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ABSTRACT

In this work, we introduced a scalable interface model and the tools for them,
which is called TICC. The paper begins with exploring the interface theory and then
introduces the social interface model, a game-based interface model with rich com-
munication primitives to model software and distributed systems. The model and
its key features are discussed in detail and illustrated with the help of TICC.
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1. Introduction

The prevalent trend in software and system engineering is towards component-
based design: systems are designed by combining small components into bigger
ones. Components offer thus the unit in which complex design problems can be
decomposed, allowing the reduction of a single complex design problem into smaller
design problems, more manageable in complexity, that can be solved in parallel by
design teams. Components also provide a unit of reuse, defining the boundaries in
which functionality can be packaged, documented and reused.

Components are designed to work as parts of larger systems: they make assump-
tions on their environment, and they expect that these assumptions will be met in
the actual environment. In other words, a component is typically an open system
which has some free inputs provided by others components and which in turn
provides inputs to other components. It is thus obvious that the effective reuse of
software requires adequate documentation of the component’s behavior and the
conditions under which it can be used along with methods for checking that compo-
nents are assembled in an appropriate way. Such a documentation is commonly
referred to as the interface of the component.

There have been many works on the design and implementation of good interfaces
for components. Most of those works focus on capturing the data dimension of
interfaces (“What are the value constraints on data communicated be-
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tween components?”) [21]. We describe here interface theories [13–15] a formal notion of com-
ponent interfaces that use games to represent the interaction between the behavior originating
within a component, and the behavior originating from the component’s environment. Such an
interface model is able to capture dynamic aspects of component interaction which makes it
similar to a type system: indeed, it could be termed a “behavioral” type system for component
interaction. In previous works, interface theories have been introduced ? for various aspects of
component interaction: [13, 8, 7, 15, 12] consider the protocol dimension of interfaces (“What
are the temporal ordering constraints on communication events between components?”), [16]
considers the timing dimension of interfaces (“what are the real-time constraints on communica-
tion events between components?”), and [5] deals with constraints on the resource usage of the
component.

In this paper, we focus on the sociable interfaces model introduced in [12], and on the corre-
sponding tool called TICC [1]. We present the underlying ideas of the model, and show how it can
be used to capture the protocol dimension between components. All the concepts are intensively
illustrated with TICC for which this paper constitutes an introduction.

Two tools for interface theories predate TICC. The asynchronous, action-based interface theories
of [13] are implemented as part of the Ptolemy toolset [19]. The tool CHIC [6] implements syn-
chronous, variable-based interface theories modeled after [14]. Our goal in developing TICC is to
provide an asynchronous model where components have rich communication primitives that
facilitate the concise, natural modeling of software and distributed systems. In TICC, components
are modeled both via variables (to describe state) and actions (to describe synchronization); its
communication primitives enable the modeling of complex communication schemes. The imple-
mentation of TICC relies on symbolic methods, yielding efficient algorithms for component and
system analysis.

2. Interface Theories

Before going to the details of the sociable interfaces model, we first summarize and illustrate the
basic features of Interface theories. The reader is referred to [17, 10, 18, 12] for more details.

Interface Specification and Well-formedness
An interface specifies how a component interacts with its environment. It describes the input
assumptions that the component makes on the environment and the output guarantees it pro-
vides. Interfaces capture the I/O behavior of a component by an automaton whose syntax is
similar to the I/O automata of [21]. In the context of software design, inputs are used to model
procedures or methods that can be called, and the receiving end of communication channels, as
well as the return locations from such a calls. Outputs are used to model procedure or method
calls, message transmissions, the act of returning after a call or method terminates, and excep-
tions that arise during method execution. Unlike traditional models of open systems, among
which I/O automata, that at every state must be receptive to every possible input event, in
interfaces it is possible that inputs are illegal (cannot be accepted) at some states. Thus, an
interface describes the behavior of a component only with respect to some environments. In this
way, environment restrictions can be used to encode restrictions on the order of method calls,
and on the types of return values and exceptions. This is how interfaces capture the protocol
dimension of components. Another advantage of making explicit assumptions about the environ-
ment is that it gives rise to an optimistic compatibility test when interface  are composed: two
interfaces are compatible if there exists at least one environment in which they can work to-
gether. Finally, from a practical point of view, the ability to forbid inputs removes the need to
specify “what happens” when taking an undesirable input. Such a specification has been pointed
to as one of the main drawbacks of inputenabled approaches. Since we can make input assump-
tions, we have to ensure that the interface is well-formed, i.e. that there exists at least one
environment that satisfies its input assumptions.

This research was supported in part by the NSF grants CCR-0234690 and CCR-0132780, by the
ARP awards SC2005553 and SC20051123, and by a F.R.I.A Grant.
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Interfaces as Games
An interface is naturally modeled as a game between the players Input and Output. Input repre-
sents the environment: the moves of Input represent the inputs accepted from the environment.
Output represents the component: the moves of Output represent the possible outputs gener-
ated by the component. Then, an interface is well-formed if the Input player has a winning strat-
egy in the game, which means that the environment can meet all input assumptions. Games
provides a model for multiple independent sources of nondeterminism and keep the distinction
between inputs and outputs. Hence, even if the syntax of interfaces is close to the one of I/O
automata, they differ in the way that the operations on the models are defined. In this paper, we
will mainly mainly focus on the operation of composition between two or more interfaces.

Interface Composition and Compatibility
The game-like nature of interfaces becomes apparent when we consider the operation of compo-
sition. In their original formulation, interfaces interact through the synchronization of common
input and output events. The interpretation of inputs and outputs as assumptions and guaran-
tees, respectively, implies that, when composing two interfaces P and Q, we have to ensure that
P’s output guarantees satisfy Q’s input assumptions and vice versa. Concretely, consider the two
interfaces P and Q, in one state of the composition. If P wants to emit an output that cannot be
accepted by Q in that state (i.e. an output guarantee that violates an input assumption), then a
local incompatibility occurs. While many approaches would be pessimistic and consider the two
interfaces to be incompatible, the interface approach is optimistic, by expecting the environment
to steer away from locally incompatible states. Thus, two interfaces are compatible if there exists
an environment to use the components together, and ensure that the assumptions of both are
met. Component composition thus consists in synthesizing the most liberal input strategy in the
composite system that avoids all locally incompatible states. This can be done by classical game-
theoretic algorithms. The optimistic approach supports incremental design: the compatibility of
two components can be checked without specifying interfaces for all components of the system,
i.e. without closing the system. Incremental designs also ensure that compatible components
can be put together in any order.

An Example
We illustrate the previous concepts with the help of a simple example: a fire detection system.
The system is composed of a control unit and several smoke detectors. The interfaces for this
example are reported in Figure 1: D1 is one of the smoke detectors (there could be more), and C
is the control unit.

             Figure 1. Sociable interface automata for a fire detection system
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When a detector senses smoke (input event smoke?), it reports it by emitting the output event
fire!. When the control unit receives the input event fire? from any of the detectors, it issues a
call for the fire department (output event call_fd!). Additionally, an input event disable? disables
both the control unit and the detectors, so that the smoke sensors can be tested without trigger-
ing an alarm. We also suppose the existence of faulty smoke detectors, i.e., smoke detectors
that ignore the disable message. The interface for a faulty smoke detector is presented in Figure
1(c).

A particularity in the design is that some (but not all) states are input-enabled. As an example,
state 1 of C is still receptive to the input event fire? after receiving the smoke alarm. This is
because detectors are independent and there is thus no reason for one detector to be forbidden
to send output even fire! if this has already been done by some other detector. Another example
is state 2 of D1 which is receptive to the input events fire? and smoke1?. Note that the possibility
of having the same name for input and output events is proper of sociable interfaces model and
not allowed in other interface models presented in [13, 8, 7, 15], or even transition based models
(such as I/O automata). This illustrates the multiple ways of communicating that are allowed by
the model (see [12] for a discussion). Note that C, D1, and D2 are well-formed4.

It is easy to see that all the states in the composition between the control unit C and the fire
detector D1 will be compatible if the two interfaces communicate via the event fire. As an ex-
ample, if C is in state 1 and D1 in state 2, then the output event fire! emitted by D1 can be caught
by the input event fire? of C. The output event calLfd! emitted by C does not need to be caught
by D1

 since the two interfaces do not synchronize on this action.

However, the composition between C and D2 goes less smoothly. When the composition receives
the input event disable?, the control unit shuts down (s = 3) and makes the assumption that
the environment cannot emit any output, while the faulty detector remains in operation. When
the faulty detector senses smoke (input event smoke2?), it emits the output event fire!: if the
control unit has been disabled, this causes a local incompatibility in state (3;1). Hence, a winning
strategy for player Input to stay away from locally incompatible states can be realized by the
following input restrictions:

– A restriction preventing the input event disable? if the faulty detector is in state  s = 1, that is,
it has detected smoke and is about to issue the output event fire!.

– A restriction preventing the input event smoke2? when ControlUnit is at s = 3 (disabled).

Since the actions disable and smoke2 should be acceptable at any time, the new input restric-
tions for these actions are a strong indication that the composition between C and D2 does not
work properly in all environments. However, if we consider an environment that never issues
disable, then the two interfaces can work together in a proper way.

3. The Sociable Interfaces Model

This section sketches the main elements of a sociable interface and the game it induces. The
reader is referred to [12] for more details. A sociable interface M is composed of the following
elements.

– A set of global actions ActG and a set of local actions ActL.

– A set of variables V all which is partitioned into a set of local variables VL and a set of global

variables VG, with VGV L = . Local variables are used to describe the internal states of the
interface, while global variables are used to describe the global state of the system. Among the

4In general, checking well-formedness requires solving a safety game [12]
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set of global variables, we distinguish between history and history-free variables. This distinc-
tion, which will be discussed in Section 5, allows us to limit the number of actions an interface
should include.  The set of history variables is denoted by VH.

– A set of input and output transitions. Each global action  is associated to an input and
an output transition that are respectively denoted by  and . An output transition specifies
how variables are updated when the interface emits the action. An input transition is the conjunc-
tion of two parts: (1) an input global transition ÁG(a) that specifies constraints on how other
interfaces can update the global variables when emitting a, and (2) an input local transition 
that can update the local variables of the interface when other interfaces emit a. The reason to
split the input transitions in two parts will be discussed in Sections 4 and 5.

– A set of local transitions. Each local action   is associated with a transition ,
which can modify the value of local variables. Local transitions cannot be synchronized with tran-
sitions of other interfaces. Notice that local transitions were not present in the original model of
[12].

– An input and an output invariant, respectively denoted by . Invariants are sets of
states that are used to constrain the input and output transitions of the interface. Precisely,
input transitions must maintain the input invariant true, and output transitions must maintain
the output invariant true.

– An initial condition I that describes the initial constraints on the set of local variables of the
interface.

For an interface M, we say that a state of M is a value assignment to the variables in Vall.

Note that in TICC, the term “sociable interface” is replaced by “module”, but a module is no more
than the description of a sociable interface in the input language of the tool.

Example 1.
The Control Unit C of the fire detection system described in the previous section is a sociable
interface with 3 actions: fire, disable, call_fd. Its internal state can be encoded with a local
variable s, so that a state of C assigns a value between 0 and 3 to s. The action fire has input
transitions from states s = 0; s = 1;s = 2, but not from s = 3. The action has no output transition
meaning that the interface cannot emit the action fire. The action call fd has an output transition
from s = 1 to s = 2, but no input transition. Hence, the interface makes the assumption that the
environment can never issue call_fd. Notice that we can follow the same reasoning for the (faulty)
smoke detectors.

The Game Underlying the Model
As mentioned in the introduction, a sociable interface induces a turn-based game between the
Input and the Output players. The definitions of the moves, outcomes, and strategies of this
game have been described in [12]. In this paper, the reader only needs to know how moves are
defined.

The moves of the Input and Output players are those induced by the input and the output tran-
sitions (the game model supposes that both the input and the output transitions are conjoined
with their corresponding invariants). In addition, each player owns a stuttering move to ensure
that the runs of the game are infinite.

The definition of the stuttering move is straightforward for the Output player: this is the identity
transition. For the Input player the definition is slightly different: the stuttering move is an addi-
tional transition that can modify the value of global history free variables. The stuttering move of
the Input player is often referenced to as the environment transition; it is automatically added by
TICC when specifying a sociable interface.
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Well-Formedness
Given a sociable interface M, it is possible to compute the set of states SI (resp. SO) from which
the Input (resp. Output) player has a strategy to always stay in the set of states that satisfy the
input (resp. output) invariant, whatever the Output (resp. Input) player does. A sociable-inter-
face is well-formed if each reachable state s of M belongs to , and moreover 
see [12] for a detailed explanation.

The tool TICC automatically ensures that modules are well-formed before allowing the user to
manipulate them. To this end, TICC may add extra conditions to the initial condition and the
input/output invariants that are defined by the user. Hence, the user does not need to take care
of the notion of well-formedness, and we will not elaborate on it in the rest of the paper.

The Tool TICC
TICC is a tool that allows users to  specify sociable interfaces, called “modules”, using a textual
language based on guarded commands, perform operations on the modules, and verify properties
of modules. TICC is implemented as a set of functions that extend the capabilities of the OCaml
[20] command-line. The tool is released under the GPL. The code of TICC is freely available and
can be downloaded from http://dvlab.cse.ucsc.edu/dvlab/Ticc. This web site is a Wiki that also
contains the documentation for the tool, as well as several examples including those that will be
presented in this paper. Internally, TICC relies on a representation of modules which is based the
MDD/BDD Glue and Cudd packages [22]. The source files of the tool are organized as follows:

1. The root contains files with the basic information about the tool. There is a README file that
describes the files of the root.

2. The directory examples contains a series of examples and a tutorial. Again, there is a README
file that can be consulted for more information.

3. The directory src contains the code itself; it is composed of three sub directories: glu-2.0,
mlglu, and ticc. Directories glu-2.0, and mlglu contain the code needed to adapt the MDD/BDD Glu
package to work with tcc. A directory doc contains automatically-generated documentation for
the tool. In particular, the file doc/api/Ticc.html (automatically generated from src/ticc/ticc.mli)
documents all the commands available to the user.

4. Starting with TICC

This section is an introduction to the use of TICC. It presents very simple examples, to illustrate
the process of entering a program, and running the tool.

To use TICC, first ensure that the executable file “ticc” is in your path. Then, invoke it in interac-
tive mode simply by typing:

ticc
The result of this operation is an Ocaml prompt5 from where one must type:

open Ticc
At this point the functions in the module of TICC become available at the top level. These func-
tions are documented in the file ticc/doc/api/Ticc.html. Most of them will be described in the rest
of this paper.

The next operation is to provide TICC with a TICC program. TICC programs are entered in files
with the extension .si that stands for Sociable Interface. The syntax of TICC programs will be
presented in the following sections. Program files are parsed with the command

parse “MyTiccProgram.si”;;

5Remember that TICC is implemented as a set of functions that extend the capabilities of Ocaml.
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The parse function reads in a .si file describing modules and global variables, and places these
definition into a global namespace. If the .si file does not follow the syntax of the input language,
the function reports an appropriate error message. Parsing multiple files is allowed and viewed as
an incremental process: new declarations are added to the existing ones. This implies that one
cannot declare two modules with the same name in different files, and that one only needs to
declare global variables once. After parsing at least one TICC program, one can perform opera-
tions on and between modules of the program.

Notice that one can also write script files for TICC. A script file is a file that groups a set of
commands that can be executed in one step. Figure 2(b) provides an example of the content of a
script file whose name is example.in. At this point, the reader should be able to interpret lines 1
and 2. Lines 3 and 4 will be explained later. One can invoke TICC to execute the script file with the
following command from the shell prompt:

ticc example.in

We dedicate the rest of this section to TICC programs that illustrate some of the main features of
the input language of the tool. Operations on and between modules will be described in the next
sections.

4.1. Getting to Know TICC Programs
As a first example, we consider the translation of the fire detection system to a TICC program.
The file for the corresponding TICC program is given in Figure 2(a) and is named detector.si.

The program consists in the declaration of three modules: Module ControlUnit, FireDetector1,
and Faulty FireDetector2 respectively correspond to interfaces C, D1, and D2 of Figure 1. Let us
consider module ControlUnit. This module shows some of the very basic elements of a TICC
module. It contains:

– Local variable declarations. The module declares a variable s whose value is an integer
between 0 and 3. TICC supports Boolean and integer range variables.

– Input and output transitions. The transitions are specified using guarded commands guard
 command, where guard and command are Boolean expressions over the local and global
variables; as usual, primed variables refer to the values after a transition is taken. For instance,
the output transition call_fd can be taken only when s has value 1; the transition leads to a state
where  s = 2.

The declaration of

1 module ControlUnit:
2 var s: [0..3] // 0=waiting, 1=alarm raised, 2=fd called, 3=disabled
3
4 input fire: { local: s = 0 | s = 1 ==> s’ := 1 ==> }

else s = 2
5
6 input disable: { local: true ==> s’ := 3 }
7 output call_fd: { s = 1 ==> s’ = 2 }
8 endmodule
9
10 module FireDetector1:
11 var s: [0..2] // 0=idle, 1=smoke detected, 2=inactive
12
13 input smoke1: { local: s = 0 | s = 1 ==> s’ := 1
14 else s = 2 ==> } // do nothing if inactive

output fire: { s = 1==> s’ = 2 }
input fire: { } // accepts (and ignores) fire inputs
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15
16
17 input disable: { local: true ==> s’ := 2 }
18 endmodule
19
20 module Faulty_FireDetector2:
21 var s: [0..2] // 0=idle, 1=smoke detected, 2=inactive
22
23 input smoke2: { local: s = 0 | s = 1 ==> s’ := 1
24 else s = 2 ==> } // do nothing if inactive

output fire: { s = 1==> s’ = 2 }
input fire: { } // accepts (and ignores) fire inputs

25
26
27 // does not listen to disable action
28 endmodule

(a) TICC modeling of a fire detector system: detector.si.
1 open Ticc;;
2 parse “detector.si”;;
3 let controlunit = mk_sym “ControlUnit”;;
4 let faulty = mk_sym “Faulty_FireDetector2”;;

(b) A script file that parses detector.si.

 Figure 2

1 (* open the functionnalities of the tool *)

2 open Ticc;;

3

4 (* parse the file in where modules are described *)

5 parse “detector.si”;;

6

7 (* create the symbolic representations for the three modules declared in fire-
detector.si *)

8 let fire1 = mk_sym “FireDetector1”;;

9 let faulty = mk_sym “Faulty_FireDetector2”;;

10 let controlunit = mk_sym “ControlUnit”;;

11

12 (* print the input and output invariants of symbolic module fire1 *)

13 print_symmod_iinv fire1;;

14 print_symmod_oinv fire1;;

15

16 (* print the transition rule corresponding to action “fire” in module fire1 *)

17 print_symmod_rules fire1 “fire” ;;

18

19 (* print the entire symbolic module fire1 *)

20 print_symmod fire1;;

Figure 3. The TICC script detector.in for the fire detector system
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the local part of an input starts with the keyword local (and so the global starts with global). This
declaration has a particular structure, to ensure that the local part of the rule is deterministic (see
next section for clarification).

The code of detector.si presents other features that will be extensively discussed in other ex-
amples.

An example of a script file for the fire detection system is given in Figure 3. The name of this file
is detector.in. Let us briefly describe what happens when executing ticc detector.in from the shell.

Code between lines 1 and 5 has already been described earlier: we open the tool and parse a TICC
program specified in a file called fire-detector.si. At this point, TICC contains an enumerative
representation of the modules and the global variables that have been declared.

The command mk sym used in lines 8, 9, and 10 converts the enumerative representation of
modules into a symbolic representation based on MDDs [23]. An MDD is similar to a BDD [4],
extended to work on integer ranged variables instead of Boolean ones. Given a constraint on a set
of integer ranged variables, an MDD is a representation of all the values of the variables that
satisfy the constraints.

The initial condition and the input/output invariants of a module are sets of constraints on its
variables; they can thus be represented with MDDs. Since transition relations express constraints
between the values of the variables before and after the transitions have been applied, they can
also be represented with MDDs. The symbolic representation is in general more compact and
efficient than an enumerative one; TICC operations can be easily implemented symbolically, as
explained in [12].

The rest of the file detector.si illustrates some of the printout functions available in TICC. As an
example, in lines 13 and 14 the user asks TICC to print out the input and output invariants of the
symbolic module fire1. In this example, both invariants have value true. In line 17 the user asks
TICC to print the transition rule corresponding to action fire of module FireDetector1. The printout
produced by this command is:

PRINTING the rule(s) for the action fire of
SYMBOLIC MODULE: FireDetector1.
[input part]:
modified vars:
{ }
[input global part]:
(1)
[input local part]:
(1)
[output part]:
Owned by module FireDetector1 modified vars: { FireDetector1.s }
(
(FireDetector1.s = 1)(

(FireDetector1.s’ = 2)) )

When performing a printout, TICC describes the input and output transitions corresponding to the
action, as well as the variables that are involved. Notice that a condition which is true is denoted
by TICC as “(1)”. For more printout functions, consult the documentation file ticc/doc/api/Ticc.html.

4.2. A More Elaborate Example
We now present a more elaborate example of TICC module, that makes use of most features of
the input language. An Anti-blocking System (ABS) is an automotive component that tries to
prevent wheel slippage by modulating the braking force. In Figure 4, we present a model of an
abstract ABS, comprising two modules. Module ABS controller is intended to be periodically in-
voked by the environment using the action tick. When it receives that action, the module moves
to the internal state state=1 and sets the global variable abs on to true. Then, it checks the
current acceleration of the vehicle against the current pressure of the user on the brake pedal. If
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the module establishes that the situation requires ABS intervention, it emits action do it, other-
wise it goes back to internal state state = 0 via the action reset.

Module ABS actuator, instead, accepts an input signal do it. At that time, it moves to a different
internal state characterized by state = true. When state = true, the module controls the brakes
according to a simplified anti-blocking algorithm.

In the following, let M be the sociable interface corresponding to module ABS actuator.

1 var b_pedal, b_force: [0..5]
2 var accel: [0..10]
3 var abs_on: bool
4
5
6 module ABS_controller:
7 var state: [0..2]
8
9 stateless accel, b_pedal
10
11 initial: state = 0
12
13 input update_b_force: { global: abs_on ==> b_force’ = b_force }
14 input tick: { global: abs_on ==> b_force’ = b_force
15 local: state = 0 ==> state’ := 1
16 else true ==> }
17 output do_it: {
18 state = 1 & (b_pedal > 0 & accel > 4) ==> state’ = 2 & abs_on’
19 }
20 output reset: {
21 state = 1 & (b_pedal = 0 | accel <= 4) ==> state’ = 0 & ~abs_on’
22 }
23 input done: { local: state = 2 ==> state’ := 0 }
24
25 endmodule
26
27
28 module ABS_actuator:
29 var turn, state: bool
30
31 stateless b_pedal, b_force
32
33 initial: turn = false & state = false
34
35 oinv: true
36 iinv: true
37
38 input do_it: { local: ~state ==> state’ := true }
39 output done: {
40 state & turn ==> b_force’ = b_pedal & ~turn’ & ~state’;
41 state & ~turn ==> b_force’ = 0 & turn’ & ~state’
42 }
43 endmodule

                                        Figure 4. TICC modeling of an Anti-blocking System
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Global variables. Global variables are declared outside modules. As we will see, multiple modules
can read and modify the value of global variables.

In our case, the system comprises four global variables: abs on indicates whether the ABS is
currently controlling the brakes, b pedal is the amount of pressure that the driver is currently
applying on the brake pedal, b_force is the amount of pressure that the brake pads are currently
applying to the brake rotors, and accel is the current acceleration of the vehicle. Since TICC does
not support negative ranges, we assume that values of accel smaller than 4 represent negative
accelerations.

In TICC, the set of global variables used by a module is automatically built by collecting all global
variables that are mentioned in any transition rule. Thus, as far as module ABS actuator is con-

cerned, we obtain .

History-free variables. By default, a module remembers the value of its global variables, and
expects to know all actions that can modify them. More precisely, by default, global variables in a
module are history variables. The module assumes that, unless some input or output action
modifies their value, these global history variables retain their value through time. To enable
reasoning about their value, if a global variable is a history variable in a module M, all the actions
that can modify this variable must be known to M (declared as input).

This requirement can potentially require a module to possess very many input actions. There are
two solutions to this problem. One, wildcard actions, will be described later. The other solution
consists in declaring some variables to be history-free. In this case, the module does not track
their value, and does not need to know (declare) all actions that modify their value.

In the case of module ABS actuator, both b pedal and b force are declared to be history-free. b
pedal is naturally history-free, since we can make no assumptions on how the driver is going to
use the brake pedal. b force is also left history-free, as we assume that the actuator does not care
if other modules change its value. Since no other global variable is mentioned by the module, we
obtain .

Local variables. Local variables are declared inside a module, using the same syntax of global
ones. A local variable is only visible in the module it is declared in.

Module ABS_actuator declares two local variables of type bool, so that . state is
true when the module is ready to emit its output action. turn is used to implement the following
simplified anti-blocking algorithm: when turn is true, the actuator lets the driver decide the amount
of braking, when turn is false, the actuator sets the braking force to zero.

Actions. In TICC, actions are not specifically declared. One can directly declare a transition rule and
label it with a new or pre-existing action name. The tool collects all the actions used by a module
in a set of module actions. For module ABS actuator, we have

.

Initial condition. A module can declare its initial condition using the keyword initial. The initial
condition is expressed by a Boolean expression over the set of local variables.

In our case, module ABS_actuator starts with turn and state equals to false.

var x, y: [0..10]
module Test:
oinv: x + y <= 15
output a: { true ==> x’ = x + 1 }

endmodule

Figure 5. A module with a non-trivial output invariant
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Invariants. An invariant is a condition over the state space of a module, that is constantly
satisfied. Following the input/output duality which is proper of interfaces, modules can have two
invariants: an input invariant and an output invariant. The output invariant defines a set of
states that will not be left by any local or output transition. In practice, each local or output
transition rule is implicitly conjoined with the output invariant of the module. Dually, a module
assumes that its environment does not violate its input invariant. In practice, all input transition
rules are implicitly conjoined with the input invariant of the module. Note that, since modules are
well-formed, the Input (resp. Output) player can ensure that the input (resp. output) invariant is
never left. This indicates that no output transition leads from a state satisfying both invariants to
a state satisfying the output, but not the input, invariant. Symmetrically, no input transition can
lead from a state satisfying both invariants to a state satisfying the input, but not the output,
invariant.

The invariants of ABS actuator are both equals to true. In fact, specifying a true invariant is
equivalent to specifying no invariant at all, as done by module ABS_controller. Invariants are
useful to express certain relationships between variables. As instance, consider the example in
Figure 5, comprising a module Test, together with two global variables.

The output invariant expresses the property that this module will always enforce that the sum of
x and y is at most 15. This implies that module Test will not emit action a when the current sum
of x and y is at least 15. As we will see later, the main use of invariants is in composition: input
invariants will be used to express the constraints on the environment that guarantee the com-
patibility of the modules being composed.

Transition rules. TICC supports three types of transition: input, output and local transitions.
Output transitions are the ones that users are most likely to be familiar with. They describe a
possible behavior of the module, consisting in emitting an action, while possibly changing the
value of global and local variables. Local transitions can be thought of as a special type of output
transition, where the module is only allowed to update its local variables. Moreover, local transi-
tions are invisible to other modules, so that the name of the action labeling a local transition is
irrelevant. They can be declared using the syntax:

local a: { guard ==> command }

Module ABS actuator can only emit one output action, called done. As previously said, the corre-
sponding transition rule is expressed by a sequence of guarded  commands. In this case, the first
guarded command (line 17) states that if both state and turn are true, action done can be per-
formed. As a consequence, the next value of b force will be equal to the current value of b pedal,
and both state and turn will have value false. The second guarded command (line 18) states that
the transition can also be taken if state is true and turn is false. In this case, the next value of the
global variable b force will be zero, while the local variables turn and state will have value true and
false, respectively. In this case, the two guards are mutually exclusive. In general, more than one
guard can be true at a given time: at run-time, any of those guards can be selected
nondeterministically.

Notice that action done occurs only as output in ABS actuator. This implies that the module does
not accept it as input.

One feature of TICC guarded commands that might surprise at first is that the distinction be-
tween guard and command is purely conventional. A guard and its corresponding command are
internally conjoined, so that

guard ==> command

is always equivalent to:

true ==> guard & command

This holds for output rules, local rules, and the global section of input rules. The local section of
input rules follows a different syntax, as explained later in this section.
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For instance, consider again module Test in Figure 5. The transition rule corresponding to action
“a” seems to state that module Test can always emit “a”, whose effect will be to increase the
value of x. However, according to the principle we just stated, the action cannot in fact be emitted
when x=10.

Input transition rules are split in two sections. The global section describes assumptions about
how other modules can change the value of global variables when emitting certain outputs. The
local section describes how this module reacts when receiving a certain action. The reaction of
the module to an input has two important restrictions: (i) it can only update local variables, and
(ii) it must do so in a deterministic fashion. These restrictions are due to the theoretical assump-
tion that each step is driven by the module carrying out the output action. In turn, this ensures
that the semantics of the model is a turn-based game rather than a concurrent one. As a conse-
quence, we have the following special syntax for the local part of input rules:

guard1 ==> var11’ := expr11, var12’ := expr12, ...

else guard2 ==> var22’ := expr21, var22’ := expr22, ...

...

To ensure determinism, commands can only include assignments to local variables. Moreover,
the else keyword is inserted to remind the user that in this context guarded commands will be
evaluated in the order in which they are written, (i.e., guard2 is evaluated only if guard1 is false,
and so on).

The only input action that module ABS actuator can accept is called do it. The corresponding
transition rule has no global section, meaning that the module makes no assumptions on the
current and next value of global variables when do it is received. The local section states that,
when state is false and abs on is true, the next value  of state will be true. We may wonder what
happens when the conditions set by the guard fail (i.e., state is true or abs on is false). The
answer is that the condition expressed by the guard becomes an input assumption and as such
it migrates to the global part of the rule, as witnessed by a printout of the module. In other
words, the input rule corresponding to action do it is equivalent to the following:

input do_it: {
global: ~state ==> true
local: true ==> state’ := true

}

4.3. Arithmetic in TICC
TICC allows the declaration of Boolean and integer range variables. Both of those declaration have
previously been illustrated. However, due to the bounded size of the variables, dealing with inte-
ger range variables implies some implementation choices that are worth summarizing.

From the previous section, we learned that integer range variables allow to build numerical ex-
pressions, while Boolean variables allow to build Boolean expressions. The two types of expres-
sions are combined in guarded commands with the classical Boolean and numerical comparison
operators. The question arises of how to interpret the arithmetical operators + and “ on a finite
range type. A common choice is to implement modulo arithmetic: for instance,if x and y have
range [0.. m  1], then the expression x+y is evaluated to x+y mod m. This is the choice followed,
for instance, in Mocha [3, 11]. There are two drawbacks in following this choice. The first is that
comparisons behave in a counterintuitive way, making the system prone to modeling errors. For
instance, the two comparisons x + 1  y and x  y 1 are not equivalent: the first returns an
unexpected result with x = 3, the second when y = 0. The second drawback is that it is difficult to
come up with consistent and intuitive typing rules for expressions including variables with differ-
ent ranges; for instance, it is not clear how to evaluate x + y + z = w if all of x, y, z, and w have
different ranges. Indeed, the tool Mocha avoided this problem by forcing expressions to consist of
one range type only, which is a rather restrictive requirement.
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In TICC, we follow a different choice, based on the following two principles:

1. Numerical expressions are always evaluated in a range that is large enough so that no roll-
over, or overflow, occurs.

2. Negative numbers are not considered.

Let us illustrate the consequences of these principles. Consider the expression:

x’ = y + z - 3

and assume that the ranges are as follows:

var x: [0..4]
var y: [0..5]
var z: [0..5]

The design decisions imply that:

1. The sum of y and z is evaluated in a temporary range type that is at least [0..10], so that no
overflow can occur.

2. If the result of the expression is negative, it is considered different from the result of any other
expression, and in particular x0, so that the overall expression will be false.

The expression is thus evaluated as follows:

– If x is 4, y is 4, and z is 3, then the expression x’  = y+z - 3 will be true, as expected. In fact, 4
+ 3 will give 7, and 7"3 = 4: no overflow occurs.

– If x is 1, y is 4, and z is 5, the expression is false, as 4+5-3 = 6, which is different from 1. Note
in particular that roll-over does not occur: even though 6 mod 5 = 1, the expression on the right
hand side is considered to have value 6, not 1, in spite of the left hand side having range [0..4].

– If y is 1, and z is 1, the expression will be false, since the right hand side gives rise to a negative
number.

The evaluation of an expression proceeds by evaluating sub-expressions and by combining the
obtained results. In general, one could suppose that if a sub-expression is evaluated to false,
then the entire expression is evaluated to false. As an example, consider the following expres-
sion:

x’ = y - z + 3

If x’  is 2, y is 2, and z is 3, then the expression would yield value false because y - z represents
a negative number. However, we have that 2 = 2 - 3 + 3, meaning that the evaluation of the
whole expression is true! To mitigate (but not eliminate) this, after parsing, TICC tries to reorder
the expressions, so that whenever possible, negative results are avoided. For instance, the above
expression would be internally transformed into the following expression:

x’ = y + 3 - z

so that a negative result would occur only if the total result is negative. TICC can do basic expres-
sion simplification, and it reorders the terms of a sum so that positive terms occur before nega-
tive terms. A good way for the user to know if reordering occurred is to print the syntactic repre-
sentation of a module after parsing it.

5. Composing Sociable Interfaces in TICC

In TICC, the main operation on modules is composition. Composition synchronizes two modules
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on their shared actions, and returns a new module, representing the joint behavior of the two
original modules, along with the environment assumptions required to guarantee the correct
functioning of the original modules. While composing modules, TICC checks their composability
and compatibility:

open Ticc;;
parse “fire-detector-disable.si” ;;
let controlunit = mk_sym “ControlUnit”;;
let fire1 = mk_sym “FireDetector1”;;
let wfire2 = mk_sym “Faulty_FireDetector2”;;
let c = compose fire1 controlunit;;
let d = compose wfire2 controlunit;;
print_symmod c;;
print_symmod d;;
print_input_restriction c “disable”;;
print_input_restriction d “disable”;;
print_input_restriction c “smoke1”;;
print_input_restriction d “smoke2”;;

 Figure 6. A script file illustrating the composition of the modules for the fire detector example of Figure 2(a)

 – Composability is a condition involving the sets of variables and actions of a module, and that
can be checked statically, and extremely efficiently. Essentially, two modules are composable if it
makes sense to consider the effect of their communication.

– Compatibility is a condition about the behavior of the modules. Two modules are compatible if
there is some environment in which they can work jointly together, with all their input assump-
tions being satisfied. Checking compatibility requires solving a game between the Input and
Output player; the solution of the game yields the input assumptions for the composition of the
two modules.

The TICC command compose checks composability and compatibility of two modules, and if both
tests are positive, computes a symbolic module corresponding to their composition. If incompat-
ibilities arise, TICC can provide diagnostic information to detect the reason.

Example 2. The script file given in Figure 6 illustrates the composition operation for the fire
detector example mentioned in Section 2 and Figure 2(a).

In the sociable interface model, and thus in TICC, the composition is done in four steps. First, one
checks that the modules can be composed (see Section 5.1). If the modules are composable,
then the next step is to build the product between them (see Section 5.2). At this point, the
product can contains bad states, i.e. states that exhibit a local incompatibility (see Section 5.3).
The last step of the composition consists in  synthesizing a strategy for the Input player to stay
away from the set of bad states whatever the Output player does (see Section 5.4).

This section describes how those four steps are conducted in TICC. More information about the
theory behind the operations can be found in [12].

We remark that the composition of two modules in TICC only works on their symbolic represen-
tation. In what follows, we consider two symbolic modules  M

1
 and M

2
 where

, and we implicitly refer to their corresponding sociable
interfaces.

5.1. The Composability Condition
To facilitate composition, TICC ensures that modules have distinct local actions and local vari-
ables by automatically renaming local variables and local actions: a local variable x of module M is
renamed to M:x upon parsing the module M.
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We say that the two modules M1 and M2 are composable if they satisfy the following non-

interference condition: if an action a  (respectively ) of module M1 (resp. M2) can

modify a history variable of module M2 (resp. M1), then   (resp.  ).

Since output transitions are the only ones that can modify the value of a global variable6, the
condition boils down to checking that if module M1 has an output transition for action a that
modifies7 a history global variable of module M2, then module M2 must have an input transition
for action a.

The non-interference condition is the main motivation for distinguishing between history and
history-free variables. The non-interference condition states that a module should know all ac-
tions of other modules that modify its history variables. If we dropped the distinction, requiring
that a module knows all actions of other modules that can change any of its variables (history or
history-free), we could greatly increase the number of actions that must be known to the mod-
ule. Wildcard actions, as described later, is another method.

Example 3. Consider the composition of the modules in the Anti-blocking System (ABS) de-
scribed in Section 4.2. The global variable b_force is a history variable for module ABS_controller.
Since module ABS_actuator has an output transition for action done that modifies this variable,
module ABS_controller must accept done as input. In this case, the input transition of action
done states that module ABS_controller agrees on all modifications that could be done to the
variable.

Another consequence of the non-interference condition is the following. Denote ABS the
module obtained by composing the two ABS modules. If another module wants to modify variable
b force and be composed with ABS, it is forced to do so using one of the remaining inputs of ABS,
namely tick and update b force. Both those input transitions impose the condition that if abs_on
is true, the value of b force is not modified. Thus, the non-interference condition allows modules
to effectively control a global variable, when needed.

5.2. The Product
The product describes how elements of M1 and M2 are combined to give rise to a new module M12
representing their joint behavior.

First, the set of local, global, and history variables are obtained by taking the unions of those of
the two modules: . The same stands for the set

of actions: . The input and output invariants of M12 are ob-
tained by conjoining those of M1 and M2, and so for the initial condition.

The most crucial part in the definition of the product concerns the transitions associated to the
actions of M12. Those transitions are a suitable combination of the transitions of M1 and M2.

Similarly to other interface models, for each shared action, the output transition of M1 synchro-
nizes with the input transition of M2, and symmetrically, the output transition of M2 is synchro-
nized with the input transition of M1. This models communication, and gives rise to output tran-
sitions in the product. The input transitions of M1 and M2 corresponding to the same shared
action are also synchronized, and lead to an input transition in the product. Output
transitions, on the other hand, are not synchronized between them: if both M1 and M2 can emit

6Input transitions only make assumptions on those values.

7Where “modifies” means that the the variable appears primed in the command of the output
transition.



dline.info/pms 32

 P
ro

gr
es

s 
in

 M
ac

hi
ne

s 
an

d 
Sy

st
em

s 
V

ol
um

e 
13

 N
um

be
r 1

 A
pr

il 
20

24

a shared action a, they do so asynchronously, so that their output transitions interleave. As
usual, the modules interleave asynchronously on transitions labeled by non-shared actions. We
now describe in more details the interleaving on shared actions.

If M1 has an input transition , and M2 has an input transition ), then M12 has an input
transition . The local and global part of  are obtained by conjoining those of  and ,
i.e., . This models the fact that M1 and M2
can react jointly to inputs from the environment.

The situation is more complicated for output transitions. Suppose that M1 has an output transi-
tion , and M2 has an input transition . The result of the two transitions is an output
transition  (a) in M12, obtained by conjoining  with .

The reader could wonder why the new output transition is not obtained by conjoining also 
with . The reason is the definition of input and output transitions: output transitions can
modify global variables, while input transitions can only make assumptions on them. The as-
sumptions expressed by the global section of input rules will be taken into account in the next
phase of composition.

5.3. Locally Incompatible States
The product defined in the previous section can contain locally incompatible states. In a locally
incompatible state, one of the modules being composed wants to issue an output transition
labeled by a shared action, while the other module does not have a corresponding global input
transition from that state which agrees with the output transition on the updates of global vari-
ables. In practice, TICC computes the set of good states Good, which is simply the complement of
the set of locally incompatible states.

Example 4. Consider the fire detector example of Section 2, illustrated in Figure 2(a). In the
composition of ControlUnit and Faulty FireDetector2, the state where  ControlUnit.s = 3 and
Faulty FireDetector2.s = 1 is locally incompatible: module Faulty FireDetector2 can issue the
output action fire, which module ControlUnit, being disabled, cannot accept.

5.4. Synthesizing a Strategy
After computing the product of the two modules and the set of good states, the next operations
is to compute the set of states Win from which the Input player of M12 has a strategy to always
stay in Good. This is done by playing a safety game whose objective is Good. The result of the
game is used to restrict the input invariant of the product (use the command print input restric-
tion to see how the new invariant restrict the Input transitions of the composition). Hence the
composition of the two modules can only works in environments that satisfy the restricted input
invariant. This can be considered an optimistic approach, since two modules are not considered to
be incompatible if they cannot work in one particular environment.

The set Win is also conjoined with the initial condition of the product, giving rise to the initial
condition of the composition. If the resulting initial condition is empty, the two modules are
definitely incompatible.

Example 5. Consider again the fire detector example of Section 2, illustrated in Figure 2(a). The
modules ControlUnit and Faulty FireDetector2 are compatible: in fact, there is an environment
that avoids all locally incompatible states. For instance, to avoid the state where ControlUnit.s =
3 and Faulty FireDetector2.s = 1, the environment can simply avoid issuing the action smoke2 if
disable has already been issued, or can avoid to issue action disable if smoke2 has already been
issued.

Of course, such a compatibility masks the fact that it does not make sense to restrict the
environment’s ability to issue actions smoke2 — a fire can start at any time! The user can
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discover the problem by asking TICC to print the restriction of action smoke2, via the command

print_input_restriction d “smoke2”;;
which generates the following output:

Restriction of input action smoke2:

(

(Faulty_FireDetector2.s = 0)(
(ControlUnit.s = 3)) )

This indicates that, after the composition, action smoke2 can no longer be accepted if no smoke
has been detected yet (Faulty FireDetector2.s = 0) and the controller has been disabled (ControlUnit.s
= 3).

Similarly, the user can print the restriction of action disable in the composition of ControlUnit and
Faulty FireDetector2 to discover how the ability of accepting disable has been restricted by the
composition.

6. Composition: A Concrete Example

In this section we present a concrete example of the use of TICC on a large program. We consider
a model of the interaction among contractors fixing a house. The example illustrates how TICC can
verify the compatibility of the interaction protocol among communicating entities.

The example models a house with four rooms: a K(itchen), a L(iving), a B(athroom), and a (Bed)
R(oom). Each room can suffer from electrical and plumbing problems that can be fixed by a plumb(er)
and an electr(ician). Depending of the problem that occurred, contractors are also needed to repair
the damages caused on the wall and on the floor. After the repairs, the room has to be cleaned. As
rooms are small, only one contractor at a time can work in a room.

We wish to know if the contractors can work together and fix the problems. This question can be
answered in TICC by modeling each contractor as a module, and by considering additional modules
that simulate faults, and that call the contractors to fix things. The contractors can work together
if the composition of all the modules is compatible.

The TICC program corresponding to the example is as follows. Each room may have ongoing repair
work; this is tracked by the following global variables:

var K_busy, L_busy, B_busy, R_busy: bool

In each room, four items might need repair: plumb(ing), electr(ical), floor, and wall. Moreover, the
room may need to be clean(ed). For the kitchen, the need for repair and the need to clean are
tracked by the following global variables (where a truevariable means that the corresponding item
is broken):

var K_plumb, K_electr, K_floor, K_wall, K_clean: bool

Similar variables track the state of L(iving room), B(athroom), and (bed)R(oom). The activity state
of the five contractors is tracked by the following global variables:

var plumb_active, electr_active, floor_active,

wall_active, clean_active: bool

At the start, one supposes that there is no ongoing work in the room, meaning that the contrac-
tors are not working.

stateset initcond: ~K_busy & ~L_busy & ~B_busy & ~R_busy & ~plumb_active
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& ~electr_active & ~floor_active & ~wall_active & ~clean_active

After these declarations, we declare the modules. The module Breaks models plumbing and elec-
trical failures. The code for this module is given in Figure 7. The body of the module contains a
series of declarations of output transitions. As an example, the following transition models the
fact that, when the plumbing in the kitchen is not broken (~ means “not”, and K_plumb tracks
whether the kitchen plumbing works), then it can break, generating the output transition break_K_
plumb, and signaling that the kitchen plumbing, floor, and walls need repair. Moreover, the room
needs to be cleaned.

1 module Breaks:

2 stateless

3 K_plumb, K_electr, K_floor, K_wall, K_clean,

4 L_plumb, L_electr, L_floor, L_wall, L_clean,

5 B_plumb, B_electr, B_floor, B_wall, B_clean,

6 R_plumb, R_electr, R_floor, R_wall, R_clean

7

8 output break_K_plumb : { ~K_plumb ==> K_plumb’ & K_floor’& K_wall’& K_clean’ }

9  output break_L_plumb : { ~L_plumb ==> L_plumb’ & L_floor’ & L_wall’& L_clean’ }

10 output break_B_plumb : { ~B_plumb ==> B_plumb’ & B_floor’ & B_wall’& B_clean’ }

11 output break_R_plumb : { ~R_plumb ==> R_plumb’ & R_floor’ & R_wall’& R_clean’ }

12

13 output break_K_electr : { ~K_electr ==> K_electr’ & K_wall’ & K_clean’ }

14 output break_L_electr : { ~L_electr ==> L_electr’ & L_wall’ & L_clean’ }

15 output break_B_electr : { ~B_electr ==> B_electr’ & B_wall’ & B_clean’ }

16 output break_R_electr : { ~R_electr ==> R_electr’ & R_wall’ & R_clean’ }

17 endmodule

 output break_K_plumb : { ~K_plumb ==> K_plumb’ & K_floor’ & K_wall’ & K_clean’}

All global variables are history free for this module.

The module Calls calls the repairmen and the cleaner when needed (the code of this module is
given in Figure 8); as an example, the plumber is called using the following statement:

output call_plumb : { ~plumb_active &

(K_plumb | L_plumb | B_plumb | R_plumb) ==> plumb_active’ }

Note that all the variables are history free for this module. This choice is quite obvious since, as
an example, there is no reason for Calls to track the value of plumb active after it has called the
plumber. If global variables where not history free, then one would be forced to add many new
input rules to the module.

After the declaration of the modules Breaks and Calls, come the declarations of the modules for
the five contractors.

The plumber, whose part of the code is given in Figure 9, and the other contractors keep track of
whether they are working via a Boolean variable working. Also, they keep track of the room on
which they are working via the local Boolean variables Kw, Lw, Bw, Rw. W hen called, the plumber
is initially not working on any room.

Figure 7. Module Breaks For The House Example
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1 module Calls:

2 stateless

3 K_plumb, K_electr, K_floor, K_wall, K_clean,

4 L_plumb, L_electr, L_floor, L_wall, L_clean,

5 B_plumb, B_electr, B_floor, B_wall, B_clean,

6 R_plumb, R_electr, R_floor, R_wall, R_clean,

7 plumb_active, electr_active, floor_active, wall_active,clean_active

8
9 output call_plumb : { ~plumb_active & (K_plumb | L_plumb | B_plumb|R_plumb ) ==>
plumb_active’ }

10 output call_electr : { ~electr_active & (K_electr | L_electr | B_electr |
R_electr) ==> electr_active’ }

11 output call_floor : { ~floor_active & (K_floor | L_floor | B_floor |
R_floor ) ==> floor_active’ }

12 output call_wall : { ~wall_active & (K_wall | L_wall | B_wall | R_wall ) ==>
wall_active’ }

13 output call_clean : { ~clean_active & (K_clean | L_clean | B_clean | R_clean ) ==>
clean_active’ }

14

15 endmodule

Figure 8. Module Calls for the house example. The module calls the repairmen and the cleaner

input call_plumb : { local: ~plumb_active ==> working’ := false }

When an active plumber, not working on any room, sees that the K(itchen) is unoccupied (~K_busy)
and needs repair (K plumb), the plumber starts to work in the K(itchen):

output K_start_plumb :

{ plumb_active & ~working & K_plumb & ~K_busy

==>

working’ & Kw’ & K_busy’ }

and similarly for the other rooms.

While working in the kitchen, the plumber does not expect anybody else to work in it. Thus, we
have to define input transitions corresponding to the actions of the other contractors. As an
example, the following rule forbids the electrician to start working in the kitchen if the plumber is
still working there.

input K_start_electr : { local: ~Kw ==> }
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One of the main drawbacks of this formalization is that we have to define many input transitions
that differ only by their name but not by their contents. To simplify the declaration of such inputs,
TICC allows the use of wildcard action names. Figure 9 shows how wildcard inputs can simplify the
description of the module Plumber. Using the special character “*”, input transition rules can be
defined to match a set of actions instead of one action only. For instance, the pattern K_* on line
24 of Figure 9 matches any action whose name starts with K_.

1 module Plumber:

2 var working: bool

3 var Kw, Lw, Bw, Rw: bool
4 initial: ~working & ~Kw & ~Lw & ~Bw & ~Rw

5 stateless

6 K_plumb, K_electr, K_floor, K_wall, K_clean,

7 L_plumb, L_electr, L_floor, L_wall, L_clean,

8 B_plumb, B_electr, B_floor, B_wall, B_clean,

9 R_plumb, R_electr, R_floor, R_wall, R_clean
10

11 input call_plumb : {local: ~plumb_active ==> working’ := false }

12 output done_plumb : { plumb_active & ~working & ~K_plumb & ~L_plumb & ~B_plumb &

~R_plumb ==> ~plumb_active’ }

13

14
15 output K_start_plumb : { plumb_active & ~working & K_plumb & ~K_busy ==> working’

& Kw’ & K_busy’ }

16 output L_start_plumb : { plumb_active & ~working & L_plumb & ~L_busy ==> working’

& Lw’ & L_busy’ }

17 output B_start_plumb : { plumb_active & ~working & B_plumb & ~B_busy ==> working’

& Bw’ & B_busy’ }

18 output R_start_plumb : { plumb_active & ~working & R_plumb & ~R_busy ==> working’
& Rw’ & R_busy’ }

19 output K_done_plumb : { plumb_active & Kw ==> ~K_plumb’ & ~Kw’ & ~ K_busy’ &

~working’ }

20 output L_done_plumb : { plumb_active & Lw ==> ~L_plumb’ & ~Lw’ & ~ L_busy’ &

~working’ }

21 output B_done_plumb : { plumb_active & Bw ==> ~B_plumb’ & ~Bw’ & ~ B_busy’ &
~working’ }

22 output R_done_plumb : { plumb_active & Rw ==> ~R_plumb’ & ~Rw’ & ~ R_busy’ &

~working’ }

23

24 input K_* : { local: ~Kw ==> }

25 input L_* : { local: ~Lw ==> }
26 input B_* : { local: ~Bw ==> }

27  input R_* : { local: ~Rw ==> }

28 endmodule

 Figure 9. Module describing the plumber

 1 open Ticc;;
23 parse “house.si”;;

45 let breaks = mk_sym
“Breaks”;;
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6 let calls = mk_sym “Calls”;;

7 let plumber = mk_sym “Plumber”;;

8 let electrician = mk_sym “Electrician”;;

9 let rudelectr = mk_sym “RudeElectrician”;;

10 let floors = mk_sym “Floors”;;

11 let walls = mk_sym “Walls”;;

12 let clean = mk_sym “Clean”;;

13

14 let c0 = compose breaks calls;;

15 let c1 = compose c0 plumber;;

16 let c2 = compose c1 electrician;;

17

18 let d2 = compose c1 rudelectr;;

In module Plumber, variable plumb active is a history variable, as the module plans to control its
value. Variables K busy, L busy, B busy, and R busy are also history variables. This choice, com-
bined with the declaration of the input transitions, ensures that the value of those variables can
be changed by other modules only if the plumber is not working in the corresponding room.

We considered two different electrician modules. A “correct” implementation, Electrician, checks
that the kitchen is free before starting to work in it:

output K_start_electr :

{ electr_active & ~working & K_electr & ~K_busy

==>

working’ & Kw’ & K_busy’ }

Note that above, the variable Kw is local to the electrician, and indicates whether the electrician is
working on the kitchen; the equally-named variable Kw in (*) is instead local to the plumber. An
“incorrect” implementation of the electrician, WElectrician, in the rush of getting things done,
forgets to check whether somebody else is already at work in the kitchen:

output K_start_electr :

{ electr_active & ~working & K_electr ==> working’ & Kw’ & K_busy’ }

TICC is able to detect that the composition of Breaks, Calls, Plumber, and Electrician is compatible
(see lines from 14 to 16 of Figure 10), whereas it detects that the composition of Breaks, Calls,
Plumber, and WElectrician is not. Thus, the protocol violation can be discovered before the com-
plete system, consisting also of modules to repair floors and walls, is constructed. In fact, a simple
check would have  revealed the problem already in the composition of Plumber and WElectrician
(as computed in line 18 of Figure 10). When composing Plumber and WElectrician, TICC automati-
cally synthesizes the assumption that (i) they are not both called to work, or (ii) no room needs to
be repaired by both of them.

We also note that the protocol violation is revealed thanks to the input assumption of the correct
module Plumber. In the game-based approach that underlies TICC, the input assumptions of
correct modules constrain the protocol of modules that will be later composed into the system,
preventing the composition of “rogue” modules. The verification of the correctness of interaction
is simply a by-product of composition. This situation should be contrasted to the usual, non-

Figure 10. TICC script for the house example: house.in
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game-based approach to modeling and verification. In the usual approach, detecting incompatibili
ties requires writing separate specifications of correctness, and can usually be performed only
once all components are composed.

7. Additional Tool Features

While composition is certainly the most important operation that TICC can perform on modules,
it is not the only one. This section is a brief introduction to the other features of the tool.

7.1. Symbolic Operations, Model Checking, and Simulation
A set of states, in TICC, can be defined via a formula specifying constraints on the values of the
variables. TICC can parse such formulas, and construct a symbolic representation (an MDD) that
enables it to manipulate the set. TICC can combine such sets with the usual Boolean operators,
via the functions set_or, set_and, set_implies, and set_not; sets can also be compared using set
is subset and set equal. A set of states can be printed using the command print stateset (printing
is not optimized, and can lead to exponentially large printouts). TICC also contains an implemen-
tation of the classical CTL operators [9], allowing the user to verify properties of models via model
checking. As usual, the CTL operators are documented in doc/api/Ticc.html.

Example 6. Consider the fire detection system given in Figure 2(a), and the script file in Figure
11. Line 11 builds the symbolic representation of a set  consisting of the states where ControlUnit.s
= 2, i.e., the firemen have been called. Line 13 prints the set of states that satisfy the CTL
formula , and line 15 prints the set of states that satisfy the CTL formula .

TICC can also perform random simulation on symbolic modules, generating an HTML file with the
result of the simulation. This is particularly useful in the early stages of model construction, to
confirm that the model behaves as intended.

7.2. Closure
TICC allows the user to close a module with respect to the occurrence of input transitions. After
several modules have been composed, the closure operation can be used  to say that the envi-
ronment is no longer able to provide a certain input. The following example illustrates the use of
the closure operation in the context of CTL model checking.

1 open Ticc;;

2 parse “fire-detector-disable.si”;;

3

4 let fire1 = mk_sym “FireDetector1”;;

5 let controlunit = mk_sym “ControlUnit”;;

6 let comp = compose fire1 controlunit;;

7

8 let clone_fire1 = sym_clone fire1;;

9 simulate comp “Fire1.s = 0 & ControlUnit.s = 0”, 5, “detector.html”;;

10

11 let called_firemen = parse_stateset (“ControlUnit.s = 2”);;

12 print_string “Can call the firemen:”;;

13 print_stateset (ctl_e_f comp called_firemen);;

14 print_string “Always calls the firemen:”;;

15 print_stateset (ctl_a_f comp called_firemen);;

 Figure 11. A script file illustrating individual operations
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Example 7. We consider a simple dining philosophers model, where n philosophers are sitting at
a round table. Set between each pair of neighboring philosophers are n forks, so that all philoso-
phers have a fork on their left, and one on their right. Each philosopher can either think or try to
eat. To be able to eat, philosophers, being rather clumsy, have to use both forks on their sides.

Each philosopher Phil can be in one of 7 internal states that are enumerated with a local variable
s. In s=0, Phil is thinking; a transition to s=1 indicates the philosopher’s desire for food. In state
s=4 the philosopher eats. To go from s=1 to s=4, Phil has to grab the two forks. This can be done
in any order (requiring the addition of two intermediate states s=2 and s=3, depending on which
fork has been chosen first). After having eaten, Phil releases the forks in nondeterministic order,
and starts thinking again.

The TICC program of Figure 12 and its corresponding script file given in Figure 13 show an
example of dining philosophers with n = 2 philosophers and thus 2 forks. The program can easily
be extended to a greater number of philosophers. In the program, the philosophers are repre-
sented by modules Phil1 and Phil2, while the forks with Boolean global variables F1, and F2,
whose value is true if the fork is available, and false otherwise. The actions of grabbing and
releasing forks are modeled by the actions GrabFx and givebackFx, where x 2 (1, 2) identifies
the fork. Since a fork is shared between two philosophers, each philosopher must both output
these actions, and be able to accept them as input from other philosophers. This is the purpose
of the wildcard input input *.

The problem is that, once Phil1 and Phil2 are composed, their composition can still accept the
actions GrabFx and givebackFx from the environment. It is as if

1 var F1, F2: bool

2 stateset initcond: F1 & F2

34 module Phil1:

5 var s: [0..6]

6 initial: s = 0

7

8 input *:

{}

9 local no_moves: { true ==> }

10 local wants_to_eat: { s = 0 ==> s’ = 1 }

11 output grabF1: { s = 1 & F1 ==> s’ = 2 & ~F1’;

12 s = 3 & F1 ==> s’ = 4 & ~F1’ }

13 output grabF2: { s = 1 & F2 ==> s’ = 3 & ~F2’;

14 s = 2 & F2 ==> s’ = 4 & ~F2’ }

15 output givebackF1: { s = 4 ==> s’ = 5 & F1’;

16 s = 6 ==> s’ = 0 & F1’ }

17 output givebackF2: { s = 4 ==> s’ = 6 & F2’;

18 s = 5 ==> s’ = 0 & F2’ }

19 endmodule

20

21 module Phil2:

22 var s: [0..6]

23 initial: s = 0

24

25 input *: {}

26 local no_moves: { true ==> }

27 local wants_to_eat: { s = 0 ==> s’ = 1 }
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28 output grabF2: { s = 1 & F2 ==> s’ = 2 & ~F2’;

29 s = 3 & F2 ==> s’ = 4 & ~F2’ }

30 output grabF1: { s = 1 & F1 ==> s’ = 3 & ~F1’;

31 s = 2 & F1 ==> s’ = 4 & ~F1’ }

32 output givebackF2: { s = 4 ==> s’ = 5 & F2’;

33 s = 6 ==> s’ = 0 & F2’ }

34 output givebackF1: { s = 4 ==> s’ = 6 & F1’;

35 s = 5 ==> s’ = 0 & F1’ }

36 endmodule

 Figure 12. A TICC Dining Philosophers Model: Dining.si.

1 open Ticc;;
2
3 parse “phil.si”;;
4
5 let phil1 = mk_sym “Phil1”;;
6 let phil2 = mk_sym “Phil2”;;
7 let comp_phils = compose phil1 phil2;;
8
9 let initial = parse_stateset “Phil1.s = 0 & Phil2.s = 0 & F1 & F2 “;;
10 let bad_fork = parse_stateset “Phil1.s = 0 & Phil2.s = 0 & ~F2”;;
11
12 let can_reach_bad_fork_exists = ctl_e_f comp_phils bad_fork;;
13 let result = set_and can_reach_bad_fork_exists initial;;
14 print_stateset result;;
15
16 let comp_phils_close = close comp_phils “*”;;
17
18 let can_reach_bad_fork_exists = ctl_e_f comp_phils_close bad_fork;;
19 let result = set_and can_reach_bad_fork_exists initial;;
20 print_stateset result;;

 Figure 13. A TICC script for the dining philosophers

passers-by were allowed to pick up and put down forks! Indeed, in the composition of Phil1 and
Phil2, we can start from the state where Phil1 and Phil2 are both thinking and F2 is available and
reach a state where the philosophers are still thinking but F2 is not available, as it has been
“picked up” by the environment. This is shown by the fact that the stateset printed at line 14 is
not empty.

This clearly does not make sense: once Phil1 and Phil2 are composed, we should be able to
say that the forks are no longer in the environment’s reach. To this end, we close the composi-
tion of Phil1 and Phil2 with respect to all input actions.8 Once this is done, the state where both
philosophers are thinking but F2 is not available is no longer reachable, and indeed the printout
from line 20 is the empty set (represented as (0)).

8. Conclusions

Interface theories are the subject of many recent works. The sociable interface model presented
in this paper is only one of them. Interface models that appeared before sociable interfaces in

8 In general, we can close a module with respect to any set of actions.
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clude interface automata [13, 15] and interface modules [14, 8]. Those models were based on a
communication with either actions, or variables, but not both.

Sociable interfaces do not break new ground in the conceptual theory of interface models. How-
ever, by allowing both actions and variables in the communication process, they take advantage of
the existing models and provide rich communication primitives.

The tool TICC is certainly not the first tool that implements an interface model, and even not the
most complete. As an example, the tool CHIC that implements a synchronous, variable-based
interface theory is able to handle pushdown games while TICC cannot.

However, one major difference between TICC and its predecessors is its ability to use rich commu-
nication primitives to model components in a very compact and natural way. Another strong point
of the tool is its symbolic implementation which makes it very efficient and easily extensible.

TICC is a tool in constant evolution, and so is the sociable interface model. As an example, we are
currently developing a real-time extension of the tool, based on the Timed Interfaces of [16]. This
is a large and complex endeavor, as the game-theoretic machinery of TICC will have to be replaced
with one suited to real-time games. Another direction we are considering is the implementation of
the alternating-time temporal logic of [2]. This logic is more suitable to model check open systems
than CTL.
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