on the client while
awaiting the results from the servers.

For example, some computation-intensive real-time tasks may be required to run on the Elec-
tronic Control Units (ECUs), that are distributed in the the automobiles, for specific time. However,
this resource-constrained ECUs may not be able to finish the tasks execution in time. Improving
the ECUs just for the extreme cases, if they happen rarely, to execute computationintensive tasks
may waste the resources in the normal cases and increases their cost. Therefore, offloading the
computation-intensive tasks to a server (i. e., an additional processing unit inside the automobile
with timing predictable communication), that serves all the ECUs in the extreme cases, is a cheaper
and more flexible solution.

The idea of computation offloading has been studied previously [16, 9, 17, 10, 6, 3, 12, 8]. The existing
approaches decide whether to execute a task locally or offload it without changing the execution
order for the independent tasks. So, the client remains idle during the remote execution of an
offloaded task until the result of this task returns from the server. Also, they consider, implicitly, a
dedicated server for each client to run the offloaded task immediately. Furthermore,
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most of the existing computation offloading approaches either do not consider the timing satis-
faction requirement for real-time properties, e.g., in [9, 16, 10, 6, 17], or use pessimistic offloading
mechanism for deciding whether a task can be offloaded [12]. Timing requirements are important
for real-time embedded systems, in which the results may become useless or even harmful to
the client if the deadlines are missed.

Our Contributions: In this paper, computation offloading is exploited for real-time systems to
meet the timing constraints. We consider frame-based real-time tasks with the same period and
relative deadline under given response time guarantees from the servers. Our model is more
applicable for real-time embedded systems than the existing related work [16, 9, 17, 10, 6, 3, 12], in
which (1) the client can execute another task locally while some offloaded tasks are executed on
the servers, and (2) the server is not dedicated to a client to provide the service immediately, but
provide a certain response timing assurance for the offloaded tasks. Our contributions are as
follows:

 We prove that the offloading problem is NP-complete even for frame-based real-time tasks with
the same period and relative deadline without a specified execution order.

 We develop algorithms for deciding which tasks to be offloaded and how the tasks are executed
to meet the timing constraints, for frame-based real-time tasks. We consider two cases, depend-
ing on whether the execution order of the tasks on the client is given or not. In case the order is
given, the problem can be solved efficiently. Otherwise, we develop a pseudo-polynomial-time
algorithm to derive a feasible schedule, if and only if it exists.

 We also provide an approximation scheme to trade the error made from the algorithm and the
time/space complexity.

 Our algorithms can also be extended to maximize the sampling rate of the frame-based tasks
by minimizing the period/relative deadline of the tasks.

 We evaluate for our proposed algorithms using a case study of a real-world application and
randomly synthesized benchmarks. In our case study, a surveillance system is used to capture
images periodically and execute four tasks within a deadline (i.e. sampling period).

The remainder of this paper is organized as follows: Section 2 summarizes the related work on
computation offloading. Section 3 provides system model. Section 4 presents an efficient
algorithm when the execution order is given. The hardness of the studied problem is shown in
Section 5. Section 6 presents our approaches when the execution order is not given. Experimental
results are presented in Section 7, and Section 8 concludes the paper.

2. Related Work

Computation offloading has been adopted in the literature to satisfy real-time requirements [12],
improve performance [16], save energy [9, 17, 10, 6], and improve the quality of service [3]. For
reducing the execution time and also the response time, Nimmagadda et al. [12] propose an
offloading framework for mobile robots to satisfy the real-time constraints. Also, Wolski et al. [16]
formulate computation offloading as a statistical decision problem by considering both the client
and the servers are in computational grids. Offloading decisions in both of the above approaches
are based on the comparison between two values: (1) the local execution time, and (2) the sum-
mation of the expected remote execution time in the server(s) and data transfer time. If the
second value is less than the first one for a specific task, then this task is offloaded to the
server(s) [12, 16].

Hong et al. [6] present an offloading strategy with three offloading options to reduce the energy
consumption. Their strategy is dedicated for content-based image retrieval applications in mobile
systems. For handheld devices, Li et al. [9] develop a scheme to run a program (task) by charac-
terizing its corresponding client subtasks and server subtasks for executing on the client and
servers, respectively. They build a cost graph for each program and use a branch-and-bound
algorithm to minimize the energy consumption of the client. Moreover, Li et al. [10] also develop a
computation offloading scheme by applying the standard maximum-flow/minimum-cut
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algorithm for deciding the server and client subtasks. For reducing the energy consumption, Xian
et al. [17] apply timeout mechanism so that a task will be offloaded to a server if it cannot be
finished before the timeout (timestamp) set for it. A middleware for mobile Android platforms is
developed by Kovachev et al. [8] to offload the computation-intensive tasks from the mobile
device to a remote cloud. The Offloading decision is represented as an optimization problem and
solved using Integer Linear Programming (ILP).

Figure 2. Timing parameters for two tasks

3. System Model

We consider a system of one client and one or more servers for computation enhancement.
Servers may provide higher computation capability than the client. On the client side, a set of
frame-based real-time tasks arrive periodically and require execution within a common relative
deadline. The tasks can be offloaded to the servers, but the results should be returned in time,
i.e., no later than the deadline. The tasks are independent in execution without precedence con-
straints. The client has to schedule task executions to satisfy the real-time constraints.

3.1. Client Side
Suppose that we are given a set T of n independent frame-based real-time tasks. Each task 

i
 in T

( for i = 1, 2, . . . , n) represents an execution unit, and it can be considered as an infinite sequence of
instances, which called jobs. All the tasks have the same arrival time 0, period D and relative
deadline D, i.e., with implicit deadlines. Each task 

i
  T is associated with the following timing

parameters:

Worst-case local execution time C
i : If task 

i
 is decided to be executed locally on the client, the

worst-case execution time required to finish task 
i
 is up to C

i
.

.
Setup time S

i : is the execution time required on the client so that the required information can
be sent to a corresponding server for offloading. It includes transmission time to the server and
any local pre-processing operations such as data compression and transformation. As a result,
when a task ti is offloaded, it has to be executed on the client for up to S

i
 amount of time, we say

that 
i
 is settled for offloading. After the setup time finishes on the client for offloading, the corre-

sponding server can start task processing on its side.1

1 If the transmission time can be estimated with the worst case when the communication fabric is
timing  predictable, the worst-case transmission time can be used for guaranteeing the setup time.
Otherwise, a pessimistic estimation can be used for providing soft timing analysis. For example,
the transmission time can be computed as Z / , where Z is the estimated maximum size of the
offloaded data and  is the estimated lowest network bandwidth between the client and the server.
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Round-trip offloading time I
i : the interval length starting from the end of setting up S

i
 for task


i
 until getting the result from the server. If a server, or a processor, with a speed-up factor of a is

dedicated for each offloaded task, then I
i
 is equal to the execution time on its side which can be

computed as C
i  / . Otherwise, when the server may handle more than one task, the server has its

own scheduling policy and it provides a response time guarantee I
i
 for each task. The client

contacts the server/s before scheduling to get the values of I
i
 . Subsection 3.3 describes how this

value can be calculated.

Figure 3. The distribution of the server’s utilization

Figure 2 shows these timing parameters for two tasks, where task 
1
 is locally executed and task


2
 is offloaded. We assume that the results returned from the servers need very short post

processing time, which is negligible. For instance, the returned results in our case study are the
coordinates of the moving object or the distance between it and the cameras. Therefore, an
offloaded task is said to meet the deadline/timing constraint if the result can return before the
deadline. Our model is a special case of a general model (where each task has its own arrival
time, period and relative deadline) that has never been considered before for offloading. Also, we
prove that the offloading problem for this model is NP-complete.

We say that a task is locally executed if it is processed on the client, while a task is called offloaded if
it is processed on a server. The finishing time of a locally-executed task is the time that the task
finishes its local execution. The finishing time of an offloaded task is its round-trip offloading time
plus the time that this task is settled for offloading.

3.2. Server Side
The server can provide offloading services for more than one client, and the offloading decisions
from a client will not control how the servers schedule the tasks. The servers can have their own
scheduling policies to handle the tasks that are offloaded from the clients. They can decide how to
provide the response time guarantee by themselves. For example, servers can use Earliest Dead-
line First (EDF ) scheduling algorithm or resource reservation servers to ensure I

i
 . The response

time guarantee can be either (1) hard if the scheduling in the servers and the communication
fabric between the client and the servers are both timing predictable, or (2) soft if only the sched-
uling in the servers is timing predictable. However, for each case, when the client has the infor-
mation about the round-trip offloading time, the open problem is how to meet the timing con-
straint by exploiting the services provided from the servers.

3.3. Calculating the Value of I
i

To calculate the value of I
i , the server has to provide a response time guarantee for the offloaded

tasks. Resource reservation technique [2] (the resource here is the CPU of the server) can be
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used to provide such guarantee, and then satisfy the real-time constraints. In Resource Reservation
Server2 (RRS) model, the client can be given a bandwidth or a budget guarantee. In this paper, we
consider the Total Bandwidth Server (TBS) model [14, 15] as a RRS on the server side. In this model,
the server reserves a specific bandwidth (or utilization) Uc

k
 for each requesting client, if it is

possible. Uc
k
 represents the fraction of the processor bandwidth of the server that is assigned to

the client
k , where 1  k  m and m is the total number of clients. The total reserved (or given)

utilization for all clients should not exceed 100%, i.e., =1 Uc
k
 = 100 %. Using this technique,

the server is able to provide offloading services for more than one client without violating the real-
time constraints.

For a client k with a given bandwidth of Uc
k
 and n tasks, the server allocates a TBS for each task 

i

with a utilization of U
i
 , such that =1 U

i
 = Uc

k
 to preserve the system feasibility. Figure 3

shows how the utilization  of the server can be distributed. A client k with a given utilization of Uc
k

can divided it equally over all of its tasks, i. e., U
i
 = Uc

k /n , or with different ratios based on a

specific algorithm. A task 
i
 with a given utilization of U

i
 seems to be executed alone on a proces-

sor (TBS) which is 1/U
i
 times slower than the processor of the server. The TBS assigns an absolute

deadline d
i
(t) for each offloaded task 

i
 as follows:

where t is the arrival time of the task at the server side, d
i 
(t) is the absolute deadline of the

previous instance (or frame), R
i
 is the remote execution time of the task (the execution time on

the server side), and d
i 
(0) is defined as 0. The offloaded tasks are scheduled on the server side

using the Earliest Deadline First (EDF) algorithm based on the assigned TBS deadlines.

The candidate tasks for offloading are the tasks with S
i
+ I

i
  D, i. e., feasible for offloading. There-

fore, all the offloaded tasks finish within the deadline D (before the next frame), and then
t > d

i
(t). Also, the task 

i
 arrives at the server side immediately after the setting up time S

i
 (the

transmission time is included in S
i
). So, the round-trip offloading time can be calculated as

I
i
 = R

i
 /U

i
 . In this way, each task can be executed independently of the behavior or the order of the

other tasks.

3.4. Problem Definition
The problem explored in this paper is defined as follows:

Given a set T of n frame-based real-time tasks, the SElective Real-Time Offloading (SERTO) problem is to schedule the
tasks and to decide when and what to offload without violating timing constraints for a client.

We consider two types of input instances of the SERTO problem, depending on whether the task
execution ordering on the client is given or not. When the execution order is given and has to be
preserved, we suppose that ti is executed on the client (either with S

i
 amount of time for offloading

or C
i
 amount of time for local execution) before 

j
 if i < j.

A schedule of a set T of tasks for the SERTO problem is an assignment of the executions of the
tasks either on the client locally or on a remote server with computation offloading. A schedule is
feasible if the finishing times of all locally-executed and offloaded tasks are within the deadline D. A
scheduling algorithm is said to be optimal offloading scheduling algorithm if it is able to find a feasible
schedule, if and only if one exists. Moreover, as we are dealing with frame-based real-time tasks,
we always consider how to scheduling within a frame, starting from time 0. Therefore, the re-
sponse time of a task is the same as the finishing time of a task.

2 This is a logical server, inherited from the literature
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Suppose that x
i
 is equal to 1 if task

i
 is decided to be offloaded; otherwise, x

i
 is 0. We use a vector

 = (x
1
, x

2
, . . . , x

n 
) to denote an offloading decision for the given n tasks.

Algorithm 1 GMF

     1: t1  0;

     2: for i = 1 to n do

     3:    if S
i
 < C

i
 and t

i
 + S

i
 + I

i
  D then

     4: 
i
 is assigned for offloading;

     5: t
i+1

  t
i
 + S

i
 ;

     6:    else if t
i
 + C

i
  D then

     7: 
i
 is assigned for local computation;

     8: t
i+1

  t
i
 + C

i
 ;

     9:    else

     10: return “There is no feasible schedule”;

     11:    end if

     12: end for

4. Greedy Minimum Finishing Algorithm

In this section we consider a set T of tasks with a given execution order. Let the tasks be indexed
based on the given execution order from 1 to n, where n is the number of tasks. The problem is to
decide whether a task should be executed locally or to be offloaded without violating timing
constraints.

Under the given ordering, the SERTO problem can be solved by a greedy algorithm, called Greedy

Minimum Finishing (GMF). Suppose that t
i
 is the time when task 

i
 can start to execute in the client,

either offloaded or locally executed. The greedy algorithm simply makes the decision to offload a
task 

i
 if it is beneficial and feasible: that is, if S

i
 < C

i
 (beneficial for offloading) and t

i
 + S

i
 + I

i
  D

(feasible for offloading). If it is either not beneficial (S
i
  C

i
) or not feasible (t

i
 + S

i
 + I

i
 > D) for

offloading, the algorithm checks if it can be executed locally, i. e., t
i
 + C

i
  D. Otherwise, there is no

feasible solution. Algorithm 1 presents the pseudo-code of the GMF algorithm. The time complex-
ity of the algorithm is O(| T |).

 Theorem 1: The GMF algorithm is an optimal offloading scheduling algorithm for the SERTO problem when
the execution ordering is given.

Proof: This theorem can be proved by an induction on the value t
i
 . We claim that t

i+1
 in the GMF

algorithm is the earliest time on the client that 
i
 finishes its local execution or is settled for

offloading and 
i+1

 can start to run by following the given ordering. For the base case, when i = 1,
the statement is correct by definition.

Inductive step: Assume that t
k+1

 is the earliest time on the client that 
k
 finishes its local execu-

tion or is settled for offloading and 
k+1

 can start to run, for k  2. There are two cases to run task


k+1

:

 
k+1

 is offloaded: For such a case, we know that t
k+1

 + S
k+1

 + I
k+1

  D and S
k+1

  C
k+1

.
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k+1
 is locally executed: For such a case, we know that either t

k+1
 + S

k+1
 + I

k+1
 > D or S

k+1
 > C

k+1
.

For both cases, we know that t
k+2

 is also the earliest time on the client that t
k+1

 finishes its local
execution or is settled for offloading and t

k+2
 can start to run.

Clearly, if task t
k+1

 cannot finish before the deadline D, the schedule is infeasible and there is no
feasible schedule for the first k+1 tasks. Therefore, based on the induction hypothesis, this theo-
rem is proved.

Figure 4. Example of optimal ordering for a set of tasks

5. Hardness of the SERTO Problem

This section presents the NP-completeness of the SERTO problem. Throughout this section, we
implicitly consider the case that the execution ordering is not specified. Before presenting the
hardness, we need the following lemma for deciding the optimal execution order on the client,
provided that the computation offloading decisions have been made.

 Lemma 2: If the execution order is not specified, all the offloaded tasks should be executed before any locally-
executed task.

Proof: Suppose that 
i
 is decided to be locally executed, while task 

j
 is to be offloaded. If a

feasible schedule executes 
i
 on the client before the next task 

j
 in the schedule starts on the

client, we can also swap the execution ordering of 
i
 and 

j
 on the client to be still feasible. Let 

i
starts to run on the client at time t at the original schedule. So, the total finishing time of the two
tasks 

i
 and 

j
 is equal to t + C

i
 + S

j
 + I

j
  D (because the schedule is feasible). After swapping, the

finishing time of 
j
 is now at most t+S

j
+I

j
 , the finishing time of 

i
 now is at most t + S

j
+ C

i
 , and the

total finishing time of both tasks is at most max{t + S
j
 + I

j
 , t + S

j
 + C

i
}. Therefore, the the total finishing

time of the two tasks after swapping is less than before swapping without violating the feasibility
of the schedule, because max{t + S

j
 + I

j
 , t + S

j
 + C

i
} < t + C

i
 + S

j
 + I

j
  D.

After swapping, the worst-case finishing time of the other tasks does not change. By repeating the
above procedure, we know that the statement in the lemma holds.

When the offloading decision  for the tasks is known, we define d
i
 = x

i
(D -I

i
)+ (1-x

i
)D as the virtual

offloaded deadline. If there is a feasible schedule based on an offloading decision , then execut-
ing the tasks by following the order of d

i
 = x

i
(D - I

i
) + (1 - x

i 
)D non-decreasingly is also a feasible

schedule. This ordering is called Earliest Virtual Offloaded Deadline First (EVODF). Please
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refer to Figure 4, as an illustration example for an optimal ordering for a given set of five tasks.
We have the following lemma for EVODF.

 Lemma 3: If the execution order is not specified and there is a feasible schedule based on the offloading
decisions, the schedule by using EVODF is also a feasible schedule.

Proof: Suppose that a given schedule is feasible. By Lemma 2, we can reorder the execution
ordering, such that any locally-executed task should be executed after the offloaded tasks, to
maintain the feasibility. Now, for two consecutively offloaded tasks ti and 

j
 in that feasible

schedule, if d
i
 > d

j
 and ti starts its execution at time t on the client before 

j
 , we can still swap

these two jobs to maintain the feasibility. Suppose that the server returns the result of task 
i
 at

time f
i
 = t + S

i
 + I

i
 and 

j
 at time f

j
 = t + S

i
 + S

j
 + I

j
 , respectively. By the definition of d

i
 > d

j
 , we know that

I
i
 < I

j
 .

Figure 5. Illustration for the N P-completeness proof of the SERTO problem

Clearly, due to the feasibility before swapping, we know that f
i
 = t + S

i 
+ I

i
  D and f

j
 = t + S

i 
+ S

j 
+I

j
  D.

Therefore, the finishing time  of j after swapping is  = t+S
j
+I

j
  D, and the finishing time of i

after swapping is  = t + S
j
+ S

i
+ I

i
 < t +S

j
+S

i
+I

j
  D. Clearly, after swapping, the worst-case finishing

time of the other tasks does not change.

By repeating the above procedure, we know that the schedule by using (EVODF) is also a feasible
schedule.

Based on Lemma 3, we have the following lemma for testing whether an offloading decision
results in a feasible schedule or not.

 Lemma 4: Suppose that tasks i  T for i = 1, 2, ..., n are ordered non-decreasingly according to D  I
i
. An

offloading decision , x
i
 = {0, 1}, results in a feasible schedule (by using EVODF) if and only if (a)  x

j 
S

j
 +

(1 - x
j
 )C

j
  D and (b) x

k 
I
k
+  x

j 
S

j
  D, k = 1, 2, . . . , n.

Proof: This comes directly from Lemma 3.

Now, we will prove the N P-completeness of the SERTO problem when the execution ordering is
unknown.

 Theorem 5: The SERTO problem is NP-complete if the execution order is not given.

Proof: Due to Lemma 3, verifying whether an offloading decision with EVODF scheduling is fea-
sible or not can be done in polynomial time. Therefore, the SERTO problem is in NP. The
NP-completeness can be proved by a reduction from the SUBSET SUM problem [4]: Given a set of
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integers V = {

1
, 

2
, . . . , 

n
} and an integer A, the problem is to find a subset V # of V such that

= A. For each 
i
 in V, the reduction creates 

i
 with

 C
i
 = 2

i
 , S

i
 = 

i

 I
i
 = I = 2((  

i
 ) - A), and

 D = 2 
i
  A.

Since all the tasks have the same round-trip offloading time and by Lemma 4, for an offloaded
task set T #  (with the corresponding set V #), the resulting EVODF schedule is feasible if and only if

 S
i
  D  I and  S

i
 +  C

i
  D, see Figure 5.

By the construction of task set T, we know that

and

Therefore, by (1) and (2), we know that there exists such a V # with  = A, if and only if the
reduced input instance for the SERTO problem has a feasible schedule by offloading the corre-
sponding task set T # created from V #.

Since the reduction is in linear time complexity, we know that the SERTO problem is NPcomplete.

6. Algorithms for Tasks Without Specified Ordering

In this section, we consider real-time tasks without any specified ordering, and present our pro-
posed scheduling algorithms for the SERTO problem. We will present a pseudo-polynomialtime
algorithm and an approximation algorithm with polynomial-time complexity. At the end of the
section, we will extend our algorithms to find the minimum D for executing the frame-based real-
time tasks to maximize the performance.

6.1. Dynamic Real-Time Scheduling Algorithm
Based on dynamic programming, we introduce Dynamic Real-time Scheduling (DRS) algorithm to find a
feasible solution for the SERTO problem. At the beginning, tasks 

i
 T for i = 1, 2, ..., n are ordered non-

decreasingly according to D  I
i

An offloading decision  for the first i tasks, i.e., {
1
, 

2
, . . . , 

i
}, is said partially feasible for

offloading (or a partially feasible offloading decision) if the offloaded tasks can finish the execution in
the servers before the given deadline D. Similar to Lemma 4, we know that a vector  is partially

feasible for offloading for {
1
, 

2
, . . . , 

i
} if and only if x

k 
I
k
 +  x

j 
S

j
  D, k = 1, 2, . . . , i.

Our strategy is to build a dynamic programming table by maintaining and storing some scheduling
results for the partially feasible offloading decisions for the first i tasks. Specifically, among all the

(1)

(2)
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Figure 6. An example for illustrating the dynamic programming parameters

partially feasible offloading decisions for {
1
, 

2
, . . . , 

i
}, let G(i, t) be the minimum total local

execution time for the locally-executed tasks under the constraint that the total setup time for
the offloaded tasks in {

1
, 

2
, . . . , 

i
} is less than or equal to t. Figure 6 presents an example of

four tasks {1, 2, 3 ,4} with the dynamic programming parameters, where {1 ,2} are offloaded

and {3 ,4} are executed locally. That is, for a given i and t, the value G(i, t) is the objective
function of the following Integer Linear Programming (ILP):

                                             minimize 

                                                            

                                             

                                                                

For notational brevity, when the above ILP has no feasible solution, G(i, t) is defined as 8. More-
over, G(i, t) = 8 when t < 0.

The optimal solution for (3) is also called optimal partially offloaded decision when the total local
setup time for the offloaded tasks in these i tasks is no more than t. Clearly, when i is 1, we know
that

Instead of solving the above ILP for building G(i, t), the construction of G(i, t), for i = 2, can be
achieved by using the following recurrence:

(3b)

(3a)

(3c)

(3d)

(4)

(5)
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Suppose that  is the corresponding partially feasible offloading decision for {

1
, 

2
,... ,i-1

} with

respect to the result in G(i -1, t - S
i 
). Similarly, let  be the corresponding partially feasible

offloading decision for {
1
, 

2
,... ,i-1

} with respect to the result in G(i - 1, t). The recursive function
in (5) represents the selection of the minimum solution by comparing two cases:

Case 1: task t
i
 is offloaded when its local setup execution finishes at time t. For such a case, if

t + I
i
 >D, offloading 

i
 is an infeasible offloading decision; otherwise, we consider the offloading

decision  for the first  tasks, in which the total local execution time of this  solution is as the

same as that in  , i.e., G(i - 1, t - S
i
).

Case 2: task 
i
 is locally executed. Therefore, we consider the offloading decision  for the first

i - 1 tasks.  As a result, the total local execution time of this solution is the sum of C
i
 and the total

local execution time in solution  . That is, C
i
 + G(i - 1, t).

We assume in this subsection that S
i
 is a non-negative integer for a task 

i
 in T . The standard

dynamic-programming procedure can be applied by constructing a table with n rows for i = 1, 2, . . .
, n and [D] + 1 columns for t = 0, 1, 2, . . . , [D].

 Lemma 6: For given integers i and t, the recursive function defined in (4) and (5) computes the optimal solution
for G(i, t).

Proof: The optimality is proved by induction on i. For the base case, G(1, t) = 0 if there is enough
time for feasible offloading of task 1. Otherwise 1 is locally executed, and then G(1, t) = C

1
, which

is optimal.

Inductive step: Assume that G(i - 1, t) is optimal for the subproblem for the first i - 1 tasks with

i  2 for any given t  0 (i. e., the ILP described in (3)). Recall that the two offloading decisions 

and  which represent the optimal partially offloading decisions for {
1
, 

2
,... ,i-1

} when the

total local setup time for the offloaded tasks in these i - 1 tasks is no more than t  S
i
 and t,

respectively.

Suppose for contradiction that  is a partially feasible offloading decision for {
1
, 

2
,... ,i

} in

which  S
j
  t and  (1 - ) C

j
 < G(i, t). There are two cases for task 

i
 in  .

Case 1:  is 0 (ti is locally executed) in  . Clearly, under the assumption (1 - )C
j
 < G(i, t),

we know that

where 1 comes from the construction of G(i, t) in (5). Hence, the offloading decision  by

excluding  from  is a partially feasible offloading decision for the first i - 1 tasks with  Sj

  t and  C
j
 (1 - ) <  C

j
 (1 - ), which contradicts the optimality of G(i-1, t).

Case 2:  is 1 (
i
 is offloaded) in  . Clearly, we know that S

i
  t  D  I

i
 for such a case;

otherwise,  is not a partially feasible offloading decision. With this case, we know that
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Therefore, the offloading decision  by excluding  from  is a partially feasible offloading

decision for the first i-1 tasks with  S
j   t-S

i
 and  C

j
 (1- ) <  (1- ), which

contradicts the optimality of G(i - 1, t - S
i
).

Hence, based on the induction hypothesis, the lemma is proved.

Now, based on Lemma 6, for an input task set T, to verify whether a feasible schedule exists for
the SERTO problem or not, we just have to check whether there  exists 0  t  D with G(n, t) + t  D.

 Theorem 7: There exists t with G(n, t) + t  D if and only if there exists a feasible schedule for the SERTO
problem.

Proof: If: Suppose  is the corresponding offloading decision for a feasible schedule of the
SERTO problem. Let l be the maximum index with x

l
 = 1. That is, x

j
 is 0 for j > l. As the schedule is

feasible, we know that  is also a partially feasible offloaded decision when t is set to  S
j 
x

j
.

Therefore, based on Lemma 6, we have  C
j
 (1 - x

j
 )  G(n,  S

j 
x

j
). The necessary condition

for being a feasible schedule for the SERTO problem, is  S
j 
 x

j
+  C

j
 (1-x

j
)  D. This implies

that  S
j 
 x

j
 + G(n,  S

j  
x

j
)  D. Therefore, when t is  S

j 
 x

j
 , we know that G(n, t) + t  D.

Only-If: Suppose t* is with G(n, t* ) + t*  D. We can backtrack the dynamic programming table to

obtain an offloading decision  for the given n tasks such that it satisfies the constraints de-

scribed in (3) when t is set to t* and i is set to n. Since G(n, t* ) + t*  D, based on Lemma 4, we know
that the resulting schedule by using EVODF scheduling policy is a feasible schedule.

 Theorem 8: The DRS algorithm is an optimal offloading scheduling algorithm with time complexity O(n log n
+ nD) for the SERTO problem when there is no specified execution ordering.

Proof: The optimality comes from Theorem 7. The time complexity of constructing G(i, t) for
i = 1, 2, . . . , n and t = 0, 1, 2, . . . , [D] is O(n log n + nD), since it takes O(n log n) to sort task set T and
O(nD) to build the dynamic-programming table. For back-tracking a solution from an entry t with
G(n, t* )+ t*   D, the time complexity is O(n). Therefore, the overall time complexity is O(n log n +
nD), which is pseudo-polynomial time. The space complexity is O(nD), but it can be improved to
O(D) by discarding the entries G(i - 2, t) when building G(i, t).

6.2. Approximation for DRS Algorithm
As the SERTO problem is NP-complete, solving the problem in polynomial time is not possible unless
NP = P. To allow a polynomial-time algorithm, some approximation is needed. This subsection
presents a methodology to reduce the time complexity so that the user can trade the complexity
with the approximation of the derived solution.

Let K =D/n be the time unit after approximation, where >0 is a user-specified parameter that
determines the approximation granularity. This means that a time unit after approximation is
equal to K amount of time before  approximation. The exact algorithm requires the assumption
that all the timing parameters are integers and has  pseudo-polynomial complexity. However, if
the timing parameters are real numbers, the algorithm will not work. In this case, the real num-
bers can be rounded up to the nearest integers. But, this will affect the accuracy of the algorithm.
Also, in the case of a large value of D, the time and space complexities of the algorithm will be
high. Therefore, the approximation is used to trade the accuracy with time and space complexi-
ties for both cases, depending on the user parameter . Both complexity and accuracy are
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Figure 7. Approximation example

inversely proportional to the value of , which determines the value of K. If the value of K is less
than 1, the timing parameters are scaled up to increase the accuracy. But, it will also increase the
complexity of the algorithm. On the other hand, if the value of K is greater than 1, the timing
parameters are scaled down which is used to reduce the complexity of the algorithm for a large
value of D. As a consequence, we will get a less accurate result. For K = 1, the approximation does
not have any effect.

For each task 
i
 , we construct a corresponding task ’

i
 as follows:

  = K—[S
i  /K ] (rounded up to the nearest time unit, i.e. integer multiples of K),

  = I
i
 - (  - S

i 
), and

  = C
i

.
Figure 7 shows an approximation example, where the time unit after approximation (K) is equal to
4 and the setup time S

i
 is rounded-up to the next time unit (2K).

Let T’ be the resulting task set after transformation. Moreover, we also set D’ either to D or to
(1 +) D, to be explained later. As all the setup times are integer multiples of K, we can construct
the dynamic programming table by considering only the integer multiples of K. Therefore, we
define G’ (i, t) as the minimum total local execution time for the locally executed tasks under the
constraint that the total rounded-up setup time for the offloaded tasks in  is less
than or equal to t · K

For i  2,

(6)

(7)
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The time t in the equations above represents the time after approximation, which is represented
in K unit of time. Therefore, the timing parameters  and  should be divided by K to be
consistent with the new time scale.

 Lemma 9: For given integers i and t, the recursive function defined in (6) and (7) computes the optimal solution
for a partially feasible offloading decision for the first i tasks in T’

Proof: This is similar to the proof for Lemma 6

The following theorem shows the feasibility by adopting the dynamic programming for the result-
ing solutions.

 Theorem 10: When D’ is set to D, and there exists t with 0  t  [D’ /k ] and G’ (n, t)+ t·K  D’ , the
offloading decision by backtracking the dynamic programming table built for T’ is a feasible sched-
ule of the original task set T by using EVODF scheduling policy.

Proof: This basically comes directly from the definition of T’. Suppose that  is an offloading
decision for such a t after by backtracking the dynamic programming table built for T’ . Therefore,

with the fact  x
j

  t · K, we know that

and, for all k = 1, 2, . . . , n, as +  is equal to I
k
 + S

k
 and x

k +  x
j 

  D, we have

Therefore, we know that  is a partially feasible offloading decision with  x
j  
S

j
  t · K. Since

G’ (n, t) + t · K  D’ , the statement holds due to Lemma 4.

 Theorem 11: If there exists a feasible schedule for T , then there exists t with 0  t  [ D’ /K ]
and G’ (n, t) + t · K = D’ when D’ is set to (1+)D.

Proof: Suppose that  is the offloading decision of a feasible schedule for T . By Lemma 4,

  S
j
 + (1 - )C

j
  D and  I

k
 +   S

j
  D for k = 1, 2, . . . , n.

By the definition of T’ and K =D /n , we know that

Similarly, for k = 1, 2, . . . , n, we have
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Let t’ be  /K , in which t’ is an integer and t’ [D’/ k] . Then, by Lemma 9 for the optimality

in G’ (i, t’ ), we know that G’ (n, t’ )  (1  )C
j
 . Therefore, together with (8),

we know that

which proves the theorem.

We now analyze the time complexity.

 Theorem 12: For a given  > 0 and D’ , evaluating whether there exists exists t with 0  t  D’/K  and G’ (n, t)

+ t · K  D’ is with time complexity O (n2 /).

Proof: The construction of task set T’ takes only O(n). The construction of G’(i, t) requires
O(n D/K ) = O( n2/ ), since K is set to D/n .

6.3. Maximizing the Sampling Rate
The SERTO problem so far is for determining a feasible schedule if there exists. Another extension
is to minimize the deadline/period D for the frame-based real-time tasks so that the sampling rate
of the frame-based tasks can  be maximized. The DRS algorithm can be adopted to find the
optimal value of D with a binary search. Suppose that Dlower and Dupper are the lower and upper
bounds of the feasible deadlines in the current iteration in the binary search, respectively. Initially,

Dupper is  C
i
 and Dlower is  min{S

i
 , C

i
}.

Moreover, suppose that  is the offloading decision for a feasible schedule by setting D to Dlower+

Dupper/ 2. We also know that setting D to

is also feasible. Therefore, if such an offloading decision  is found, the efficiency, with respect
to the time complexity, of the binary search can be further improved by setting the next D to
Dlower+D#/ 2 , as any D > D# has feasible schedules. Clearly, the whole procedure is still with pseudo-
polynomial time.

When the approximation in Section 6.2 is adopted, the above binary search still works with polyno-
mial-time complexity. Due to Theorems 10 and 11, the derived solution is at most (1+) times the
minimum feasible deadline of the input instance, by ignoring the error due to the termination
condition of the binary search.

7. Experimental Results
In our experiments, our DRS algorithm, with and without approximation, is evaluated by adopting a
surveillance system as a case study and synthesis workload simulation.

7.1. Case Study of a Surveillance System
We use a surveillance system that performs four real-time tasks to evaluate our DRS algorithm,
and compare it with Nimmagadda et al. [12] algorithm and by offloading all the tasks. The system
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captures two images at the same time, left and right, periodically. Left and right images are used
for a stereo vision task. For the other tasks, one image is used for processing. The tasks are
frame-based real-time tasks and independent, described as follows:

Table 1. Timing parameters of case study tasks (ms)

 Motion Detection: The motion is detected using the background subtraction technique [13]. The
system computes the running average of the captured frames, and each new frame is subtracted
from the moving average. Then, the output is processed to get the contours of the moving objects
[5].

 Object Recognition: It is used to recognize a given object from the input image. Scale Invari-
ant Feature Transform (SIFT) method [11] is used to extract features, which are not affected by
object size, position or rotation.

 Stereo Vision: Stereo vision is used to generate a depth map for left and right images to
calculate the distance between the surveillance system and the object of interest. Stereo imaging
[1] is adopted in the implementation.

 Motion Recording: It records video for detected motion for further human check.

The system remains idle until a motion is detected. Then, it starts executing all the tasks above.
Before sending an image to the server(s), scaling, encoding, or both of them may be performed
on the image. Although scaling and encoding can reduce the size of the transfered image for
reducing the communication overhead, they consume more time on the local device for scaling
and encoding. The time used for scaling, encoding, and sending on the client for a task is consid-
ered as the setup time in our case study. For the server side, we consider two cases. First, a
dedicated server (or processor) for each task, if offloaded. Second, we assume that we have only
one server where a scheduling algorithm is used to schedule all the offloaded tasks, in which I

i

may be larger than C
i
 for some task 

i

We consider four scenarios: (Scenario 1) images are encoded before sending and a dedicated server
is used for each offloaded task (multiple servers), (Scenario 2) images are encoded before sending
and only one server is used for all the offloaded tasks (single server), (Scenario 3) images are sent
without encoding and a dedicated server is used for each offloaded task, and (Scenario 4) images
are sent without encoding and only one server is used for all the offloaded tasks.

Timing parameters for the tasks in the four scenarios are given in Table 1, where the time values
are in milliseconds based on measurements. If the system performs all the tasks locally, they will
finish by 356 ms, which will be considered as the deadline (sampling period) in our case study
here. We explore the three offloading approaches to reduce the local finishing time, i. e., increase
the sampling rate.

Figure 8 shows the total local finishing time on the client side, and the time at which the last result
returns back from the server side. In Scenario 1, tasks 

2
 and 

3
 are offloaded in both DRS and


1


2

Description

Motion Detection

Object Recognition

Stereo Vision

Motion Recording

30

220

88

18

S
i

31

3

34

31

I
i
 -Multi.

33

102

47

29

I
i
 -Single

117

102

115

115

With Encoding

S
i

7

2

16

7

I
i
 -Multi.

21

102

41

14

I
i
 -Single

141

102

127

148

Without Encoding
C

i


i


3


4
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Nimmagadda et al. [12] algorithms. Although the offloading decisions in the previous scenario are
the same for both algorithms, the total finishing time in DRS is shorter. This is because DRS
algorithm continues local execution after offloading, while Nimmagadda et al. [12] remains idle
waiting for the results from the server side. The decision of the Nimmagadda et al. [12] algorithm
in Scenario 2 is the same as in Scenario 1. It does not change by having multiple servers because
Nimmagadda et al. [12] algorithm remains idle during offloading. DRS algorithm just offloads task


2
 in Scenario 2 and 4.

Figure 8. Case study results

In Scenarios 3, DRS algorithm offloads all the tasks because their setup time S
i
 is less than their

local execution time C
i , and they are feasible for offloading. Nimmagadda et al. [12] algorithm

offloads all the tasks except task 4 in Scenario 3 and 4, because its local time is less than the
summation of the expected remote execution time and the data transfer time. We observe that all
the three evaluated algorithms reduce the local finishing time, but our algorithm has the minimum
finishing time in all scenarios.

7.2. Simulation Setup and Results
We also perform simulations by using synthetic workload for task 

i
 generated as follows:

 C
i : Randomly generated integer values from 1 to 50 ms with uniform distribution.

 S
i
: Randomly generated integer values from 1 to C

i  with uniform distribution.

 I
i 
: I

i
 = C

i
 / , where  is the speed-up factor of the server, i.e., the response time from the server

is  times faster than the execution time of the local client.  is randomly generated such that
0 < m, where m is the maximum value of .

We perform 100 rounds in the experiment. In each round, a set of 25 frame-based real-time tasks
is randomly generated according to the above conditions. Each task set is evaluated by ten different
settings according to m values, where m = {0.005, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 8}. By using small m
values, we simulate servers that require longer response time than the local execution time for
tasks. While by using large m values, we simulate servers that are faster than the client and can
process almost immediately for any offloaded tasks.

The normalized finishing time reduction of an algorithm for a task set is the finishing time for the task
set execution after using the derived schedule divided by the finishing time for the same task set
if all tasks are executed locally. Also, the normalized sampling period is the finishing time for the input
task set using the approximation DRS algorithm described in 6.2 divided by the finishing time for
the same task set using the DRS algorithm.
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For the rest of this section, we will discuss the simulation results for the three offloading approaches
using the task sets described above. Also, we evaluate the approximation DRS algorithm described
in Section 6.2. Figure 9 shows the number of offloaded tasks for different m values. Nimmagadda
et al. [12] algorithm offloads tasks only when the server is faster than the client. But, DRS algorithm
offloads tasks even to server(s) with longer response time, while they are feasible. Also, we
observe that the number of the offloaded tasks increases proportionally to m value.

Figure 9. Number of offloaded tasks for synthesized tasks

Figure 10. Finishing time for synthesized tasks

Figure 10 illustrates the average finishing time for the generated task sets. Nimmagadda et al.
[12] algorithm  reduces the local execution time only when the server is faster than the client,
because it doesn’t offload tasks with m  1 as shown in Figure 9. The improvement of DRS algorithm,
compared to Nimmagadda et al. [12] algorithm, is up to 44.7%.

Figure 11 shows the average normalized finishing time reduction. Again, Nimmagadda et al. [12]
algorithm does not help in finishing time reduction for the same reason in Figures 9 and 10.
Furthermore, the finishing time reduction in DRS algorithm is more than in Nimmagadda et al. [12]
algorithm because Nimmagadda et al. [12] algorithm remains idle during offloading. In Figure 11,
offloading all the tasks is not useful for m  2 and the finishing time exceeds the
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summation of local execution for all the tasks, because the round-trip offloading time for most of
the tasks is relatively large. DRS algorithm reduces the finishing time in all cases because it
offloads only the beneficial and optimal tasks for offloading. The average finishing time using DRS
algorithm is reduced up to 52% of the local execution.

Figure 12 shows the average execution time of DRS algorithm, where n is the number of input
tasks. The algorithm is evaluated with different number of input tasks (5, 10, 15, 20 and 25) and
different deadlines (300, 400, 500, 600 and 700 ms). As the deadline value increases, the average execution
time also increases, but more rapidly for larger number of tasks. Nevertheless, the execution time
of the algorithm is very short and negligible relative to the deadline.

Figure 11. Finishing time reduction for synthesized tasks

Figure 12. Execution time of DRS algorithm

The above results are based on the DRS algorithm. Now, we will present the results based on the
approximation in Section 6.2. Figure 13 shows the effect of the approximation parameter  on the
finishing time of approximation DRS algorithm for different m values. As the m value increases,
which also implies an increase in the number of offloaded tasks , the average normalized sampling
period also increases, because the offloading decision is affected by the rounded-up setup time for
the offloaded tasks. For m  0.5, the average normalized sampling period is nearly the same
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because almost all of the tasks are offloaded in this case. Clearly, the  value affects the accuracy
of the approximation for DRS algorithm. When the value  increases for worse approximation, the
finishing time of the tasks also usually, but not always, increases.

8. Conclusion

In this paper, we present two offloading algorithms, GMF and DRS, for real-time embedded systems.
Our algorithms can be used to schedule tasks with and without specified execution order to meet
the deadline. Also, they can be used to maximize the sampling rate for tasks execution. Our
experimental results show that, even by offloading to server(s) with shorter response time, using
DRS algorithm can result in significant finishing time reduction. The experiments also reveal that
DRS algorithm reduces the finishing time up to 52% of the total local execution time, and improves
the finishing time of other existing offloading algorithms up to 44.7%.

Figure 13. Normalized sampling period for synthesized tasks
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