
DLINE JOURNALS

Received:13 September 2023
Revised: 3 December 2023

Accepted: 12 December 2023
Copyright: with Author(s)

Short Malware Forensics to Analyze Intrusions

Stephan Neuhaus
Lehrstuhl fur Softwaretechnik
Universitat des Saarlandes
Stephan.Neuhaus@acm.org

ABSTRACT

Intrusion detection has been studied extensively from different perspectives in
the last three decades. In this paper, we have developed a tool called Malfor (short
for MALware FORensics), which avoids some drawbacks in the existing systems
by using experimental methods. The proposed system, Malfor, captures events
(processes in our case) as the system is running. As soon as a break-in is de-
tected, Malfor uses these events to replay the system partially. By cleverly choos-
ing which events to repeat, we isolate those relevant to the break-in. Thus, this
system uses experimental methods to analyse intrusions automatically. It can be
used on production systems and is especially suitable for the analysis of targeted
attacks.

Keywords: Intrusion Detection, Malware Forensics, Delta Debugging

1. Introduction

The analysis of security incidents remains one of the most taxing things a com-
puter scientist can do. Why is there no automated support for this task? We think
this is so because existing tools use an inadequate methodology.

Intrusion analysis aims at reconstructing the break-in based on the current state
of the system. To this end, we analyze traces and then deduce what must have
happened inside the system so that these traces appear the way they do. For
example, an analysis of the Linux Slapper worm could look like this: “Attackers
with the IP address 10.120.130.140 sent a specially crafted HTTP request to our
web server, which contained a malformed client key. This caused a buffer overflow
and called a shell. This shell then saved a uuencode-encoded copy of the work
source code, decoded and compiled it, and started the resulting program under the
name .bugtraq. As soon as the program ran, it tried to contact other hosts i the
network.” (Example taken from [5].)

An investigator analyzing this intrusion will probably first see the rogue .bugtraq
process and will then try to isolate those processes that were responsible for the
attack. This holds for processes that are still running (such as the web server)
and processes that have already terminated (such as the uudecode process).

Progress in Machines and Systems
Print ISSN: 2319-4596
Online ISSN: 2319-460X

PMS 2024; 13 (1)
https://doi.org/10.6025/pms/2024/13/1/1-3

dline.info/pms 1

dline.info/pms 2

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24

The usual method is to begin with the violation of the security policy (the .bugtraq process) and
then work backwards using tools like The Coroner’s Toolkit [2] to the root cause (the malformed
HTTPS request). This deductive approach has a number of serious drawbacks:

Completeness. The traces may not be sufficient in order to deduce the cause-effect chain reliably.

Minimality. Important traces are often buried in a large number of irrelevant traces and need to be
laboriously extraced.

Correctness. Our proofs could base on wrong assumptions which may invalidate our deductions.

We have developed a tool called Malfor (short for MALware FORensics) which avoids these draw-
backs by using experimental methods. Instead of interpreting traces and deducing a cause-effect
chain backwards, Malfor works experimentally: in a first phase, Malfor captures events (processes
in pur case) as the system is running. As soon as a break-in is detected, Malfor uses these events
to partially replay the system. By cleverly choosing which events to repeat, we isolate those
events that are reevant for the break-in: if we repeat the system without process X and if the
break-in still occurs, process X cannot have been relevant for the attack.

2. Capture and Replay

Malfor’s subsystem for capture and replay works by System Call Interposition. In this method,
system calls like fork, execve, read, getpid and so on are diverted to Malfor’s own routines. These
execute the original routines and upload the system calls’ parameters and results to a database. In
security research, this method has been used in Systrace [6] in order to create on-the-fly security
policies for system calls.

Malfor must take care of many details when replaying system calls, because otherwise replay will
not work. For example, processes may have a different process ID during replay than it had during
capturing. Still, the process must see its original PID so that library calls that use the PID (such as
gethostbyname) still work as expected when replayed.

Our method works by replaying captured processes in ever different configurations. For this it is
necessary that Malfor be able to suppress a process’s execution. But on one hand, you can’t force
a parent process not to call fork. On the other hand, process creation must not simply fail because
this would be too strong a difference with respect to the original run. Our solution is to create the
child process, but to terminate it again at the next syscall.

These measures are typical when one wants to repeat only parts of a system.

3. Minimization

In order to find the responsible processes among all captured processes, we use Delta Debugging
[3]. Delta Debugging is a technique that uses repeated experiments to minimize any set of failure-
inducing circumstances.

Delta debugging works like binary search: first, we try with one half of all circumstances removed.
If that reproduces the failure, we continue with this reduced set of circumstances. If not, however,
we try by removing the other half. If that doesn’t work either, we try the complements ofour
subsets. If that doesn’t work either, we split the original set into more than two parts and try
again.

Zeller and others have shown that the final result contains only circumstances that are relevant
for the failure. If there are initially n circumstances, delta debugging will need at most O(n2) tests
to minimize them.

4. First Experiences

In order to test our prototype, we have witten a network server that contains a security hole: once

dline.info/pms 3

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24
it receives a specially prepared request, it creates a file /tmp/pwned with administrator privileges.
In a simulated attack, we have hidden one malicious request among twenty-nine others.

This run caused about 1,500 system calls, which were executed and captured by the original
system in about 6 seconds. This is a performance overhead of about 8% with respect to the
throughput without capturing. Capturing takes place in a virtual machine in order to simplify re-
play. Takting that into account as well, the overhead rises to 13% with respect to a dedicated
machine. These penalties compare favourably with other research [1] and make Malfor suitable for
production environments.

Malfor used about three minutes and 14 tests to isolate all relevant processes (three of 32) [5].
Replay was slower than capturing by a factor of about two. These numbers emphasize Malfor’s
suitability for production use.

5. Further Work

We first want to extend Malfor to a realistic example. We have already prepared an attack on
Apache which adds another root account to the password file without opening the password file for
reading. This attack is constructed especially to fool tools like BackTracker which analyze attacks
by constructing relationships between system calls [1, 4]. This attack never opens the password
file; yet it is modified afterwards.

The next task is to extend Malfor to distributed systems. Malfor is already designed to be used in
such environments, but replaying needs to observe certain constraints so that the consistency of
the entire system is preserved.

6. Conclusion

We have introduced Malfor, a system that uses experimental methods to analyse intrusions auto-
matically. It can be used on production systems and is especially suitable for the analysis of
targeted attacks.

References

[1] Dunlap, George W., King, Samuel T., Cinar, Sukru, Basrai, Murtaza A., Chen, Peter M.
(2002). ReVirt: Enabling intrusion analysis through virtual-machine logging and replay. In:
Proceedings of the 5th Symposium on Operating Systems Design and Implementation
(pp. 211–224). ACM Press.

[2] Farmer, Dan. (2005, January). Frequently asked questions about the coroner’s toolkit.
Retrieved from http://www.fish.com/tct/FAQ.html

[3] Hildebrandt, Ralf., Zeller, Andreas. (2002). Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 26(2), 183–200.

[4] King, Samuel T., Chen, Peter M. (2003). Backtracking intrusions. In: Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles (pp. 223–236). ACM
Press.

[5] Neuhaus, Stephan., Zeller, Andreas. (2006). Isolating intrusions by automatic experi-
ments. In: Proceedings of the 13th Annual Network and Distributed System Security
Symposium (pp. 71–80). Internet Society.

[6] Provos, Niels. (2003). Improving host security with system call policies. In: Proceed-
ings of the 12th Usenix Security Symposium (pp. 257–272). Usenix Association.

