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ABSTRACT

Binary Decision Diagram (BDD) construction and manipulation is an important
part of CAD tasks. One of the ways to improve BDD package performance is to
perform certain BDD operations in parallel with the GPU. The recent development
of GPU frameworks for general-purpose programming, such as OpenCL or Nvidia
CUDA, has made GPUs a very powerful and attractive option for developing
high-performance numerical applications. This paper proposes an efficient
implementation of the BDD package that distributes computational workloads
over CPUs and GPUs. This implementation takes advantage of various parallelism
sources found in the BDD package. The experimental results demonstrate that
implementing this solution results in significant computational speedups.

Keywords: Binary Decision Diagrams, BDD Package, Parallel Implementation,
Graphics Processing Unit, GPU Computing

1. Introduction

Binary Decision Diagrams (BDDs) are the dominant data structure for
representing Boolean functions in CAD applications. The application of BDDs is
further extended with their use in various areas of computer science and
engineering. In practice, the success of BDD representations depends on the
ability to efficiently manipulate large BDDs. Therefore, considerable research
has been conducted in order to develop more efficient implementations of BDD
algorithms [1-5].

BDD algorithms are usually built on top of BDD packages. Many BDD package
implementations have been developed in a variety of programming languages
and most of them are freely available as public domain on the Internet. The
choice of a BDD package for a certain application is typically guided by the
following package characteristics: functionality, software interface, robustness,
reliability, portability, support, and performance. In most cases, the performance
of a BDD package is of major concern. Parameters which influence the
performance of a BDD package include the choice of the programming language
and the software and hardware platforms, BDD node structure, type of garbage
collection, unique and operation hash table strategies [6-8].
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Parallel computing can be used to efficiently solve large scale problems, either by distributing
computational loads among processors or by utilizing the large memory in parallel networked
workstations. Parallel processing of BDDs can be used both to reduce the BDD algorithm running
time and to extend the memory limitations which exist in the traditional single-processor sequential
computing.

In order to increase the performance of BDD packages, the concept of parallelism has been
introduced to the BDD representations and algorithms in several papers. In [9], a parallel algorithm
for the construction of BDDs is described. The algorithm is motivated by the fact that the construction
of a BDD, for certain large or particularly complex Boolean functions, can be a very time-consuming
task. In order to overcome limitations of computational resources, research in [10] presents an
approach which distributes the BDD data structure across multiple networked workstations. Further,
several techniques are introduced which allow parallelization of depth-first search algorithms on a
BDD. Reference [11] presents a parallel algorithm for BDD construction targeted at shared memory
multiprocessors and distributed shared memory systems. The results obtained using a shared
memory multiprocessors system show speedups of over 2×, with four processors, and up to 4×,
with eight processors. Alongside the research on parallel BDD construction, various BDD algorithm
parallel implementations were developed for networks of workstations [12-14]. In [15], some key
algorithms for performing BDD operations are first described and, afterwards, an approach to their
parallelization is described, with a goal to achieve efficient execution of BDD packages on multicore
CPUs. The technique of general purpose computing on the GPU (GPGPU) enables parallel processing
of non-graphics algorithms using graphics hardware. Only recently, the possibility of using GPUs to
solve complex problems in logic design has been explored by researchers, for example in [16-20].

Motivated by the existing research on efficient execution of parallel BDD operations on multicore
CPUs and possibility of using GPUs, in this paper we propose an efficient implementation of a BDD
package using the GPU platform. The proposed implementation exploits the various sources of
parallelism that exist in BDD packages. We address several topics considering parallel computations
in BDD packages and present their mapping to the GPU architecture. The experimental results
confirm that the application of the proposed implementation of a parallelized BDD package leads
to significant computational speedups over traditional C/C++ implementations processed on CPUs.

Figure 1. BDD Representation of the Function Defined by the Truth Table F = [00101111]T
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The paper is organized as follows: Section 2 shortly introduces the BDD representation of Boolean
functions. Section 3 describes the structure of a BDD package and the basic BDD algorithms.
Section 4 presents the GPU as a computing platform. Section 5 discusses the operations in the
BDD package for which we introduce the GPU processing. Section 6 shows experimental results
obtained with the proposed implementation. Finally, Section 7 offers some concluding remarks
and directions for future work.

2. Binary Decision Diagrams

BDDs consist of non-terminal (decision) nodes, 0-edges and 1-edges attached to all non-terminal
nodes, a ‘0’ terminal node, and a ‘1’ terminal node, as shown in Figure 1. The non-terminal node
with no upper nodes is called a root node. As it can be seen from Figure 1, a variable is related to
every non-terminal node, such that every path from the root node to one of the terminal nodes
respects the same variable ordering.

A Boolean function can be converted into an equivalent function by performing Shannon expansion
based on the fixed variable ordering. This new function can be represented by a binary tree. The
corresponding BDD is constructed from this binary tree by applying the two reduction rules
(redundant node elimination and equivalent sub-graphs sharing). The Boolean operations such as
the logical AND, logical OR, etc., can be achieved by using BDD manipulations, which have an
average time complexity propositional to the size of BDDs. It is well known that the size of the
BDD for a given Boolean function depends on the variable order for the function. The strength of
BDDs is that they can represent Boolean function data with high level of redundancy in a compressed
form.

3. BDD Packages

BDD packages are deployed in many software tools, particularly in the area of logic design, and
they typically deal with the following common implementation features [1]. A BDD package has
three main components [21]:

• The BDD algorithm component,

• Dynamic variable reordering component,

• Garbage collection component.

The BDD algorithm component builds the result BDDs for various Boolean operations. The
implementation of these algorithms is typically based on the BDD node data structure, unique and
operation tables, and depth-first BDD traversal.

The decisions made in defining the BDD node data structure have impact on memory space
requirements for storing node objects. There are many choices for defining a BDD node object,
but every node usually contains: an id, then cofactor, else cofactor, next pointer, and reference
counter [22]. The BDD construction is based on applying the traversal in a depth-first manner.

The maintance of a BDD representation is improved by storing BDD nodes in a dictionary, called
the unique table. The unique table maps a unique triple of (v, g, h) for a BDD node, where v is the
variable identifier, g is the node connected to the “1” edge, and h is the node connected to the “0”
edge. The unique table is a hash table with the hash collisions resolved by chaining. A hash
function is applied to the triple to obtain the index in the unique table of the start of a collision
chain of nodes. Comparing the unique triple against the nodes in the collision chain addresses the
look up.

The efficient implementation of almost all recursive BDD manipulation algorithms is made possible
by the operation table. This table is also implemented as a hash table with the collisions resolved
by chaining. The collision lists can be kept sorted to reduce the number of memory accesses
required on average for the lookup. Table sizes which are prime numbers require an expensive
modulo operation. Table sizes that are a power of 2 are often better handled by memory
management.



dline.info/jism 4

Jo
ur

na
l 

of
 I

nf
or

m
at

io
n 

&
 S

ys
te

m
s 

M
an

ag
em

en
t 

 V
ol

um
e 

14
  

N
um

be
r 

 1
  

M
ar

ch
  

20
24

As the variable ordering can have significant impact on the size of a BDD, dynamic variable
reordering component is a fundamental part of all modern BDD packages. Dynamic variable
reordering algorithms are generally based on the shifting algorithm [23]. The BDD variable order
changes by exchanging nodes in one level with nodes in the neighbouring levels. Dynamic variable
ordering should best be invoked as an asynchronous process that can be activated at any time
during the BDD manipulation. Dynamic variable ordering is a complex problem since finding an
optimal ordering is NPhard. Futher, small changes in the BDD ordering may have significant impact
on both the space and time requirements.

BDD computations are memory intensive, especially when large BDDs are involved. They not only
require a lot of memory, but also frequent accesses to many small data structures. Furthermore,
many intermediate BDD results are created to arrive at a resulting BDD. These computations may
have poor memory handling, as there is not a solution to ensure that the accessed BDD nodes are
close in memory. It is important to have a garbage collector component [24] to automatically
remove BDD nodes that are no longer useful. In modern BDD packages, garbage collector component
is based on reference counting and the recycling of nodes for later reuse. Garbage collection is
activated when the percentage of the unusable BDD nodes reaches a threshold. Unusable BDD
nodes are nodes with zero reference counts. Some of unusable BDD nodes may become usable
again (recycled) if they are obtained as results of new sub problems. Thus, in the case when BDD
nodes change state between „usable“ and „unusable“ frequently, garbage collection can reduce
the benefit of the operation tables and decrease the overall performance of a BDD package.

4. The GPU Architecture and GPGPU

Processor frequency progress, which followed the Moore’s law for more than four decades, reached
a limit in 2003, mostly due to the inability to further solve the problems of heat dissipation and
energy consumption. Since then, there are two approaches in the development of computer
architectures. The multicore approach, typical for CPUs, seeks to maintain the execution speed of
sequential programs while moving into multiple cores. In contrast, the many core approach, found
in GPUs, focuses more on the execution throughput of parallel applications. This resulted in a rapid
evolution of GPU architectures. The GPU evolution started from fixed-function hardware specialized
for rendering computer graphics, which first appeared in 1999, and developed into a massively
parallel, scalable, and fully programmable platform characterized by exquisite memory bandwidth
and computational power. Due to this, many of the general purpose applications which were
processed on CPUs are now re-implemented in order to efficiently harness the GPU resources. For
more details on recent changes that made GPGPU possible, see [25, 26, 27, 28].

The GPU parallel processing model is based on a large number of processor cores which can
directly address into a global GPU memory. The GPU architecture follows the single program,
multiple data (SPMD) paradigm [26, 27], features a multi-level memory hierarchy and has simple
branching circuits. In SPMD computing, a large number of threads execute in parallel the same
function, called a kernel, over different data.

Application Programming Interfaces (APIs) most often used for the development of GPGPU programs
are Nvidia’s CUDA and Open Computing Language - OpenCL. CUDA is a vendor-specific development
framework and only supports execution on Nvidia’s GPU hardware. Therefore, we give advantage
to OpenCL which is hardware agnostic. Further, the OpenCL C programming language, included in
the framework, allows development of programs that are both accelerated and portable across a
wide set of devices (CPUs, GPUs, Field Programmable Gate Arrays (FPGAs), Digital Signal Processors
(DSPs), Cell processors, embedded processors) [28].

5. GPU Acceleration in The BDD Package

Motivated by the existing work on the parallelization of components in BDD packages, described in
Section 1, we explored various sources of parallelism that exists within the algorithms included in
BDD packages in order to develop an efficient model of parallel BDD operations on GPUs. The
components of the BDD package that take advantage of the GPU processing in our present solution
are the BDD algorithm and the garbage collection components.

The effectiveness of caching within unique and operation tables of the BDD algorithm component
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strongly influences the number of subproblems generated in the BDD algorithm task execution.Thus,
the hash tables (unique and operation tables) in a BDD package need to support concurrent
execution of the hash operation lookup_insert(key). This operation is a crucial component of the
Apply procedure which is central to the BDD construction and manipulation [1]. The lookup_insert
operation returns the key, if it already exists in the hash table, or, otherwise, inserts the key.
Reference [15] shows how this operation can be safely executed in parallel on multicore processors.
The lookup_insert operation within the BDD algorithm component in our BDD package is, therefore,
implemented as an OpenCL kernel which performs the same function over different keys. Since
GPUs use hardware multithreading [25, 26, 27], this automatically allows simultaneous execution
of as many lookup_insert operations as there are active GPU threads.

The effectiveness of garbage collection component can have significant impact on both space and
time requirements of a BDD package. When garbage collector removes unusable BDD nodes, the
unique and the operation table entries that reference these nodes must also be removed to
eliminate unusable references. If garbage collection is not invoked frequently enough, the memory
usage can be greatly increased. An OpenCL kernel for garbage collection is developed so that each
GPU thread removes an entry from the hash tables. Since thousands of GPU threads can be active
at the same time, this leads to a massively-parallel GPU garbage collection. The transfer of the
garbage collection task to the GPU, also allows the CPU to be free to perform other tasks for which
it may be more suitable.

6. Experimental Results

In this section, we compare the performance of our GPU accelerated BDD package implementation,
which incorporates the before-mentioned OpenCL kernels, and a single-threaded C/C++
implementation of the BDD package on the CPU. For the comparison, we use a set of well-known
standard benchmarks. Table I presents a view on the performance of the BDD package computations
performed in the basic BDD construction algorithm on the CPU and the GPU.

Benchmark

alu4

apex1

apex2

apex5

cordic

cps

misex2

misex3

table3

table5

in / out / cubes

14 / 8 / 1028

45 / 45 / 206

39 / 3 / 1035

117 / 88 / 1227

23 / 2 /1206

24 / 109 / 654

25 / 18 /29

14 / 14 / 1848

14 / 14 / 135

17 / 15 / 158

CPU

0.15

5.18

3.31

0.30

0.06

0.15

0.05

0.03

0.02

0.01

GPU

0.08

0.81

0.62

0.17

0.04

0.09

0.03

0.02

0.02

0.01

Table 1. Comparison of the BDD Construction Times for the BDD Package on the CPU and the GPU

The test platform features an Intel i7-920 quad-core processor, operating at 2.66 GHz, and has 4
GBs of DDR3- 2000 RAM. GPU that is used is an Nvidia GeForce GTX 560Ti with 1GB of GDDR5
RAM, composed of 384 streaming processors. The OpenCL kernels are developed using the AMD
Accelerated Parallel Programming SDK 2.6.

The size of the unique and the operation tables is limited to 8191 entries. The garbage collection
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is activated if the hash tables exceed the 80%-full marker. All benchmarks are used in the Espresso-
mv or pla format [29] and the computation times are reported in seconds.

As it can be seen from Table I, the addition of the GPU acceleration to the BDD package brings
clear performance benefits over the CPU-only solution. The speedup, in terms of the BDD construction
algorithm computation time, for most of the cases is substantial and varies from 6.4× to 1.5×.
However, it should be noted that the speedup may not be achieved in some cases, e.g., in the case
of the benchmark table3, because the construction of the BDD in this case is not enough
computationally-intensive to benefit from the introduction of the GPU.

7. Conclusion

This paper proposes an implementation of a BDD package which uses the GPU hardware for the
acceleration of certain data-parallel operations. The proposed implementation exploits several
sources of parallelism that exist within BDD packages. In particular, we discuss the parallel OpenCL
implementation of the lookup_insert hash operation, which is of central importance to the BDD
algorithm component, and a GPU-accelerated garbage collection component. The experimental
results confirm that the application of the proposed implementation, which distributes the BDD
package operations over the CPU and the GPU, leads to significant computational speedups. The
results presented in the paper may also be helpful in the general study on improvement of BDD
packages. Since these first research results look promising, further work on this topic will be
devoted to the extension of the GPU acceleration method to the implementation of other operations
that are common in the components of BDD packages.
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