
Scheduling Algorithm for the Efficient Management of
Memory and Cache

Will Lunniss, Robert I. Davis1 and Sebastian Altmeyer2

1Department of Computer Science
University of York, York, UK
{wl510,rob.davis@york.ac.uk}

2Computer Systems Architecture Group
University of Amsterdam
Amsterdam, The Netherlands
{altmeyer@uva.nl}

ABSTRACT

In real-time multitasking systems, the scheduling algorithm is one of the most
critical factors in meeting response time requirements while maximizing sys-
tem resources. There are two popular scheduling algorithms: fixed priority
(FP), which has been studied in detail before. Still, we haven’t compared them
in the context of cache-related pre-emption (CRPD) delays. Memory and cache
are divided into several blocks with instructions and stored data. When a task
is pre-empted, cache blocks from that task can evict blocks from the pre-
empted task. When the task is restarted, if it has to load those evicted blocks
again, CRPD is introduced, which affects the task schedulability.

Keywords: Pre-Emption Delays, Scheduling Algorithms, Memory And Cache

1. Introduction

Today’s real-time applications are complex systems built up of a large number
of interacting tasks running on hardware with non-deterministic performance
enhancing features such as caches, pipelines and out-of-order execution. To
manage the available resources efficiently, scheduling algorithms are used to
determine which task should run and at which time in order to fulfil the functional
and temporal requirements of the system. The scheduling algorithms are often
pre-empting, in that they allow important tasks to interrupt less important
tasks before they have finished. Two popular scheduling algorithms for real-
time systems are fixed priority (FP) and earliest deadline first (EDF). FP
scheduling uses statically defined priorities to run the task with the highest
priority first. In comparison, EDF is a dynamic scheduling algorithm that
schedules the task with the earliest absolute deadline first. EDF is an optimal
scheduling algorithm without pre-emption costs, whereas FP is not, and is
therefore typically able to schedule tasksets at a higher processor utilisation

Received: 3 October 2023

Revised: 2 December 2023

Accepted: 14 December 2023

Copyright: with Author(s)

DLINE JOURNALS

JISM 2024; 14 (1)

https://doi.org/10.6025/jism/2024/14/1/8-33

Journal of Information & Systems
Management

Print ISSN: 2230 – 8776

dline.info/jism 8

dline.info/jism 9

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

than FP [20]. However, despite the significant performance benefits over FP, EDF is not widely
used in commercial real-time operating systems.

In real-time systems, and especially hard real-time systems, the schedulability of each task must
be known in order to verify that the timing requirements will be met. The schedulability of a
taskset is determined using information about the scheduling algorithm, the arrival pattern of
tasks and the tasks’ worst-case execution times. Worst-case execution times are typically obtained
assuming no pre-emption. However, in pre-emptive multi-tasking systems, caches introduce
additional cache related pre-emption delays (CRPD) caused by the need to re-fetch blocks belonging
to the pre-empted task which were evicted from the cache by the pre-empting task. These CRPD
effectively increase the worst-case execution time of the tasks. It is therefore important to be
able to calculate, and therefore account for, CRPD when determining if a system is schedulable or
not.

In 2005, Buttazzo [13] performed a detailed study of FP and EDF scheduling. This work covered
both schedulability under a variety of scenarios, in addition to practical implementation
considerations. Results showed that the FP scheduling algorithm introduces more pre-emptions
than EDF, especially at high processor utilisation levels. This leads to FP performing worse than
EDF. Yet, FP has an advantage over EDF, in that it is generally simpler to implement in commercial
kernels which do not provide explicit support for timing constraints. Despite being a very detailed
study, these comparisons where done under the assumption that there were no pre-emption costs
due to CRPD.

In this paper we build on the work by Buttazzo [13] and use state of the art CRPD analysis for FP
[3] and EDF [22] to perform a comprehensive study of these two popular scheduling algorithms
when accounting for CRPD.

1.1. Related Work on CRPD
Analysis of CRPD uses the concept of useful cache blocks (UCBs) and evicting cache blocks (ECBs)
based on the work by Lee et al. [18]. Any memory block that is accessed by a task while executing
is classified as an ECB, as accessing that block may evict a cache block of a pre-empted task. Out
of the set of ECBs, some of them may also be UCBs. A memory block m is classified as a UCB at
program point P, if (i) m may be cached at P and (ii) m may be reused at program point Q that
may be reached from P without eviction of m on this path. In the case of a pre-emption at
program point P, only the memory blocks that are (i) in cache and (ii) will be reused, may cause
additional reloads. The maximum possible pre-emption cost for a task is determined by the
program point with the highest number of UCBs. For each subsequent pre-emption, the program
point with the next smallest number of UCBs can be considered. Altmeyer and Burguière [1]
presented a tighter definition of UCBs however, we only need the basic concept for this paper.

Depending on the approach used, the CRPD analysis combines the UCBs belonging to the pre-
empted task(s) with the ECBs of the pre-empting task(s). Using this information, the total number
of blocks that are evicted, which must then be reloaded after the pre-emption, can be calculated
and combined with the cost of reloading a block to then give the CRPD.

A number of approaches have been developed for calculating the CRPD when using FP pre-emptive
scheduling. They include Lee et al. [18] UCB-Only approach, which considers just the pre-empted
task(s), and Busquets et al. [12] ECB-Only approach which considers just the preempting task.
Approaches that consider the pre-empted and pre-empting task(s) include Tan and Mooney [26]
UCB-Union approach, Altmeyer et al. [2] ECB-Union approach, and an alternative approach by
Staschulat et al. [25]. Finally, there are advanced multiset based approaches that consider the
pre-empted and pre-empting task(s) by Altmeyer et al. [3], ECB-Union Multiset, UCB-Union Multiset,
and a combined multiset approach.

There has been less work towards developing CRPD analysis for EDF pre-emptive scheduling. In
2007, Ju et al. [17] considered the intersection of the pre-empted task’s UCBs with the pre-
empting task’s ECBs. However, this method for handling nested pre-emptions can lead to significant
pessimism as each pair of tasks is considered separately. In 2013, Lunniss et al. [22] adapted a
number of approaches for calculating CRPD for FP to work with EDF. Including the ECB-Only, UCB-
Only, UCB-Union, ECB-Union, ECB-Union Multiset, UCB-Union Multiset and combined multiset CRPD

dline.info/jism 10

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

14

N
um

be
r

 1

M
ar

ch

20
24

analysis for FP given by Busquets et al. [12], Lee et al. [18], Tan and Mooney [26], and Altmeyer
et al. [2, 3].

A different methodology was used by Bastoni et al. [8]. Instead of focusing on how to calculate an
upper bound on the CRPD, they used measurements on real hardware to estimate a lower bound
on the CRPD and cache related migration delays for data caches in a multi-processor system.

CRPD can have a significant effect on schedulability, and can also vary dramatically depending on
a number of factors. In particular, the CRPD is highly dependent on how tasks are placed in cache.
As the layout of tasks in memory determines how they are positioned in cache, choosing a sensible
layout can have a big impact on the CRPD caused due to pre-emptions. In 2012, Lunniss et al.
[21] presented an approach that uses a Simulated Annealing algorithm to optimise the layout of
tasks to increase system schedulability when using FP scheduling.

1.2. Organisation
The paper is organised as follows. Section 2 introduces the system model, terminology and notation
used. Existing schedulability tests and CRPD analysis are outlined in Section 3 for FP scheduling,
and in Section 4 for EDF scheduling. Section 5 briefly covers optimising task layout to reduce
CRPD. Section 6 compares FP and EDF with CRPD analysis using a set of case studies. In Section
7, we investigate the effect of a variety of configuration parameters in a series of evaluations
using synthetic tasksets. Finally, we conclude in Section 8.

2. System Model, Terminology and Notation

This section describes the system model, terminology, and notation used in the rest of the paper.

We assume a single processor system, running a statically defined taskset under either preemptive
FP or pre-emptive EDF scheduling. The system comprises a taskset  made up of a fixed number
of tasks (1, . . . , n) where n is a positive integer. In the case of FP, each task has a unique fixed

priority and the priority of task i , is i, where a priority of 1 is the highest and n is the lowest. Each

task, i may produce a potentially infinite stream of jobs that are separated by a minimum inter-
arrival time or period T

i
. Each task has a relative deadline D

i
, and each job of a task has an

absolute deadline d
i
 which is D

i
 after it is released. In the case of EDF, each task has a unique task

index ordered by relative deadline from smallest to largest. In the case of a tie when assigning the
unique task indices, an arbitrary choice is made. Each task also has a worst case execution time C

i
(determined for non-pre-emptive execution). In this paper, we consider tasks with constrained
deadlines. (Task deadlines may be referred to as constrained deadlines, i.e. D

i
  T

i
 or implicit i.e.

D
i
 = T

i). We assume a discrete time model. We define T
max

 as the largest period of any task in the
taskset, and similarly D

max
 as the largest relative deadline of any task in the taskset. Each task has

a utilisation U
i
, where U

i
 = C

i
 /T

i
, and each taskset has a utilisation U which is equal to the sum of

its tasks’ utilisations.

A taskset is said to be schedulable with respect to a scheduling algorithm if all valid sequences of
jobs generated by the taskset can be scheduled by the algorithm without any missed deadlines. A
taskset is feasible if there exists some scheduling algorithm that can schedule all possible sequences
of jobs that may be generated by the taskset without any missed deadlines. A scheduling algorithm
is said to be optimal with respect to a task model if it can schedule all of the feasible tasksets that
comply with the task model.

Each task i has a set of UCBs, UCBi and a set of ECBs, ECBi represented by a set of integers. If for

example, task 1 contains 4 ECBs, where the second and fourth ECBs are also UCBs, these can be
represented using ECB1 = {1, 2, 3, 4} and UCB1 = {2, 4}. The block reload time (BRT) is the time
taken to load a block from memory into cache. This cost is incurred every time that a UCB has to
be reloaded after a pre-emption. We assume that the remaining context switch costs, i.e., pipeline
and scheduler related costs are subsumed in the execution time bound of each task. Furthermore,
we assume that the OS resides in a different cache partition and therefore scheduler operations do

dline.info/jism 11

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

not cause CRPD.

We use the term cache utilisation to describe the ratio of the total size of the tasks to the size of
the cache. A cache utilisation of 1 means that the tasks fit exactly in the cache, whereas a cache
utilisation of 5 means the total size of the tasks is 5 times the size of the cache.

We focus on instruction only caches. In the case of data caches, the analysis would either require
a write-through cache or further extension in order to be applied to write-back caches. We assume
that tasks do not share any code. We also assume a direct mapped cache, but the work extends to
set-associative caches with the LRU replacement policy1. In the case of set-associative LRU
caches, a single cache-set may contain several UCBs. For example, UCB

1
 = {2, 2, 4} means that task

1 has two UCBs in cache-set 2 and one UCB in cache set 4. As one ECB suffices to evict all UCBs
of the same cache-set, multiple accesses to the same set by the pre-empting task do not appear
in the set of ECBs. A bound on the CRPD in the case of LRU caches due to task i directly pre-

empting i is thus given by the intersection UCB
i
 ’ ECB

j
 = {m|m  UCB

i
 : m  ECB

j
}, where the result

is a multiset that contains each element from UCBi if it is also in ECBj . A precise computation of
CRPD in the case of LRU caches is given in Altmeyer et al. [4]. The equations provided in this
paper can be applied to set-associative LRU caches with the above adaptation to the set-
intersection.

3. CRPD Analysis for FP Scheduling

In this section, we give an overview of FP scheduling and schedulability analysis for it. We then
cover the state of the art CRPD analysis for FP scheduling, by Altmeyer et al. described in detail in
[3].

Under FP scheduling, the sets of tasks that can pre-empt each other are based on the statically
assigned fixed task priorities. Using the fixed priorities, we can define the following sets of tasks
for determining which tasks can pre-empt each other. hp(i) and lp(i) are the sets of tasks with
higher and lower priorities than task i , and hep(i) and lep(i) are the sets containing tasks with

higher or equal and lower or equal priorities to task i . Additionally, aff (i, j) = hep (i)  lp(j) is used

to represent all tasks that can have CRPD caused by task j pre-empting them, which affects the

response time of task i . In other words, it is the set of tasks that may be pre-empted by task j
and have at least the priority of task i .

Schedulability tests are used to determine if a taskset is schedulable, i.e. all the tasks will meet
their deadlines given the worst-case pattern of arrivals and execution. For a given taskset, the
response time Ri for each task i , can be calculated and compared against the tasks’ deadline, D

i
.

If every task in the taskset meets its deadline, then the taskset is schedulable. The equation used
to calculate R

i
 is defined as [5]:

Equation (1) can be solved using fixed point iteration. Iteration continues until either R
i
+1 > D

i
 in

which case the task is unschedulable, or until R
i
+1= R

i
 in which case the task is schedulable and

has a worst-case response time of R
i


1The concept of UCBs and ECBs cannot be applied to the FIFO or PLRU replacement policies as
shown by Burguière [11].

(1)

dline.info/jism 12

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

14

N
um

be
r

 1

M
ar

ch

20
24

Note the convergence of (1) may be speeded up using the techniques described in [14].

3.1. CRPD Analysis
To account for the CRPD, a component 

i,j
 is introduced into (1). There are a number of different

methods that can be used to compute 
i,j
 described by Altmeyer et al. in [3]. Depending on the

method used, 
i,j
 represents either a single pre-emption, or multiple pre-emptions and is calculated

using the cost incurred when reloading a block, the block reload time (BRT), multiplied by the
number of blocks which may need to be reloaded after each pre-emption.

We will now summarise the combined multiset approach, which has been shown to dominate all
other approaches [3]. For worked examples of the analysis, see Section 4 ECB-Union and Multiset
Approaches of Altmeyer et al. [3].

In the combined multiset approach, 
i,j
 represents the total cost of all pre-emptions due to jobs of

task j executing within the response time of task i . Incorporating 
i,j
 into (1) gives a revised

equation for R
i
:

(2)


i,j
 is then calculated using two separate approaches, the UCB-Union multiset, and ECB-Union

multiset which are described below. The key concept behind them is to calculate the cost of each
individual pre-emption by jobs of task j that could occur within the response time of task i. By
calculating the cost of each pre-emption, the analysis is able to account for the fact that intermediate
tasks in a nested pre-emption will often be pre-empted less than the lowest priority task. Consider
the following example with three tasks shown in Figure 1.

In the example, the total cost of all jobs of task 1 pre-empting task 3 within the response time of

task 3 is equal to the cost of task 1 pre-empting task 2 and task 3 once (nested pre-emption),

and task 3 on its own twice. It is therefore important to recognise that the cost of one task pre-
empting another is highly dependent on any intermediate tasks that may be involved in a nested

Figure 1. The pre-emption cost of all jobs of task 
1
 pre-empting task 

2
 can only contribute once to the total

pre-emption cost of task 
1
 pre-empting 

3
 during the response time of 

3
.

dline.info/jism 13

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

pre-emption. To calculate the number of pre-emptions, we use E
j
(R

i
) to denote the maximum

number of jobs of task j that can execute during the response time, R
i
, of task i . For our model,

E
j
(R

i
) = [R

i
/T

j
] .

3.1.1. ECB-Union Multiset
The ECB-Union multiset approach computes the union of all ECBs that may affect a pre-empted
task during a pre-emption by task j . Specifically, it accounts for nested pre-emptions by assuming

that task j has already been pre-empted by all tasks of a higher priority.

The first step is to calculate the number of UCBs that task j could evict when pre-empting an

intermediate task, k . This is given by calculating the intersection of the UCBs of the pre-empted

task, task k , with the set of ECBs belonging to the pre-empting tasks 
hhp(j){ j}

 ECBh to give:

Note hhp(j){j} is used to account for the case when tasks can share priorities.

The ECB-Union multiset approach recognises that task j cannot pre-empt each intermediate task

k more than E
j
(R

k
)E

k
(R

i
) times during the response time of task i . Therefore, the next step is to

form a multiset M
i,j
 that contains the cost of task j pre-empting task k (3) repeated E

j
(R

k
) E

k
(R

i
)

times, for each task 
k
aff (i, j) hence:

As only E
j
(R

i
) jobs of task j can execute during the response time of task i , the maximum CRPD

is obtained by summing the E
j
(R

i
) largest pre-emptions, i.e. the E

j
(R

i
) largest values in M

i,j
 :

where M l
i,j
 is the lth largest integer value from the multiset M

i,j
 .

3.1.2. UCB-Union Multiset
The UCB-Union multiset approach accounts for the effects of nested pre-emptions by assuming
that the UCBs of any tasks that could be pre-empted, including nested pre-emptions, by task j
are evicted by the ECBs of task j . The first step is to form a multiset M

i,j
ucb containing E

j
(R

k
)E

k
(R

i
)

copies of the UCBk of each task 
k
aff (i, j) that could be pre-empted by task j and has at least the

priority of task i . This multiset reflects the fact that jobs of task j cannot evict the UCBs of jobs

of task k within the response time of task i more than E
j
(R

k
)E

k
(R

i
) times. Hence:

(3)

(4)

(5)

(6)

dline.info/jism 14

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

14

N
um

be
r

 1

M
ar

ch

20
24

The second step is to form a separate multiset M
i,j

ecb containing E
j
(R

i
) copies of the ECBj of task

j . This multiset reflects the fact that there can be no more than E
j
(R

i
) jobs of task j

Figure 2. Venn diagram showing the relationship between different approaches for CPRD analysis under FP
scheduling.

within the response time of task i , each of which can evict cache blocks in the set ECBj :


i,j

ucb-m is then given by the size of the multiset intersection between Mi,j
ucb and Mi,j

ecb :

3.1.3. Combined Multiset
The ECB-Union multiset and UCB-Union multiset approaches are incomparable, meaning that each
approach can find different sets of tasksets schedulable. Because of this property, they can
be combined together to form a combined approach:

The response time for every task is calculated using each approach and then the minimum is
taken, because of this, the combined approach can deem some tasksets schedulable that are not
schedulable by either approach on its own.

3.2. Comparison of Approaches
Figure 2 shows a Venn diagram that conveys the relationship between a number of different
approaches for calculating CRPD under FP scheduling [3]. However, it does not include the method
by Staschulat et al. [25] because it is incomparable to them. Specifically, while it typically deems
a lower number of tasksets schedulable, it could potentially find a taskset schedulable that is not

(7)

(8)

(9)

dline.info/jism 15

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

schedulable by any of the other approaches. Aside from the approach by Staschulat et al. [25], it
can be seen that the combined multiset approach dominates all other approaches. See Altmeyer
et al. [3] for a detailed comparison between each approach.

4. CRPD Analysis for EDF Scheduling

In this section, we give an overview of EDF scheduling and schedulability analysis for it. We then
cover the state of the art CRPD analysis for EDF scheduling, by Lunniss et al. [22].

EDF is a dynamic scheduling algorithm which always schedules the job with the earliest absolute
deadline first. In pre-emptive EDF, any time a job arrives with an earlier absolute deadline than
the current running job, it will pre-empt the current job. When a job completes its execution, the
EDF scheduler chooses the pending job with the earliest absolute deadline to execute next.

In 1973, Liu and Layland [20] gave a necessary and sufficient schedulability test that indicates
whether a taskset is schedulable under EDF iff U  1, under the assumption that all tasks have
implicit deadlines (Di = Ti). In the case where Di  Ti this test is still necessary, but is no longer
sufficient.

In 1974, Dertouzos [15] proved EDF to be optimal among all scheduling algorithms on a
uniprocessor, in the sense that if a taskset cannot be scheduled by pre-emptive EDF, then this
taskset cannot be scheduled by any algorithm.

In 1980, Leung and Merrill [19] showed that a set of periodic tasks is schedulable under EDF iff all
absolute deadlines in the interval [0, max{si} + 2H] are met, where si is the start time of task

i , min{si} = 0, and H is the hyperperiod (least common multiple) of all tasks’ periods.

In 1990 Baruah et al. [6, 7] extended Leung and Merrill’s work [19] to sporadic tasksets. They
introduced h(t), the processor demand function, which denotes the maximum execution time
requirement of all tasks’ jobs which have both their arrival times and their deadlines in a contiguous
interval of length t. Using this they showed that a taskset is schedulable iff t > 0, h(t)  t where
h(t) is defined as:

Examining (10), it can be seen that h(t) can only change when t is equal to an absolute deadline,
which restricts the number of values of t that need to be checked. In order to place an upper
bound on t, and therefore the number of calculations of h(t), the minimum interval in which it can
be guaranteed that an unschedulable taskset will be shown to be unschedulable must be found.
For a general taskset with arbitrary deadlines t can be bounded by La [16]:

Spuri [24] and Ripoll et al. [23] showed that an alternative bound Lb, given by the length of the
synchronous busy period can be used. Where Lb is computed by solving the following equation
using fixed point iteration:

There is no direct relationship between La and Lb, which enables t to be bounded by

(10)

(11)

(12)

dline.info/jism 16

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

14

N
um

be
r

 1

M
ar

ch

20
24

L = min(La, Lb). Combined with the knowledge that h(t) can only change at an absolute deadline, a
taskset is therefore schedulable under EDF iff U  1 and:

where Q is defined as:

In 2009, Zhang and Burns [27] presented their Quick convergence Processor-demand Analysis
(QPA) algorithm which exploits the monotonicity of h(t). QPA determines schedulability by starting
with a value of t that is close to L, and then iterating back towards 0 checking a significantly
smaller number of values of t than would otherwise be required.

Figure 3. Example schedule showing how the scheduler chooses which task should execute. Task “3 is
released at t = 0. At t = 5, task “2 is released, pre-empting “3 as although it has the same absolute deadline, it
has a lower task index. At t = 6, task “1 is released, pre-empting task “2. At t = 7, “1 completes, the scheduler
then chooses to resume task “2 as although it has the same absolute deadline as task “3, it has the lower task

index.

4.1. CRPD Analysis
Due to the undefined behaviour of EDF when two or more jobs have the same absolute deadline,
an assumption needs to be made before we can tightly calculate CRPD for EDF. In the case where
two or more jobs have the same absolute deadline, Lunniss et al. [22] assume the scheduler
always picks the job belonging to the task with the lowest unique task index, see Figure 3. This has
the benefit of minimising the number of pre-emptions. In the case where jobs of two tasks have
the same absolute and relative deadlines, it ensures that they cannot pre-empt each other.
Furthermore, it ensures that after a pre-emption, the task that was pre-empted last is resumed
first.

Following the analysis of Lunniss et al. [22], we now define a number of terms with respect to EDF
scheduling. Some of the terms are also present in the analysis for FP, but have slightly different
meanings under EDF. Assuming any task j with a relative deadline Dj < Di can pre-empt task i,
the set of tasks that may have a higher priority, and can pre-empt task i , under EDF is:

The set of tasks that can be pre-empted by jobs of task j in an interval of length t, aff(t, j) is
based on the relative deadlines of the tasks. It captures all of the tasks whose relative deadlines
are greater than the relative deadline of task j excluding tasks whose deadlines are larger than t
as they do not need to be included when calculating h(t). This gives:

(13)

(14)

(15)

(16)

dline.info/jism 17

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

To determine how many pre-emptions can occur, we use Pj(Di) to denote the maximum number

of jobs of task j that can pre-empt a single job of task i:

Finally, we also use Ej(t) to denote the maximum number of jobs of task j that can have both
their release times and their deadlines in an interval of length t:

We now summarise CRPD analysis for EDF by Lunniss et al. [22] using the combined multiset
approach as it has been shown to dominate all other approaches for calculating CRPD for EDF.
This approach is based on the combined multiset approach for FP as described in Section 3.1, and
as such the equations and the intuition behind them are similar. The difference is to do with which
tasks pre-empt each other and the timeframe used to determine which jobs to include in the
calculation.

CRPD analysis can be integrated into the EDF schedulability test by introducing an additional
parameter, 

t,j
 to represent the CRPD. In this case, 

t,j
 represents the cost of the maximum number

Ej(t) of pre-emptions by jobs of task j that have their release times and absolute deadlines in an
interval of length t. It is therefore included in (10) as follows:


t,j
 can then be calculated using two different methods and the lowest value of the two used to

calculate the processor demand. These methods calculate the cost of each possible individual
pre-emption by task j that could occur during an interval of length t.

4.1.1. ECB-Union Multiset
The ECB-Union multiset approach computes the union of all ECBs that may affect a pre-empted
task during a pre-emption by task j . Specifically, it accounts for nested pre-emptions by assuming

that task j has already been pre-empted by all other tasks that may pre-empt it. The first step is
to form a multiset Mt,j that contains the cost:

of task j pre-empting task k repeated Pj(Dk)Ek(t) times, for each task k  aff(t, j). Hence:

As there are only Ej(t) jobs of task j with release times and deadlines in an interval of length
t, the maximum CRPD is obtained by summing the Ej(t) largest values in Mt,j :

(17)

(18)

(19)

(20)

(21)

dline.info/jism 18

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

14

N
um

be
r

 1

M
ar

ch

20
24

where M l
t,j
 is the lth largest integer value from the multiset M

t,j
 .

4.1.2. UCB-Union Multiset Approach
The UCB-Union multiset approach accounts for the effects of nested pre-emptions by assuming
that the UCBs of any tasks that could be pre-empted, including nested pre-emptions, by task j are

evicted by the ECBs of task j. The first step is to form a multiset Mt,j
ucb containing P

j
(D

k
)E

k
(t)

copies of the UCBk of each task k  aff(t, j). This multiset reflects the fact that jobs of task j
cannot evict the UCBs of jobs of task k that have both their release times and deadlines in an

interval of length t more than P
j
(D

k
)E

k
(t) times. Hence:

The second step is to form a separate multiset Mt,j
ecb containing Ej(t) copies of the ECBj of task

j . This multiset reflects the fact that there are at most Ej(t) jobs of task j that have their release
times and deadlines in an interval of length t, each of which can evict cache blocks in the set
ECBj :

t,j
ucb-m is then given by the size of the multi-set intersection between t,j

ucb and t,j
ecb :

4.1.3. Combined Multiset Approach
The ECB-Union Multiset and UCB-Union Multiset approaches provide upper bounds that are
incomparable, therefore, h(t) can be calculated at each stage of the QPA algorithm using both
approaches and the minimum value taken to form a combined approach:

As the processor demand is calculated using each approach, for each interval t, the combined
approach can deem some tasksets schedulable that are not schedulable by either approach on its
own.

4.1.4. Effect on Task Utilisation and h(t) Calculation
As the multiset approaches effectively inflate the execution time of task j by the CRPD that it can
cause in an interval of length t, the upper bound L, used for calculating the processor demand h(t),
must be adjusted. This is achieved by calculating an upper bound on the utilisation due to CRPD
that is valid for all intervals of length greater than some value Lc. This CRPD utilisation value is
then used to inflate the taskset utilisation and thus compute an upper bound Ld on the maximum
length of the synchronous busy period. This upper bound is valid provided that it is greater than Lc,
otherwise the actual maximum length of the busy period may lie somewhere in the interval [Ld,Lc],
hence we can use max(Lc,Ld) as a bound.

(22)

(23)

(24)

(25)

(26)

dline.info/jism 19

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

The first step is to assign t = Lc = 100Tmax which limits the overestimation of the CRPD utilisation

U = t /t to at most 1%. Next, t is calculated using (22) for ECB-Union Multiset and (25) for UCB-
Union Multiset. However, in (21) and (23) & (24), Ex

max (t) is substituted for Ex(t) to ensure that
the computed value of U is a valid upper bound for all intervals of length t  Lc:

If U + U 1, then the taskset is deemed unschedulable, otherwise an upper bound on the length
of the busy period can be computed via a modified version of (12):

rearranged to give:

Figure 4. Venn diagram showing the relationship between different approaches for CPRD analysis under EDF
scheduling

Then, substituting in Tmax for each value of Tj the upper bound is given by:

Finally, L = max(Lc ,Ld) can then be used as the maximum value of t to check in the EDF
schedulability test.

4.2. Comparison of Approaches
Figure 4 shows a Venn diagram that conveys the relationship between the different approaches
for calculating CRPD under EDF scheduling [22]. Note that JCR represents the approach of Ju et al.

(27)

(28)

(29)

(30)

dline.info/jism 20

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

14

N
um

be
r

 1

M
ar

ch

20
24

[17]. It can be seen that the combined multiset approach dominates all other approaches, see
Lunniss et al. [22] for detailed comparisons of each approach.

5. Task Layout

The layout of tasks in memory determines how they are positioned in cache, which then affects
the CRPD that occurs during pre-emptions. Figure 5 shows an example layout of five tasks in
cache. If scheduled under FP, task 1 has the highest priority, so its UCBs can never be evicted as

it cannot be pre-empted. Task 2 and 3’s UCBs are safe from eviction as they are not mapped to

the same location in cache as higher priority task’s ECBs. However, task 4’s UCBs could be evicted

by task 1, and 5’s UCBs could be evicted by task 1, 2 or 4. This layout could be improved by

shifting task 5 so that its UCBs can only be evicted by task 3.

In 2012, Lunniss et al. [21] presented an approach that uses Simulated Annealing to optimise the
layout of tasks to increase system schedulability. It does so by changing the order of tasks in
memory, which can be implemented in practice by presenting the tasks to the linker in the desired
order. The approach is driven by the schedulability of the taskset, favouring layouts that allow the
taskset to be scheduled at a higher utilisation. While this approach was originally used for FP
scheduling, it can also be applied to the EDF scheduling algorithm by switching the schedulability
test used. We therefore use this approach to optimise the layout of the task sets to make each
scheduling algorithm as competitive as possible.

Figure 5. Example layout showing how the position of tasks in cache affects whether their UCBs could
be evicted during a pre-emption

6. Case Studies

In this section we compare the different approaches for calculating CRPD using a set of case
studies based on PapaBench2, the Mälardalen3 benchmark suite and a set of SCADE4 tasks (partially
provided by SCADE, partially from our own SCADE models). In all cases the system was set up to
model an ARMv75 processor clocked at 100 MHz with a 2 KB direct-mapped instruction cache and
a line size of 8 Bytes, giving 256 cache sets, 4 Byte instructions, and a BRT of 8 s.

2 http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
3 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

4 Esterel SCADE http://www.esterel-technologies.com/
5 http://www.arm.com/products/processors/cortex-m/cortex-m3.php

dline.info/jism 21

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

6.1. Single Taskset Case Study
PapaBench is a real-time embedded benchmark based on the software of a GNU-license UAV,
called Paparazzi. PapaBench contains two sets of tasks, fly-by-wire and autopilot. In this paper
we used the autopilot tasks, for which the WCETs, periods, UCBs, and ECBs were collected using
aiT6 – see Table 1. We made the following assumptions in our evaluation to handle the interrupt
tasks:

 Interrupts have higher priority than the normal tasks, but they cannot pre-empt each other
Interrupts can occur at any time

 All interrupts have the same deadline which must be greater than or equal to the sum of their
execution times in order for them to be schedulable

 The cache is disabled whenever an interrupt is executing and enabled again after it completes

In the case of FP scheduling, the interrupts can be modelled as normal tasks with no UCBs or
ECBs. Due to the interrupts having the same deadline which is large enough to accommodate the
interrupts execution times, no other changes need to be made to the analysis. For EDF scheduling,
a number of adjustments must be made to correctly account for the interrupts not being able to
pre-empt each other. First we modify equation (19) to exclude interrupts when calculating the
processor demand, h(t). We then calculate the execution time of each interrupt in the interval t
using equation (2) of [10]. The result of which is then added onto the result of the modified
version of (19), giving the processor demand for both tasks and interrupts. We then adjust the
upper bound L used when checking h(t). This is implemented by substituting U = Utasks + Uinterrupts
into equation (30). Note that we leave U to represent the utilisation of the CRPD caused by just
tasks as we assume that the cache is disabled while the interrupts are executing and as such they
cannot cause any CRPD.

We assigned a deadline of 2 ms to all of the interrupt tasks, and implicit deadlines i.e. Di = Ti, to
the normal tasks. We then calculated the total utilisation for the system and then effectively
scaled the clock speed in order to reduce the total utilisation to the target utilisation for the
system. We used the number of UCBs and ECBs obtained via analysis, placing the UCBs in a group
at a random location in each task.

In each evaluation, the taskset utilization not including pre-emption cost was varied from 0.025
to 1 in steps of 0.001. For each utilization value, the schedulability of the taskset was determined
under both FP and EDF. Specifically, we compared each scheduling algorithm (i) assuming no pre-
emption cost, (ii) using CRPD analysis using the standard task layout, and (iii) using CRPD analysis
after optimising the task layout using Simulated Annealing as described in [21]. The standard
task layout is obtained by ordering tasks sequentially in memory based on their unique task
indices.

Table 2 shows the breakdown utilisation for the single taskset based on PapaBench. There are a
few interesting points to note. Firstly the breakdown utilisation is very high for both FP and EDF,
this is due to the nearly harmonic periods and small range of task periods, with EDF outperforming
FP. Secondly, the CRPD is very low when scheduled using either FP or EDF due to the small
number of UCBs. As the CRPD is very low, the layout optimisation makes little to no difference.

6.2. Multiple Taskset Case Studies
The single taskset case study provides one specific example based on the PapaBench tasks and
their periods. The remaining case studies used tasksets generated by randomly selecting tasks
from a set of benchmarks. In the case of the PapaBench tasks, we treated the interrupts as
normal tasks. We obtained tasksets by randomly selecting 10 tasks from Table 1 (PapaBench
benchmarks), or 10 tasks from Table 3 (Mälardalen and SCADE benchmarks) or 15 tasks from the
two tables (Mixed benchmarks). Using the UUnifast algorithm [9], we calculated the utilisation, Ui
of each task so that the utilisations added up to the desired utilisation level for the taskset. Based
on the target utilisation and task execution times, Ti was calculated such that Ci = UiTi. We used

6 AbsInt http://www.absint.com/ait/

dline.info/jism 22

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

14

N
um

be
r

 1

M
ar

ch

20
24

Di = y + x (Ti  y) to generate the constrained deadlines, where x is a random number between 0
and 1, and y = max(Ti /2, 2Ci). This generates constrained deadlines that are no less than half the
period of the tasks. Note, allowing deadlines to be as small as Ci would result in tasks that were
unschedulable once CRPD were introduced. We used the number of UCBs and ECBs obtained using
aiT, placing the UCBs in a group at a random location in each task. We generated 1000 tasksets
for the multiple taskset case studies, and evaluated them using the same method as the single
taskset case study, except that we varied the utilisation excluding pre-emption costs from 0.025
to 1 in steps of 0.0125.

6.2.1. PapaBench Benchmark
The tasks in the PapaBench benchmarks are simple, short control tasks with limited computations
and data accesses. Figure 6 shows the percentage of tasksets that were deemed schedulable by
each approach for the 1000 tasksets of cardinality 10 that we randomly selected from Table 1.
The results are similar to those obtained using the single taskset PapaBench case study. Specifically,
EDF outperformed FP as it deemed a higher number of tasksets schedulable at each utilisation
level. Because the range of execution times is relatively small, so is the typical range of task
periods for the generated tasksets, hence the number of pre-emption is also relatively small.
Further, the number of UCBs is small, resulting in low CRPD. Therefore, the task layout optimisation
was only able to make a small improvement, but did so for both FP and EDF.

Table 1. Execution times, periods and number of UCBs and ECBs for the tasks from PapaBench
(ms = milisecond)

Task

I4

I5

I6

I7

T5

T6

T7

T8

T9

T10

T11

T12

Name

interrupt_modem

interrupt_spi_1

interrupt_spi_2

interrupt_gps

altitude_control

climb_control

link_fbw_send

navigation

radio_control

receive_gps_data

reporting

stabilization

UCBs

2

1

1

3

20

1

1

10

0

22

2

11

ECBs

10

10

4

26

66

210

10

256

256

194

256

194

WCET

0.303 ms

0.251 ms

0.151 ms

0.283 ms

1.478 ms

5.429 ms

0.233 ms

4.432 ms

15.681 ms

5.987 ms

12.222 ms

5.681 ms

Period

100 ms

50 ms

50 ms

250 ms

250 ms

250 ms

50 ms

250 ms

25 ms

250 ms

100 ms

50 ms

Table 2. Breakdown utilisation under the different approaches for the single Papa Bench taskset

EDF – No Pre-emption Cost

FP – No Pre-emption Cost

EDF – Optimised Layout

EDF – Standard Layout

FP – Optimised Layout

FP – Standard Layout

Breakdown

Utilisation

0.999

0.977

0.985

0.985

0.970

0.969

dline.info/jism 23

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

Source

M

M

M

M

M

M

M

M

S

S

S

S

S

S

Description

adpcm

compress

edn

fir

jfdctinit

ns

nsichneu

statemate

cruise control system

flight control system

navigation system

stopwatch

elevator simulation

robotics systems

UCBs

24

25

56

28

40

17

53

3

25

70

45

58

40

68

ECBs

226

114

98

50

162

26

256

256

107

256

82

130

114

256

WCET

5.541 s

3.664 s

244.9 ms

21.53 ms

62.53 ms

73.38 ms

149.6 ms

77.96 ms

1.959 s

2.138 s

1.409 s

3.786 s

1.586 s

4.311 s

Table 3. Execution times and number of UCBs and ECBs for the largest benchmarks from the Mälardalen
Benchmark Suite (M), and SCADE Benchmarks (S). (s = second, ms = milisecond)

EDF – No Pre-emption Cost

FP – No Pre-emption Cost

EDF – Optimised Layout

EDF – Standard Layout

FP – Optimised Layout

FP – Standard Layout

Weighted

Schedulability

0.922

0.855

0.830

0.771

0.784

0.747

Table 4. Weighted schedulability measures for the mixed case study shown in Figure 8. The higher the
weighted schedulability measure, the more tasksets deemed schedulable by the approach

6.2.2. Mälardalen and SCADE Benchmarks
The second multiple taskset case study was based on tasks from the Mälardalen and SCADE
benchmarks, shown in Table 3. Compared to the tasks from PapaBench, these tasks have higher
execution times, high amounts of computation, and a larger number of UCBs. Figure 7 shows the
percentage of tasksets that were deemed schedulable by each approach for the 1000 tasksets of
cardinality 10 that we randomly selected from Table 3. As with the PapaBench benchmarks, EDF
outperformed FP scheduling as it has a higher percentage of schedulable tasksets at each utilisation
level. Likewise, because the range of task periods was also relatively small, CRPD is minimised.

dline.info/jism 24

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

14

N
um

be
r

 1

M
ar

ch

20
24

6.2.3. Mixed Benchmarks
The third multiple taskset case study was based on a mixture of the small and short PapaBench
tasks, and the large and long Mälardalen and SCADE tasks. Here the tasksets had 15 tasks each,
and represent systems with background tasks combined with short control tasks. As we mixed
tasks from both tables, it also allowed us to generate tasksets with a higher number of tasks.

The results, shown in Figure 8, show that when a taskset contains tasks with a wide range of
periods, CRPD can become a significant factor in the schedulability of the taskset. This is because
short high priority tasks are able to pre-empt long running low priority tasks multiple times.

While EDF still outperformed FP, the gain in schedulability of using EDF over FP was diminished
once CRPD was taken into account. Optimising the task layout resulted in a significant improvement
for both FP and EDF, showing the task layout optimisation can be effectively applied to both EDF
and FP scheduling. Furthermore, by optimising the task layout, FP was able to schedule a similar
number of tasksets to EDF with the standard layout. In other words, in cases where the CRPD is
relatively high, selecting an optimised task layout can be as effective as changing the scheduling
algorithm. The results are summarised in Table 4 using weighted schedulability measures [8], see
Section 7.2 for details. They show that for these tasksets, FP with an optimised layout achieved a
weighted measure of 0.784, outperforming EDF with the standard layout as it achieved a weighted
measure of 0.771.

Figure 6. Percentage of schedulable tasksets at each utilisation level for the PapaBench benchmark for
tasksets of cardinality 10

7. Evaluation

In addition to the case studies based on the PapaBench, Mälardalen and SCADE benchmarks, we
evaluated FP and EDF with CRPD analysis using synthetically generated tasksets. This enabled us
to investigate the effect of varying key parameters under each scheduling algorithm.

dline.info/jism 25

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

Figure 7. Percentage of schedulable tasksets at each utilisation level for the Mälardalen and SCADE
benchmarks for tasksets of cardinality 10

Figure 8. Percentage of schedulable tasksets at each utilisation level for the mixed case study with tasks
randomly selected from both the PapaBench and Mälardalen and SCADE benchmarks (taskset cardinality 15)

dline.info/jism 26

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

14

N
um

be
r

 1

M
ar

ch

20
24

The UUnifast algorithm [9] was again used to calculate the utilisation, Ui of each task so that the
utilisations added up to the desired utilisation level for the taskset. Task periods Ti, were generated
at random between 5 ms and 500 ms according to a log-uniform distribution. Ci was then calculated
via Ci = UiTi.

We generated two sets of tasksets, one with implicit deadlines and one with constrained deadlines.
In the following section, we present the results for constrained deadline tasksets. In general, the
results for implicit deadline tasksets gave a higher number of schedulable tasksets for every
approach compared to the constrained deadline tasksets. Additionally, the task layout had a similar
or slightly larger effect on schedulability in relation to the chosen scheduling algorithm.

The UCB percentage for each task was based on a random number between 0 and a maximum
UCB percentage specified for the evaluation. UCBs were split into N groups (where N was chosen
at random between 1 and 5), and placed at a random starting point within the task’s ECBs.

7.1. Baseline Configuration
To investigate the effect of key cache and taskset configurations we varied the following parameters:

• Cache utilisation (default of 10)

• Maximum UCB percentage (default of 30%)

• Number of tasks (default of 15)

• Block Reload Time (BRT) (default of 8 ¼s)

• Period range (default of [5, 500] ms)

We used 1, 000 randomly generated tasksets for the evaluation.

In addition to testing the different analyses as done for the case study, we also performed a
simulation of the schedule for the task sets7. For FP, the simulation tested each task i in turn by
releasing it at time t = 0. It then released all of the other tasks that have a higher priority than
task i , sorted by lowest to highest priority, at t = 1, t = 2, t = 3, etc. If all tasks were schedulable
it also performed the same test but instead of staggering the other tasks, released them at
random. For EDF, it is more complicated to generate the worst case arrival pattern. The first step
is to determine the interval that needs to be checked, L, which can be achieved by using equation
(30). Then for each task i in turn, we scheduled a job of task i so that it has a deadline at t = L.
We then scheduled a job of all of the other tasks, sorted by longest to shortest deadline, so that
they have their deadlines at t = L  1, t = L  2, t = L  3 etc... Based on the final jobs’ deadlines,
we then calculated when the first jobs for each task need to be released. If all tasks are schedulable,
we repeated the process using t = L  1 for all of the other tasks’ jobs, and also using a random
schedule.

The results for the baseline configuration are shown in Figure 9 and are summarised in Table 5
using weighted schedulability measures. The results follow a similar pattern to the results from
the case study. EDF outperformed FP finding a higher number of tasksets schedulable. The results
for the simulations show that the CRPD affects both FP and EDF, with the CRPD being slightly lower
for EDF. Specifically, the simulation shows that CRPD reduced the weighted measure by at least
0.129 for EDF (0.925  0.795) and 0.141 for FP (0.774  0.633) in this case. However, once the
CRPD obtained via analysis is taken into account, the performance gains of using EDF over FP are
diminished. This is most likely caused by increased pessimism in the CRPD analysis for EDF. The
results for the layout optimisation showed that it was able to make improvements to the schedulability
of tasksets scheduled under both FP and EDF.

7 Note that the simulation effectively provides a necessary, but not sufficient test of schedulability.

dline.info/jism 27

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

Figure 9. The percentage of schedulable tasksets at each utilisation level for the baseline configuration
(taskset cardinality 15)

EDF – No Pre-emption cost

EDF – Simulation

FP – No Pre-emption cost

FP – Simulation

EDF – Optimised layout

EDF – Standard layout

FP – Optimised layout

FP – Standard layout

Weighted

Schedulability

0.925

0.796

0.774

0.633

0.455

0.413

0.369

0.336

Table 5. Weighted schedulability measures for the baseline configuration study shown in Figure 9. The
higher the weighted schedulability measure, the more tasksets deemed schedulable by the approach

7.2. Weighted Schedulability
Evaluating all combinations of different parameters is not possible. Therefore, the majority of our
evaluations focused on varying one parameter at a time. To present the results, weighted
schedulability measures [8] are used. This allows a graph to be drawn which shows the weighted
schedulability, Wl(p), for each method used to obtain a layout l as a function of parameter p. For
each value of p, this measure combines the data for all of the generated task sets for all of a set
of equally spaced util isation levels, where the uti l isation is based on no
pre-emption cost.

The schedulability test returns a binary result of 1 or 0 for each layout at each utilisation level. If
this result is given by Sl (, p), and u() is the utilisation of taskset , then:

(31)

dline.info/jism 28

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

14

N
um

be
r

 1

M
ar

ch

20
24

Figure 10. Weighted measure for varying the cache utilisation from 0 to 20 in steps of 2

The benefit of using a weighted schedulability measure is that it reduces a 3-dimensional plot to 2
dimensions. Individual results are weighted by taskset utilisation to reflect the higher value placed
on a being able to schedule higher utilisation tasksets.

7.2.1. Cache Utilisation
As the cache utilisation increases the likelihood of tasks evicting each other from cache increases,
this causes higher CRPD reducing the number of schedulable tasksets. It can be seen in Figure 10
that task layout optimisation is effective for FP and EDF across the same range of cache utilisations.
In both cases it becomes less effective once the cache utilisation becomes high. We note that
because the number of tasks is fixed, that the average size of the tasks is equal to the cache
utilisation divided by the number of tasks. This means that as the cache utilisation increases, so
does the size of the tasks and therefore, the number of UCBs. This in turn makes it harder to find
an improved layout.

7.2.2. Maximum UCB Percentage
As the maximum UCB percentage increases, the CRPD increases resulting in a reduction in the
number of tasksets that are deemed schedulable, as can be seen in Figure 11. With a low percentage
of UCBs, the CRPD is low which means there is little benefit from layout optimisation. When the
UCB percentage is very high, there are so many conflicts that there is very little that can be done
to improve the layout. When the maximum UCB percentage is around 40–60%, there is a notable
amount of CRPD, but there is also room for the task layout algorithm to optimise the layout. This
allows FP using an optimised task layout to schedule a similar number of tasksets as EDF using the
standard layout.

7.2.3. Number of Tasks
When varying the number of tasks, Figure 12, we scaled the cache utilisation to keep the average
size of tasks constant based on a cache utilisation of 10 for 15 tasks. This is because it would be
unrealistic for the size of tasks to decrease as more tasks are added to the system. Hence with 8
tasks the cache utilisation is equal to 5.33, whereas for 32 tasks, it is equal to 21.33. As the
number of tasks increases, it becomes harder the schedule all tasks which leads to a decrease in
the overall weighted measure. The task layout optimisation performs best when there is a moderate
number of tasks, as there are enough conflicts that optimising the layout can give an improvement,
but not so many that there is nothing that can be done to avoid the conflicts.

7.2.4. Block Reload Time
As the block reload time is increased, it becomes more costly to reload a block, which causes an
increase in CRPD. It can be seen in Figure 13 that as the block reload time is increased, the

dline.info/jism 29

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

Figure 11. Weighted measure for varying the maximum UCB percentage from 0 to 100 in steps of 10

analysis that takes into account the pre-emption cost shows a decrease in the overall weighted
measure. We note that as the cost of reloading a block increases, the potential gains of optimising
the layout increase. Once the block reload time exceeds 14 ¼s, using an optimised layout under
FP scheduling outperforms using a standard layout under EDF scheduling.

7.2.5. Period Range
We also investigated the effect of the scaling factor used to generate task periods to simulate
tasksets with shorter to longer execution times. We varied the scaling factor, w, from 0.5 to 10
and hence the range of task periods given by w[1, 100] ms. A lower scaling factor resembles
tasks with shorter execution times, as seen in the PapaBench benchmark, and a higher scaling
factor resembles tasks with higher execution times and commensurately longer periods, as seen
in the Mälardalen and SCADE benchmarks. The results in Figure 14 show the layout optimisation
performs best when task periods are relatively short, as that is when the pre-emption costs are
highest. Once the period range is greater than [10, 1000] ms, the relative pre-emption costs are
low enough that performing the layout optimisation only makes a very small improvement on the
schedulability of the tasksets.

8. Conclusion

The EDF scheduling algorithm is an optimal scheduling algorithm for single processors however, it
has been largely disregarded by industry. Whereas FP, despite offering lower theoretical schedulable
processor utilisation, is relatively popular with many commercial real- time operating systems
supporting it.

Previous work by Buttazzo [13] has compared the two algorithms, but it did not take into account
CRPD which can have a significant effect on the schedulability of a taskset.

The main contributions of this paper are:

• Performing a detailed comparison of FP and EDF taking into account CRPD using state-of the-art
CRPD analysis [3, 22].

• Showing the feasibility of simple, yet effective, task layout optimisation techniques for EDF.

• Finding that when CRPD is considered, the performance gains offered by EDF over FP, while still
significant, are somewhat diminished. This is most likely due to greater pessimism in the CRPD
analysis for EDF than FP

dline.info/jism 30

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

14

N
um

be
r

 1

M
ar

ch

20
24

Figure 12. Weighted measure for varying the number of tasks from 20 to 26 while maintaining a constant ratio
of number of tasks to cache utilisation

• Discovering that in configurations that cause relatively high CRPD, optimising task layout can be
just as effective as changing the scheduling algorithm from FP to EDF.

We investigated the effects of performing task layout [21] optimisation based on Simulated
Annealing under both FP and EDF scheduling algorithms. We found that in the scenarios that cause
the pre-emption cost to be relatively high in relation to task execution times, applying task layout
optimisation to a system scheduled using FP scheduling can allow it to be schedulable at a similar
processor utilisation compared to using EDF scheduling with a standard layout. This is important in
an industrial setting as it is considerably simpler and cheaper to control the task layout via the
linker, than it is to change the scheduler. Nevertheless, our evaluations showed that changing to
an EDF scheduler and optimising the task layout provides a gain over FP scheduling. Although this
gain was not as pronounced as the advantage that EDF has over FP when pre-emption costs are
not accounted for via analysis.

In the future we plan to further investigate techniques for CRPD analysis, and to apply them in an
industrial context comparing the results of analysing a real system with those obtained via
measurement.

Grant Information: This work was partially funded by the UK EPSRC through the Engineering
Doctorate Centre in Large-Scale Complex IT Systems (EP/F501374/1), the UK EPSRC funded
MCC (EP/K011626/1), and the European Community’s ARTEMIS Programme and UK Technology
Strategy Board, under ARTEMIS grant agreement 295371-2 CRAFTERS.

dline.info/jism 31

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

Figure 13. Weighted measure for varying the block reload time from 0 to 20 ¼s in steps of 2

Figure 14. Weighted measure for varying the scaling factor used to generate periods, w, in w[1, 100]
ms, from 0.5 to 10

dline.info/jism 32

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

14

N
um

be
r

 1

M
ar

ch

20
24

References

[1] Altmeyer, Sebastian., Burguière, Claire. (2009). A new notion of useful cache block to
improve the bounds of cache-related preemption delay. In 21st Euromicro Conference on
Real-Time Systems, ECRTS 2009, Dublin, Ireland, July 1–3, 2009 (pp. 109–118). IEEE Computer
Society. doi:10.1109/ECRTS.2009.21.

[2] Altmeyer, Sebastian, Davis, Robert I., Maiza, Claire. (2011). Cache related pre-emption
delay aware response time analysis for fixed priority pre-emptive systems. In Proceedings of the
32nd IEEE Real-Time Systems Symposium, RTSS 2011, Vienna, Austria, November 29 – December
2, 2011 (pp. 261–271). IEEE Computer Society. doi:10.1109/RTSS.2011.31.

[3] Altmeyer, Sebastian, Davis, Robert I., Maiza, Claire. (2012). Improved cache related pre-
emption delay aware response time analysis for fixed priority preemptive systems. Real-Time
Systems, 48(5), 499–526. doi:10.1007/s11241-012-9152-2.

[4] Altmeyer, Sebastian, Maiza, Claire., Reineke, Jan. (2010). Resilience analysis: tightening
the CRPD bound for set-associative caches. In Proceedings of the ACM SIGPLAN/SIGBED 2010
Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES 2010, Stockholm,
Sweden, April 13–15, 2010 (pp. 153–162). ACM. doi:10.1145/1755888.1755911.

[5] Audsley, Neil C., Burns, Alan, Richardson, Mike F., Tindell, Ken, & Wellings, Andrew J. (1993).
Applying new scheduling theory to static priority pre-emptive scheduling. Software Engineering
Journal, 8(5), 284–292. URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=238595&isnumber=6134.

[6] Baruah, Sanjoy K., Mok, Aloysius K., Rosier, Louis E. (1990). Preemptively scheduling hard-
real-time sporadic tasks on one processor. In Proceedings of the Real-Time Systems Symposium –
1990, Lake Buena Vista, Florida, USA, December 1990 (pp. 182–190). IEEE Computer Society.
doi:10.1109/REAL.1990.128746.

[7] Baruah, Sanjoy K., Rosier, Louis E., Howell, Rodney R. (1990). Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time
Systems, 2(4), 301–324. doi:10.1007/BF01995675.

[8] Bastoni, Andrea, Brandenburg, Björn B., Anderson, James H. (2010). Cache-related
preemption and migration delays: Empirical approximation and impact on schedulability. In
Proceedings of the 6th International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications, OSPERT 2010 (pp. 33–44). URL: http://www.mpi-sws.org/~bbb/papers/
pdf/ospert10.pdf.

[9] Bini, Enrico, & Buttazzo, Giorgio C. (2005). Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2), 129–154. doi:10.1007/s11241-005-0507-9.

[10] Brandenburg, Björn B., Leontyev, Hennadiy, Anderson, James H. (2009). Accounting for
interrupts in multiprocessor real-time systems. In 15th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, RTCSA 2009, Beijing, China, 24–26 August
2009 (pp. 273–283). IEEE Computer Society. doi:10.1109/RTCSA.2009.37.

[11] Burguière, Claire, Reineke, Jan, Altmeyer, Sebastian. (2009). Cache-related preemption
delay computation for set-associative caches - pitfalls and solutions. In 9th International Workshop
on Worst-Case Execution Time Analysis, WCET 2009, Dublin, Ireland, July 1–3, 2009 (Vol. 10 of
OASICS, pp. 1–11). Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/
OASIcs.WCET.2009.2285.

[12] Busquets-Mataix, José V., Serrano, Juan José, Ors, Rafael, Gil, Pedro J., Wellings, Andy J.
(1996). Adding instruction cache effect to schedulability analysis of preemptive real-time systems.
In 2nd IEEE Real-Time Technology and Applications Symposium, RTAS 1996, June 10–12, 1996,
Boston, MA, USA (p. 204). IEEE Computer Society. doi:10.1109/RTTAS.1996.509537.,

dline.info/jism 33

Jo
ur

na
l

of
 I

nf
or

m
at

io
n

&
 S

ys
te

m
s

M
an

ag
em

en
t

 V
ol

um
e

 1
4

 N
um

be
r

 1

M
ar

ch

20
24

[13] Buttazzo, Giorgio C. (2005). Rate monotonic vs. EDF: judgment day. Real-Time Systems
29(1), 5–26. doi:10.1023/B:TIME.0000048932.30002.d9.

[14] Davis, Robert I., Zabos, A., Burns, Alan. (2008). Efficient exact schedulability tests for
fixed priority real-time systems. IEEE Transactions on Computers, 57(9), 1261–1276.
doi:10.1109/TC.2008.66.

[15] Dertouzos, Michael L. (1974). Control robotics: The procedural control of physical processes.
In IFIP Congress (pp. 807–813).

[16] George, Laurent, Rivierre, Nicolas., Spuri, Marco. (1996). Preemptive and non-preemptive
real-time uniprocessor scheduling. Technical report, INRIA. URL: http://hal.inria.fr/inria00073732.

[17] Ju, Lei, Chakraborty, Samarjit., Roychoudhury, Abhik. (2007). Accounting for cache-related
preemption delay in dynamic priority schedulability analysis. In 2007 Design, Automation and Test
in Europe Conference and Exposition, DATE 2007, April 16–20, 2007, Nice, France (pp. 1623–
1628). ACM. URL: http://dl.acm.org/citation.cfm?id=1266366.1266723.

[18] Lee, Chang-Gun, Hahn, Joosun, Seo, Yang-Min, Min, Sang Lyul, Ha, Rhan, Hong, Seongsoo,
Park, Chang Yun, Lee, Minsuk., Kim, Chong-Sang. (1998). Analysis of cache-related preemption
delay in fixed-priority preemptive scheduling. IEEE Trans. Computers, 47(6), 700–713.
doi:10.1109/ 12.689649.

[19] Leung, Joseph Y.-T., Merrill, M. L. (1980). A note on preemptive scheduling of periodic,
real-time tasks. Information Processing Letters, 11(3), 115–118. doi:10.1016/0020-
0190(80)90123-4.

[20] Liu, C. L., Layland, James W. (1973). Scheduling algorithms for multiprogramming in a
hard-realtime environment. Journal of the ACM, 20(1), 46–61. doi:10.1145/321738.321743.

[21] Lunniss, Will, Altmeyer, Sebastian.,Davis, Robert I. (2012). Optimising task layout to
increase schedulability via reduced cache related preemption delays. In 20th International
Conference on Real-Time and Network Systems, RTNS 2012, Pont a Mousson, France –
November 08–09, 2012 (pp. 161–170). ACM. doi:10.1145/2392987.2393008.

[22] Lunniss, Will, Altmeyer, Sebastian, Maiza, Claire., Davis, Robert I. (2013). Integrating
cache related preemption delay analysis into EDF scheduling. In 19th IEEE Real-Time and
Embedded Technology and Applications Symposium, RTAS 2013, Philadelphia, PA, USA, April
9–11, 2013 (pp. 75–84). IEEE Computer Society. doi:10.1109/RTAS.2013.6531081.

[23] Ripoll, Ismael, Crespo, Alfons., Mok, Aloysius K. (1996). Improvement in feasibility testing
for realtime tasks. Real-Time Systems, 11(1), 19–39. doi:10.1007/BF00365519.

[24] Spuri, Marco. (1996). Analysis of deadline scheduled realtime systems. Technical report,
INRIA. URL: http://hal.inria.fr/inria-00073920.

[25] Staschulat, Jan, Schliecker, Simon., Ernst, Rolf. (2005). Scheduling analysis of real-time
systems with precise modeling of cache related preemption delay. In 17th Euromicro Conference
on Real-Time Systems, ECRTS 2005, 6–8 July 2005, Palma de Mallorca, Spain (pp. 41–48).
IEEE Computer Society. doi:10.1109/ECRTS.2005.26.

[26] Tan, Yudong., Mooney III, Vincent John. (2007). Timing analysis for preemptive multitasking
realtime systems with caches. ACM Transactions on Embedded Computing Systems (TECS),
6(1). doi:10.1145/1210268.1210275.

[27] Zhang, Fengxiang., Burns, Alan. (2009). Schedulability analysis for real-time systems
with EDF scheduling. IEEE Transactions on Computers, 58(9), 1250–1258. doi:10.1109/
TC.2009.58.

