
 4

Received: 5 September 2023
Revised: 11 December 2023

Accepted: 19 December 2023
Copyright: with Author(s)

DLINE JOURNALS

Progress in Machines and Systems
Print ISSN: 2319-4596
Online ISSN: 2319-460X

PMS 2024; 13 (1)
https://doi.org/10.6025/pms/2024/13/1/4-15

A Semantic-based Framework for Modelling
Adaptive Systems

Ina Schaefer and Arnd Poetzsch-Heffter
Software Technology Group
Technische Universtiat Kaiserslautern, Germany
{inschaef|poetzsch}@informatik.uni-kl.de

ABSTRACT

Embedded systems that are self-adaptive automatically adjust to changing envi-
ronmental conditions to enhance their performance and reliability by reducing func-
tionality in the event of failure. However, the adaptive behaviour of embedded
systems significantly challenges system design and presents new challenges for
ensuring system correctness, especially in the automotive domain. Therefore, for-
mal verification applied in safety-critical applications must address dynamic adap-
tation in terms of time and functional properties and in terms of dynamic adapta-
tion in terms of external and internal cues. In this paper, we present a formal
semantic-based framework for modelling, specifying and verifying functional and
adaptation behaviour of Synchronous Adaptive Systems. Modular reasoning and
abstraction mechanisms allow automatic model checking to be efficiently applied.
The modelling distinguishes functional and adaptive behaviours to reduce the de-
sign complexity and allows modular reasoning on both aspects independently and
in combination. An example shows how to use the framework to validate the prop-
erties of Synchronous Adaptive Systems.

Keywords: Synchronous Adaptive Systems, Embedded Systems, Adaptive Sys-
tem Modeling

1. Introduction

 In the automotive sector, self-adaptive embedded systems are used for instance
as antilock braking (ABS), vehicle stability control (VSC), and adaptive cruise con-
trol (ACC) systems. They autonomously adapt to changing environment condi-
tions in order to meet high quality requirements, e.g. to offer the best possible
service in any kind of driving condition. Furthermore, adaptation increases depend-
ability and fault-tolerance of systems by autonomously up- and downgrading the
functionality according to the available resources. This can for instance be chang-
ing qualities of environment sensors. However, adaptation in embedded systems
significantly complicates system design and poses new challenges for guarantee-
ing system correctness, in particular vital in the automotive domain. Therefore,
formal verification as applied in safety-critical applications must be able to address
not only temporal and functional properties, but also dynamic adaptation according
to external and internal stimuli.

dline.info/pms

dline.info/pms 5

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24
In this paper, we introduce a formal semantic-based framework to model, specify and verify func-
tional and adaptation behaviour of self-adaptive embedded systems. The modelling framework is
based on state-transition systems and describes adaptation of module behaviour in terms of an
adaptation aspect on top of a set of predetermined module configurations. Restricting adaptation
to predetermined reconfiguration makes systems predictable and improves analyses results. Our
models are synchronous systems as those can capture simultaneously invoked actions by true
concurrency. Most approaches formalizing selfadaptation [1] so far focus on structural and archi-
tectural adaptation such as adding and removing components instead of behavioural adaptation of
single system modules. Furthermore, they intertwine functionality and adaptation. In contrast,
the proposed modelling framework decouples functional and adaptive behaviour and provides a
clear formal account of both aspects in separation. This reduces the design complexity and en-
ables explicit and uniform reasoning about purely functional, purely adaptive as well as combined
properties. We develop a high level modelling framework in which the special features of dynamic
reconfiguration, i.e. the behavioural adaptation and the separation of adaptation and functionality,
can be observed and reasoned about directly. If these special properties of the considered class of
systems would be encoded into another formalism, this high level specific properties are typically
lost and cannot be exploited for tailored analyses.

On top of the formal model, we define a specification logic that allows to express functional, adap-
tive and temporal properties of the system. Since we can describe the behaviour of our systems
by a set of execution traces we will adopt a variant of first-order LTL [3] for our purposes. The
proposed framework enables modular reasoning through modular specification of systems. A glo-
bal system property can be decomposed into local properties of single modules entailing the global
property. Furthermore, the model allows to incorporate abstraction mechanisms, for instance to
reduce unbounded data domains to finite discrete domains. Modularity combined with appropriate
abstraction mechanisms facilitates the efficient integration of existing automatic verification tech-
niques such as model checking into the verification process of synchronous adaptive systems.
Thus, the verification effort can be reduced by discharging sub-proof goals automatically.

In this paper, we present the application of our modelling, specification and verification framework
at an example system confronted with changing qualities of sensor values. This scenario is quite
common in the context of embedded automotive systems. Due to restricted hardware resources,
the system has to deal with changing sensor qualities by adapting its functionality to the available
resources instead of halting the system. Redundant hardware is not applicable due to the inherent
limitations in embedded systems. We show how to model such a sensor quality adaptation as
synchronous adaptive system. Afterwards, we verify the safety property that despite problems
with the sensors the quality of the system output is below a threshold only for a restricted period
of time. This exemplary verification shows the use of modular reasoning and abstraction tech-
niques and gives an intuition which mechanisms are necessary for efficient automatic verification
of synchronous adaptive systems.

The paper is structured as follows: Section 2 gives a short overview of related work on formal
analysis of self-adaptive systems. In Section 3, we will introduce our formal semantic-based model
of synchronous adaptive systems illustrated with the running example. In Section 4, we introduce
an LTL based logic for specifying properties over these models. In Section 5, we show how to use
abstraction techniques and modular verification in order to proof the safety property over the
running example, before we conclude the paper in Section 6 with an outlook to future work.

2. Related Work

From a general point of view dynamic adaptation is a very diverse area of research including real
time systems [5], agent systems [8] and component middleware [4], just to name a few repre-
sentatives. There are a number of approaches for modelling self-managed dynamic software archi-
tectures in a more or less formal manner, e.g. using graphs, logic or process algebra; for a survey,
consult [1]. However, most of these approaches consider mere modelling of systems instead of
their verification. Additionally, the focus lies mainly on architectural adaptation instead of behavioural
adaptation as considered here. Moreover, adaptive and functional behaviour are often intertwined
which does not allow separated reasoning about both aspects.

dline.info/pms 6

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24

In [10], models of adaptive synchronous systems separate adaptation from functionality by
endowing data flow with qualities. The configuration behaviour of one module only depends on
the quality transmitted with the input and output variables. Considering the qualities, an ab-
stract model of the adaptation behaviour is extracted from the system which is analysed via
model checking. However, functional behaviour is completely discarded whereas our approach
allows to reason about adaptive, functional and combined behaviour as in systems where adap-
tation depends on functional data. In [12], the authors use a model driven approach to modularly
define adaptive systems coming close to the modularity considered here. Starting from a global
model and global requirements of the overall system, single domains of adaptation are identified
which are designed to satisfy local requirements entailing the global ones. However, the notion of
adaptivity is more coarse-grained than in synchronous adaptive systems due to three fixed types
of adaptation.

With respect to verification of adaptive systems, in [11] a linear temporal logic is extended with
an ’adapt’ operator for specifying requirements on the system before, during and after the adap-
tation. In [6], the authors use an approach based on a transitional-invariant lattice. Using theo-
rem proving techniques they show that before, during and after the adaptation the program is
always in a correct state in terms of satisfying the transitional-invariants. However, both ap-
proaches use a more coarse-grained notion of adaptation than predetermined behavioural
reconfiguration as considered here.

3. Formal Models of Synchronous Adaptive Systems

Synchronous adaptive systems are composed from a set of modules where each module has a
set of predetermined behavioural configurations it can adapt to. The selected configuration de-
pends on the status of the module’s environment. It is determined by an adaptation aspect
defined on top of the functional behaviour. The modules are connected via links between input
and output variables. Data and adaptation flow are decoupled and do not follow the same links.
Adaptations in one module may trigger adaptations in other modules by internal adaptation sig-
nals via the adaptation links. That may lead to a chain reaction of adaptations through the sys-
tem. The systems are assumed to be open systems with non-deterministic input provided by an
environment. Furthermore, they are modelled synchronously as their simultaneously invoked
actions are executed in true concurrency.

3.1. Running Example
Before we start with the formal definitions, we will illustrate the general behaviour of synchro-
nous adaptive systems at an example system dynamically reconfiguring dependant on the qual-
ity provided by its input sensors. Figure 1 shows an overview of the system structure.

The system consists of two modules. They receive input from three sensors and control one
actuator. The sensors may produce results with varying quality due to changing environment
conditions. Hence, the sensor input is associated with a confidence level. This confidence level is
an integer value which reflects the sensor’s input quality. The higher the confidence level is the
higher is the reliability of the value. In our example, a confidence level below 50 models low
confidence, between 50 and 100 medium confidence and above 100 high confidence. The confi-
dence level can be determined by enhancing the mere sensor with a functional module. This
module for instance records the sensor values over some period of time and monitors its changes.
If the sensor value changes by a great amount over a short period of time confidence in this
sensor is reduced. Another possibility to calculate the confidence level may be to monitor other
system parameters. By performing a plausibility check the sensor module can infer the confi-
dence of the input.

The first two sensor inputs are fed into the first system module which selects one of the sensor
inputs according to their confidences. In the considered scenario, sensor 1 produces very good
results reflecting the value to be measured very closely. But sensor 1 is also very likely to
produce very bad results because of environment changes. This is reflected in the attached
confidence level. If the confidence falls below 50, the value is no longer guaranteed to be good
enough. Then, the second sensor becomes important. It measures the same input source as the
first sensor in general providing lower confidence. Hence, the first sensor is mostly preferred over

dline.info/pms 7

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24
the second. However, the second sensor is more robust which is reflected by the assumption
that the confidence never falls below 50. Thus, if the first sensor produces data with low confi-
dence over some period of time the system adapts to use the second sensor in order to ensure

 Figure 1. Graphical Representation of the Running Example System

sufficient confidence of the output. In detail, the adaptation works as follows: If the confidence
level of the first sensor is smaller than 50 for more than 2 subsequent cycles the module switches
to the value of the second sensor. Sensor 2 is then used as long as the confidence of the first
sensor is smaller than 100. If the confidence of sensor 1 is above 100 for 3 subsequent cycles it
is assumed that sensor 1 has recovered. Then, the system will return to using sensor 1 in order
to use better quality inputs in general.

According to the selected sensor a different functionality is used to produce the module output.
This can for instance be necessary in order to transform the input from a different unit of mea-
surement. The output together with the confidence level of the selected sensor is passed on to
the second module which receives another data value and a respective confidence from a third
sensor. This sensor is assumed to be of the same type as sensor 2 always producing a medium
quality value with confidence above 50. The second module uses its two input values to trigger the
actuator. Therefore, it only needs a single configuration. For the confidence level it simply com-
putes the minimum confidence of the received.

An interesting property of this system is that the confidence should never fall below 50 for more
than two subsequent cycles. This property depends on the assumption that the second and third
sensor are more robust always providing confidence above 50. Ensuring this property is important
because the actuator may break down putting the system in a dangerous situation if it gets input
with low confidence for more than 2 subsequent cycles. However, it is desirable to use the best
possible sensor input. So the adaptation is designed to use sensor 1 whenever appropriate.

3.2. Syntax
In this section, we define the syntax of our formal modelling language for synchronous adaptive
systems (SAS). It is based on state-transition systems and incorporates ideas from aspect-ori-
ented software engineering in order to decouple functional from adaptive behaviour. We assume
that we are given a set of variable names Var and a set of values Val. It would also be possible to
enhance this with variable types and associated variable domains. The smallest construction
element is a module. It contains a set of different predetermined configurations the module can
adapt to dependent on the current status of its environment. The adaptation is realised by an
adaptation aspect. Before the execution of the actual functionality the adaptation aspect evaluates
the configuration guards and determines the configuration to use.

dline.info/pms 8

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24

Definition 1 (Module and Adaptation). An SAS module m is a tuple m = (in, out, loc, init, confs,
adaptation) with

in Var, the set of input variables, out Var, the set of output variables, loc Var, the set of
local variables and init : loc Val their initial values

– confs = {conf
j
 = (guard

j
, next state

j
, next out

j
) | j = 1, ..., n} the configurations of the module, where

• guard
j
: a first-order formula over {in, loc, adapt in, adapt loc} determining when the configuration j is

applicable

• next state
j
: (in loc Val) (loc Val) the next state function for configuration j

• next out
j
: (in loc Val) (out Val) the output function for configuration j

The adaptation is defined as a tuple adaptation = (adapt in, adapt out, adapt loc, adapt init, adapt next state,
adapt next out, adapt trigger) where

– adapt_in Var, the set of adaptation in-parameters, adapt_out Var, the set of adaptation
out-parameters, adapt_loc Var, the set of adaptation local state variables and adapt init :
adapt loc Val their initial values

– adapt_next state: (adapt_in adapt_loc Val) (adapt_loc Val) the adaptation next
state function

– adapt_next out
i
: (adapt_in adapt_loc Val) (adapt-out Val) the adaptation output

function

– adapt_trigger: (in loc adapt_in adapt_loc Valal) {1, ..., n} for n the number of
configurations

Because the first module in our running example has the more interesting adaptation behaviour
we will focus on this module for illustrating the modelling framework. Module m1 possesses two
functional inputs sensor1 and sensor2 and the functional output data2. Furthermore, it receives
the confidence levels from sensor 1 confidence1 and from sensor 2 confidence2 as adaptation
inputs and produces confidence2 as adaptation output propagating the confidence of the selected
sensor. A functional local state does not exist because the module solely transforms input to
output according to two configurations, namely configuration conf1 standing for the use of sen-

sor1 and conf2 for the use of sensor 2.

In Figure 2, the adaptation behaviour, as defined by the adapt next state1 function, is depicted
as a state transition diagram. The adaptation local state consists of two counters c1 and c2. If
sensor 1 is used counter c1 counts the subsequent cycles in which confidence1 falls below 50.
This counter is initialised to 2. Counter c2 counts the cycles in which confidence1 is above 100 if
sensor 2 is used. It is initialised to 3. The counter c1 is set to 3 in order to reflect the use of sensor
2. Thus, the guard for use of sensor 1 in conf 1 is c1 2 and the guard for sensor 2 in conf2 is c1
= 3. If sensor 1 is used confidence12:= confidence1 and if sensor 2 is used confidence12:=
confidence1. In Figure 2, the grey circles denote states in which sensor 1 is used and the white
ones states where sensor 2 is used.

An SAS system is composed from a set of modules that are interconnected with their input and
output variables. The system is an open system with an environment providing non-determinis-
tic input and output via connections from environment input and output to module input and
output variables. For technical reasons, we have to assume that the variable names of all mod-
ules in a composed system are pairwise disjoint. This can be easily achieved by indexing the

dline.info/pms 9

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24
module variables with the respective module index. By an injective connection function, we link
module output variables to other module’s input variables. Furthermore, we link environment
input variables to module input variables and module output variables to environment output
variables. This means that one variable is connected to one other variable only. If we want to
transfer the same output to several places we have to simulate this by duplicating the output
variable. Note that in this definition adaptation and functional input and output are decoupled.
Adaptation and data flow do not follow the same links such that a module can forward its data to
one module and notify a different module to adapt.

 Figure 2. State Transition Diagram for Adaptation Behaviour of Module 1

Definition 2 (System). A synchronous adaptive system (SAS) is a tuple

SAS = (M, input
a
, input

d
, output

a
, output

d
, conn

a
, conn

d
)

where

– M is a set of modules M = {m
1
, . . . , m

n
} where m

i
 = (in

i
, outi, loc

i
, init

i
, confs

i
, adaptation

i
)

– input
a
 Var are adaptation inputs and input

d
 Var functional inputs to the system

– output
a
 Var are adaptation outputs and output

d
 Var functional outputs from the system

– conn
d
is an injective function connecting adaptation outputs to adaptation inputs and also

environment adaptation inputs to module adaptation inputs and module adaptation outputs to

dline.info/pms 10

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24

environment adaptation outputs, i.e

conn
a
: (adapt_out

j
 adapt_ink) (input

a
 adapt_in

k
) (adapt_out

k
 output

a
) for j, k = 1,...,n

We can model the running example as

SAS = (M, input
a
, input

d
, output

a
, output

d
, conn

a
, conn

d
)

where M = {m
1
, m

2
}. The adaptation inputs are inputa = {confidence

1
, confidence

2
} and the functional

inputs are input
d
 = {sensor

1
, sensor

2
}. The adaptation outputs are output

a
 = {confidenceout} and the func-

tional outputs are output
d
 = {output}. The connections between the modules are as depicted in Figure

1.

3.3. Semantics
The semantics of an SAS is defined in a two layered approach. Firstly, we define the local seman-
tics of single modules similar to standard state-transition systems. From this, we secondly give
the global semantics of the composed system.

A local state of a module is defined by the evaluation of the module’s variables, i.e. the input,
output and local variables and the adaptation counterparts. A local state is initial, if its functional
and adaptation variables are set to their initial values and input and output are undefined. A local
transition between two local states evolves in two stages: Firstly, the adaptation aspect computes
its new local state and its new adaptation output from the current adaptation input and the
previous adaptation state. The adaptation aspect further selects the configuration with the small-
est index and valid guard with respect to the current input and the previous functional and adap-
tation state. Since the configurations are prioritised according to their index we do not require
them to be disjoint. The system designer should ensure that the system has a build-in default
configuration which becomes applicable when no other configuration is. The selected configuration
is used to compute the new local state and the new output from the current functional input and
the previous functional state.

Definition 3 (Local States and Transitions)
A local state s of an SAS module m is defined as evaluation of the module’s variables.

A local state s is called initial i f and

. A local transition between two local states s and
s is defined as .

A global system state is the union of the local states of the system modules together with an
evaluation of the system’s environment input and output. A global system state is initial if all local
states are initial and the system input und output are undefined. A transition between two global
states is performed in three stages. Firstly, each module reads its input either from another
module’s output of the previous cycle or from the environment in the current cycle. Secondly, each
module synchronously performs a local transition. Thirdly, the modules directly connected to the
system output write their results to the output variables.

and \

dline.info/pms 11

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24

A sequence of global states of an SAS is a system trace if firstly 0 is an initial global state

and secondly, for all . The set is a system trace}
gives the semantics of the SAS.

4. A Logic for Synchronous Adaptive Systems

In this section, we will introduce a specially tailored logic for reasoning about synchronous adap-
tive systems. The properties of the system behaviour can be classified in three dimensions:
functional behaviour, adaptation behaviour and combined properties. Combined properties equally
refer to functional and adaptive system aspects, for instance if adaptation depends on functional
values. The environment input is assumed to be non-deterministic such that the behaviour of a
system can be described by a set of possible execution traces as infinite sequences of states.
Hence, we adopt a variant of the linear time logic LTL [3] by adding special basic predicates for the
considered systems to standard first-order and LTL connectives.

For a module, we need predicates to describe its local state, the input and output values and the
respective adaptation counterparts. Therefore, equality and the less-than-or-equal relation over
terms build from the relevant variables are employed. Furthermore, the configuration currently
used is described by the predicate use_conf

 t2
(t

1
) which is true if the module denoted by term t

2
 uses

the configuration denoted by t
1
 in the current state. On system level, we have predicates in order

to speak about the connections between output and input variables implemented by the predi-

cates is and which are true if there is a functional or an adaptive
connection between x

1
 and x

2
.

Definition 5 (Linear). The grammar of linear is defined as follows:

A Formula is interpreted over a path where is an infinite sequence of global states =
0, 1, . . . which forms a system trace as defined in the previous section. We denote that a
system trace of a synchronous adaptive system is a model for a formula

Definition 4 (Global States and Transitions). A global state of an SAS consists of the

module’s local states where s
i
 is the local state of and an evaluation of the

funct ional and adaptive input and output, i.e.
. A global state is called initial if all

local states s
i
 for i = 1, . . . , n are initial and the system’s input and output are undefined. Two

states and perform a global transition, i.e.

dline.info/pms 12

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24
For verification we proceed as follows. Firstly, we abstract the unbounded integer domain of the
confidence level to three discrete values low, med (for medium) and high. This is necessary
because automatic model checking techniques to be applied later can in general only deal with
finite state systems. The abstraction has to preserve the properties of the concrete system, i.e.
if the abstract property holds over the abstract system, also the concrete property holds over the
concrete system. For our example, we can construct an abstract SAS# along the lines of [2]. We
use the following surjection h for mapping concrete confidence integer values to abstract values:

.

The interpretation of the temporal and first-order formulae complies to standard first-order LTL
semantics [3]. Terms are evaluated by simply extending the variable assignments of a state to

. Equality and less-than-or-equal relation are interpreted standardly. The predicates is

 re valid if there is a connection via the respective connection
functions. For reasoning purposes only, we enhance the local state of module i with an additional
state variable configi which captures the configuration that is used in this state. Its value is
determined during the global transition by using the adapt trigger function as defined in
Definition 1 which selects the applicable configuration.

Then, we are able to define the predicate use conf over a state by use conf

Furthermore, the boolean connectives are interpreted standardly. The next operator, X , deter-
mines that is true in the next state, i.e. over the path which is the state sequence

formula is globally true, , iff for all holds over , the path starting in the i-th state.

The formula is true is there exists such that . The until operator denotes

that there exists such that and for all . We say that a formula

is valid for an for all paths and that it is satisfiable if there exists

such that .

5. Towards Modular Verification using Abstraction

Having defined a specification logic on top of the formal model we are now able to formally verify
properties specified in . This verification process should incorporate automatic verification
techniques such as model checking whenever possible. For an intuition how the proposed frame-
work can be applied we consider the running example of the sensor quality adaptation as de-
scribed in Section 3.1. The safety property to be shown is that the quality of the output at the
actuator is never below 50 for more than 2 subsequent cycles. Otherwise, the actuator may
break down causing the system to enter a dangerous situation. In , this property can be
expressed by the formula that is required to hold for all paths .

For the paths of the abstract system SAS# we have to ensure two conditions such that SAS#

approximates SAS and preserves its properties. Firstly, the set of concrete initial states must

dline.info/pms 13

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24

be mapped to the set of abstract initials states. Secondly, the concrete transition relation must be
contained in the abstract transition relation. In our example, this means that we must abstract
all conditions in configuration guards, adaptation next state and adaptation output functions that
depend on confidence1, confidence2, confidence12 and confidence3 by the corresponding ex-
pressions using the abstract values low, med and high. For an example consider the abstracted
transition diagram for module 1 in Figure 3. Additionally, the functions for calculating the confi-
dence outputs have to be abstracted. This is easy for module 1 since it just propagates the
relevant confidence already abstract in the abstract system. For module 2, the adapt next out
function is defined as confidence

out
:= min{confidence

12
, confidence

3
}. Here, we have to give an abstract

minimum function min# which reflects the intuitive ordering that low is smaller than med which
is smaller than high. The abstract property reads as follows:

Verification of the abstract property over the abstract system SAS# immediately implies validity
of over SAS by construction of the abstraction using the results of [2].

Secondly, we modularly verify the abstract property over the abstract system. Therefore, we
decompose the global property into two local properties over the two modules. From their validity
can infer validity of the overall system property. The global property can be decomposed as
follows. For module 2, we use the definition of the adapt next out function and show 2 =
(where c is used as abbreviation for confidence)

By assumption on sensor 3 that its confidence is always greater than 50 or greater than low this
property boils down to

 Figure 3. State Transition Diagram for the Abstract Adaptation Behaviour of Module 1

dline.info/pms 14

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24

This is actually a property over module 1. So it suffices to prove over module 1. We can
enter this property together with the abstract module description into a model checker, for in-
stance [9]. This will explore all paths of the abstract system and return the result that for all paths

À of the abstracted module 1, . This can also be seen in the abstract transition graph as
depicted in Figure 3. If the confidence of sensor 1 is low for 2 subsequent cycles the system
adapts to use sensor 2. Sensor 2 by assumption has a confidence of greater than 50 or in the

abstract greater than low. So, the property holds on all execution paths. As a consequence, we
can conclude by combining the results of abstraction and modularity that the example SAS satis-
fies the initial property .

6. Conclusion and Future Work

In this paper, we have introduced a formal semantic-based framework to model, specify and verify
the functional and the adaptation behaviour of synchronous adaptive systems. The modelling
framework separates functional and adaptive behaviour in order to reduce the design complexity
and to allow modular reasoning about both aspects independently but also in combination. We
have shown how to apply this framework for the verification of a safety property by the example of
a sensor quality adaptation system.

As we have observed in the running example, modularity combined with abstraction reduces the
complexity of sub-proof goals necessary to infer the desired overall system property. For these
sub-goals, model checking algorithms such as [9] become efficiently applicable. Hence, for future
work, we want to further investigate the use of modular verification in combination with abstrac-
tion mechanisms. In this direction, we want to integrate an automatic theorem prover dealing with
modularity and abstraction with automatic model checking methods. Furthermore, we plan to
equip our modelling framework with means for expressing hierarchy in order to be able to compose
complex systems from a number of subsystems and to exploit this hierarchy for verification. In
addition to that, we want to implement a translation from UML-like models of synchronous adap-
tive systems in the GME [7] framework to SAS models in order to provide GME models with a firm
semantic basis and to make our approach end-user compatible by a graphical modelling front end.

References

[1] Bradbury, J. S., Cordy, J. R., Dingel, J., Wermelinger, M. (2004). A survey of self-management
in dynamic software architecture specifications. In: Proc. of the International Workshop on Self-
Managed Systems (WOSS’04).

[2] Clarke, E. M., Grumberg, O., Long, D. E. (1994). Model checking and abstraction. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 16(5), 1512–1542.

[3] Emerson, E. A. (1990). Temporal and modal logic. In: J. van Leeuwen (Ed.), Handbook of
Theoretical Computer Science: Volume B: Formal Models and Semantics (pp. 995–1072). Elsevier.

[4] Gilani, W., Naqvi, N., Spinczyk, O. (2004). On adaptable middleware product lines. In Proc. of
3rd Workshop on Adaptive and Reflective Middleware (pp. 207-213).

[5] Gonzalez, O., Shrikumar, H., Stankovic, J., Ramamritham, K. (1997). Adaptive fault-tolerance
and graceful degradation under dynamic hard real-time scheduling. In: Proc. of IEEE Real-Time
Systems Symposium (RTSS) (pp. 79–89).

[6] Kulkarni, S. S., Biyani, K. N. (2004). Correctness of component-based adaptation. In: Proc.
of Intl. Symposium on Component Based Software Engineering (pp. 48–58).

[7] Ledeczi, A., al. (2001). The Generic Modeling Environment. In: Proc. of IEEE International
Workshop on Intelligent Signal Processing (WISP).

dline.info/pms 15

 P
ro

gr
es

s
in

 M
ac

hi
ne

s
an

d
Sy

st
em

s
V

ol
um

e
13

 N
um

be
r 1

 A
pr

il
20

24
[8] Marin, O., Bertier, M., Sens, P. (2003). DARX - a framework for the fault tolerant support
of agent software. In: Proceedings of IEEE International Symposium on Software Reliability
Engineering (ISSRE) (pp. 406–418).

[9] Schneider, K., Schuele, T. (2005). Averest: Specification, verification, and implementation
of reactive systems. In: Proc. of Conference on Application of Concurrency to System Design
(ACSD).

[10] Schneider, K., Schuele, T., Trapp, M. (2006). Verifying the adaptation behavior of em-
bedded systems. In: Proc. of Software Engineering for Adaptive and Self-Managing Systems
(SEAMS).

[11] Zhang, J., Cheng, B. H. C. (2005). Specifying adaptation semantics. In: Proc. of ICSE
2005 Workshop on Architecting Dependable Systems (WADS 2005) (pp. 1–7).

[12] Zhang, J., Cheng, B. H. C. (2006). Model-based development of dynamically adaptive
software. In: Proc. of the International Conference on Software Engineering (ICSE’06).

