
Saba Ahmadi

Toyota Technological Institute at Chicago, IL, USA

Hedyeh Beyhaghi

Carnegie Mellon University, Pittsburgh, PA, USA

Avrim Blum

Toyota Technological Institute at Chicago, IL, USA

Keziah Naggita

Toyota Technological Institute at Chicago, IL, USA

ABSTRACT

In this paper, we address the classification of agents that can game and also improve. For instance,

individuals seeking a loan can undertake actions that enhance their perceived creditworthiness and others

that improve their actual creditworthiness. A decision-maker would prefer to construct a classification rule

with minimal false positives (does not issue many bad loans) but gives many true positives (making many good

loans), which involves motivating agents to upgrade to be true positives if feasible. We analyze two models

for this task, general discrete and linear models, and establish algorithmic, learning, and hardness results

for both. For the general discrete model, we provide an efficient algorithm for the maximization problem

the quantity of true positives under no false positives, and demonstrate how to generalize this to a partial

information learning environment. We also demonstrate hardness for maximizing the number of true

positives under a nonzero limit to the number of false positives and that this hardness persists even for a finite-

point version of our linear model. We also demonstrate that maximizing the number of true positives under no

false positive is NP-hard in our complete linear model. We further give an algorithm that identifies if there is a

linear classifier that classifies all agents correctly, renders all improvable agents qualified,

and provides more results for low-dimensional data.

Keywords: Classification of Agents, Discrete and Linear Models, NP-hard Problems

Received: 29 August 2024, Revised: 27 November 2024, Accepted: 11 December 2024

Copyright: with Authors

 ISSN:2583-5009

DSP 2025: 4 (1)
https://doi.org/10.6025/dspaial/2025/4/1/24-41

DLINE JOURNALS

 24 dline.info/dspaial

Classification of Game Agents and Analysis of General Discrete
and Linear Models for Algorithmic Learning

Digital Signal Processing and Artificial Intelligence
 for Automatic Learning

dline.info/dspaial 25

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

1. Introduction

Consider a bank offering loans. Based on observable information about applicants, it must decide which of them

are loan-worthy and which are not. For example, it might compute a credit score based on some (perhaps linear)

function of observable features and then compare the result to a cutoff value. So far, this looks like a standard

binary classification problem. However, there is an additional wrinkle: individuals have agency and may be able

to modify their observable features somewhat if it will help them get approved for a loan. This wrinkle brings

both challenges and opportunities. A challenge is that some of these actions may involve “gaming” the system:

performing activities that do not affect their true loan-worthiness such as changing how they spend on different

credit cards. An opportunity is that other actions, such as taking a money-management course, may truly help

them become more loan-worthy, increasing the number of good loans the bank can give out. How can the bank

best set its loan criteria in such settings to maximize the number of loans given out subject to not giving loans to

unqualified applicants?

Or, consider a school that would like to prepare students for the workforce. There are many different career

paths a student might take, so the school would like to have multiple different criteria for graduation (multiple

tracks or majors) such that satisfying any one of them will earn the student a diploma. Imagine there is a limited

set of options the school can choose from, and once the school chooses some subset of them as criteria, every

student selects the easiest of those criteria to fulfill (or none, if all are too hard) and then may or may not become

truly qualified for the workforce, depending perhaps on the extent to which satisfying that criterion involved

gaming versus true improvement. How can the school best select criteria to maximize the number of students

who become truly qualified for the workforce while minimizing the number of diplomas given to unqualified

students?

In this work we consider algorithmic and learning-theoretic formulations of such scenarios, where a binary

classification must be made in the presence of both gaming and improvement actions with a goal of maximizing

true-positive predictions while keeping false-positives to a minimum. Specifically, we consider the following two

formulations (given in more detail in Section 2).

General Discrete Model: In this formulation, we are given a weighted, colored bipartite graph with n

nodes on the left representing agents, and m nodes on the right representing distinct possible ways agents could

be considered qualified for the prize at hand (the loan, the diploma, etc.). For example, the nodes on the right

could represent different possible definitions of “credit-worthy” or could represent different bundles of activities

sufficient to receive a diploma. Each edge has both a weight representing the amount of effort the agent would

need to achieve the given qualification and a color blue or red indicating whether the agent would indeed be

truly qualified or not (respectively) if it did so. The goal of the classifier is to select a subset final of points on the

right such that if each agent in the neighborhood of final takes its least-cost edge into final, then a large number

of blue edges and very few red edges are taken (many good loans and few bad loans are given out); more specific

objectives will be detailed in Section 3.

In the learning-theoretic version of this problem, the left-hand-side of the graph is replaced with a probability

distribution over nodes (where a node is given by its neighborhood and the weights and colors of its edges). We

have sampling access to and our goal is to find a subset final of points on the right-hand-side with good

performance under . In a partial-information version, when we sample a point from we do not get to observe

dline.info/dspaial 26

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

its edges, only where the agent goes to and whether it was qualified. That is, learning proceeds in rounds, where

in each round we choose a subset of points on the right, and then for a random draw x  we observe what

point p  (if any) was selected and the color of the edge taken.

Linear Model: In this formulation, we assume agents are points x  d (they have d real-valued features)

and there is a linear separator f*: a*x  b with non-negative weights that separates the truly qualified individuals

from the unqualified ones. Agents have the ability to increase their jth feature at cost c[j] (decreasing is free) and

receive value 1 for being classified as positive. However, only some features correspond to true improvement and

others involve just gaming. That is, if an agent begins at xinit and moves to a point xperc, their true qualification

is not f *(xperc) but rather f *(xtrue), where xtrue agrees with xinit in the gaming directions and with xperc in the

improvement directions. Movement costs and which features are improvement versus gaming are assumed to be

the same for all agents. The goal is to find a classifier that produces a large number of true positives and few false

positives. Note that using f * itself will be optimal if the coordinate j maximizing a* [j]/c[j] (having the most “bang

per buck”) is an improvement direction, so the interesting case is when this is a gaming direction. Also note that

shifting f * in this direction (adding a* [j]/c[j] to b”) will be a perfect classifier but may not be optimal because it

does not take advantage of the ability to encourage agents to improve. We consider settings where (a) the

mechanism designer must use a linear classifier, (b) arbitrary classifiers are allowed, and (c) a polynomial-sized

set of “target points” is given and the mechanism designer must select some subset final  as its classifier

– this is a special case of our General Discrete Model.

In this work, we consider both models. We give an efficient algorithm for the general discrete model for the

problem of maximizing the number of blue edges taken subject to no red edges taken (maximizing the number of

good loans given out subject to no bad loans) and show how to extend this to the partial-information learning

setting. We also show hardness for the problem of maximizing the number of blue edges subject to a nonzero

bound on the number of red edges, and show that this hardness holds even for the simplest finite-point linear

model. Furthermore, we show the problem of maximizing the number of true positives subject to no false positives

is NP-hard in the linear model when we are not given a polynomial-sized set of target points. We additionally

give algorithms for the linear model. We provide an algorithm that determines whether there exists a linear

classifier which classifies all agents accurately and causes all improvable agents to become qualified. In the

special two-dimensional case, we design a linear classifier maximizing the number of true positives minus false

positives; and a general (not necessarily linear) classifier that maximizes true positives subject to no false positives.

1.1 Related Work
There is an exciting and growing literature on decision-making in the presence of strategic agents. Much of this

work considers agents whose actions are only gaming and do not change their true label (see [11, 7, 13, 16, 1, 6, 9,

5] among others) but researchers have also been investigating mechanism design in the presence of agents who

can both game and improve [14, 12, 3, 18, 15, 10, 4, 17].

Kleinberg and Raghavan [14] consider a single agent with a variety of gaming and improvement actions available,

that are then converted into observable features through an effort-conversion matrix. They then examine

mechanisms for incentivizing desired action vectors, showing among other things that any vector that can be

incentivized by a monotone mechanism can also be incentivized by a linear mechanism. Harris et al. [12] consider

a multi-round version of the Kleinberg and Raghavan [14] model in which true improvements carry over to

dline.info/dspaial 27

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

future rounds whereas gaming effort do not; they show that in this model, the principal (the decision-maker) can

incentivize the agent to produce a greater range of desirable behaviors.

Alon et al. [3] consider a multi-agent extension of the Kleinberg and Raghavan [14] model, where agents all

begin at the same place (the origin) but each have their own effort-conversion matrix. The goal of the designer is

to choose an evaluation mechanism – mapping observable features to payoffs – that encourages all agents to

take admissible actions, assuming that agents will maximize payoff subject to budget constraints. They specifically

consider the case (1) that there is a single admissible action vector, and (2) that individual actions are either

improvement or gaming actions and no agent should take a gaming action. Among other results they show that

unlike in [14], nonlinear evaluation mechanisms can now be more powerful than linear ones; they also analyze

the complexity of a variety of associated optimization problems. We can think of our setting to some extent in

this language by viewing any action that makes an agent truly qualified as “admissible” (and specifically the blue

edges in our general discrete model). However, two key distinctions are (1) in our setting we can only give the

loan/diploma or not – we do not have the flexibility to choose arbitrary payoffs, and (2) we assume agents may

begin at different starting locations (but have the same costs for movement in our linear model).

Xiao et al. [18] define a problem they call the Multiple Agents Contract Problem which is very similar to our

General Discrete Model, except instead of binary (red/blue) colors, the edges have different values to the principal,

and instead of producing a classification, the principal can assign an arbitrary payment profile to the right-

hand-side nodes. They prove that maximizing payoff to the principal is NP-hard, and give an algorithm for a

case of related agents in which there is a certain strict ordering among agents and costs.

Shavit et al. [17], building on Miller et al. [15], consider the goal of getting agents to improve without loss of

predictive accuracy. As in our setting, they assume agents begin a different starting locations, and then modify

their profiles from there, and they also consider a learning formulation. However, their focus is on a regression

model in which agents’ payoffs are an inner product of their observable features with a decision vector; this

means that the incentives are basically the same no matter what the initial location of an agent is. In contrast, in

our binary classification setting, even in the linear model the effect of a proposed classifier on an agent may

depend greatly (and in a non-convex manner) on the initial location of the agent. Bechavod et al. [4] also consider

a linear regression learning setting: agents arrive one at a time iid from a fixed distribution and then modify their

state by changing a single variable based on the current regression vector. As in our linear model, some directions

are improvement and some are gaming. They consider a limited feedback setting where the learner sees only the

dot-product of the agent’s true position with the true regression function, plus noise, and the learner’s goal is to

recover the true regression function.

Haghtalab et al. [10] consider a similar setting to ours in which there are improvement and gaming actions, and

the designer is limited to binary classification, where agents receive value 1 for being classified as positive. Among

other results, they give approximation algorithms for the goal of maximizing the total amount of true improvement

that occurs when the allowed mechanisms are linear separators and agents have l
2

movement costs. In contrast,

our goal is to maximize true positive classifications while minimizing false positives, and in the linear case our

movement cost assumptions are somewhat different.

1.2 Organization of the Paper
Section 2 introduces the general discrete model and linear model more formally. In Section 3, we give an efficient

algorithm for the problem of maximizing the number of true positives subject to no false positives in the general

dline.info/dspaial 28

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

discrete model, and provide hardness results for the problem of maximizing the number of true positives

subject to a nonzero bound on false positives (in either the general discrete model or the linear model when

arbitrary classifiers are allowed) and hardness for the problem of maximizing the number of true positives

subject to no false positives in the linear model when arbitrary classifiers are allowed. In Section 4, we consider

a learning-theoretic version of the problem of maximizing true positives subject to no false positives, and

provide efficient learning algorithms as well as upper and lower bounds on the number of samples needed. In

Section 5, we focus on the linear model and provide algorithms specific to this setting. We provide an algorithm

that determines whether there exists a linear classifier which classifies all agents accurately and causes all

improvable agents to become qualified. In the special two-dimensional case, we design a general (not necessarily

linear) classifier that maximizes true positives subject to no false positives. In the full version of this work, we

show how to provide a linear classifier maximizing the number of true positives minus false positives in the

two-dimensional case.

2. Model

We study a binary classification problem. As the mechanism designer or classifier, we would like to maximize

the number of agents we correctly classify as positive (true positives), and minimize the number of unqualified

agents we misclassify as positive (false positives).

Agents are assumed to be utility maximizers and wish to be classified as positive. Each agent i  {1, . . . , n} has

a set of actions it can perform, and it will choose the cheapest of these that causes it to be classified as positive

if that cost is less than its value on receiving a positive classification. We use to denote the set of truly

qualified agents. If an agent is initially not qualified (not in), some of its actions may cause it to become truly

qualified, whereas others may not. However, the classifier cannot see which action was taken, only the

observable result of that action. Therefore, the challenge of the mechanism designer is to determine which

observable results to classify as positive to maximize correct positive classifications while minimizing false

positives.

2.1 General Discrete Model
In this model, we assume that as a mechanism designer we are given a polynomial-sized set of criteria we

may select from (e.g., graduation criteria or criteria for being approved for a loan), and are limited to choosing

some subset final  as the criteria we will use. We then will classify as positive any agent that meets any one

of these criteria, and as negative any agent who does not. Specifically, we are given a weighted, colored

bipartite graph with the n agents on the left and the set of criteria on the right. Edge (i, j) corresponds to agent

i taking an action to satisfy criteria j and is colored blue or red depending on whether that action would make

the agent truly qualified or not, respectively. Each edge also has a weight representing its cost to that agent,

and only actions whose costs are less than the value to the agent of being classified as positive are shown. Given

a set final † chosen by the mechanism designer, each agent in the neighborhood of final will choose its

cheapest edge into final as the action it will take, and will be classified as positive by the mechanism; agents not

in the neighborhood of final will be classified as negative.

We also consider a learning-theoretic version of this problem, where the left-hand-side of the graph is replaced

with a probability distribution over nodes. We have sampling access to and our goal is to find a subset final

of points on the right-hand-side with good performance under . In a partial-information (bandit-style)

version, when we sample a point from we do not get to observe its edges, only where it goes to and whether

dline.info/dspaial 29

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

it was qualified. That is, learning proceeds in rounds, where in each round we choose a subset of points on

the right, and then for a random draw x  we observe what point  (if any) was selected and the color of

the edge taken.

Figure 1. Points on the left are the agents, and those on the right are the set of possible criteria;

w
i
is the cost of satisfying the criterion. A red edge means the agent taking that action would not

truly be qualified. A blue edge means that the agent taking that action would be qualified

2.2 Linear Model
In the linear model, agents have d real-valued features. Each agent i begins at an initial point x

i
init d, and

there is assumed to be a linear threshold function f * : a *x  b * with non-negative weights that separates the
truly qualified individuals from the unqualified ones. Agents have the ability to increase their jth feature at
cost c[j] (decreasing is free) and receive value 1 for being classified as positive. However, only some features
correspond to true improvement and others involve just gaming. That is, if an agent begins at xinit and moves
to a point xperc, their true qualification is not f *(xperc) but rather f *(xtrue), where xtrue agrees with xinit in the gaming
directions and with xperc in the improvement directions. On the other hand, the classification rule can only be
based only on xperc and not xtrue (or xinit).

Movement costs and which features are improvement versus gaming are assumed to be the same for all agents.
So, for any agent i, cost (x

i
init, x

i
perc) = d

j=1
c[j] (x

i
perc[j] - x

i
init[j])+, where x+ = max{x, 0} and c[j] is the cost per unit

of movement in the positive direction of dimension j. An example is given in Figure 2.

We consider settings where (a) the mechanism designer must use a linear classifier (a linear threshold function),
(b) arbitrary classifiers are allowed, and (c) a polynomial-sized set P of “target points” is given and the
mechanism designer must select some subset final † as its classifier. Notice that this last case is a special
case of the general discrete model because given each initial state x

i
init, we can compute the costs to move to

each  and whether doing so will make the agent truly qualified, to produce the desired weighted, colored
bipartite graph.

3. Algorithmic and Hardness Results

In this section we first provide an algorithm for the problem of maximizing the number of true positives
subject to no false positives in the general discrete model. Then, we provide hardness results for the problem
of maximizing the number of true positives subject to a nonzero bound on false positives (in either the general
discrete model or the linear model when arbitrary classifiers are allowed) and hardness for the problem of
maximizing the number of true positives subject to no false positives in the linear model when arbitrary
classifiers are allowed. Later in Section 4 we extend our algorithmic results to the learning model and in
Section 5 we give algorithms for learning linear classifiers in the linear model.

dline.info/dspaial 30

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

Figure 2. An example of the linear model (the horizontal axis is an improvement direction and the

vertical axis is a gaming direction) with a mechanism using a non-linear classifier. There are three

agents, two of whom are initially not qualified. All three become qualified and are correctly classified

as positive by the mechanism

3.1 Maximize True Positives Subject to No False Positives
The main result of this section is an algorithm that given a weighted, colored bipartite graph with agents, ,

on the left and potential criteria, , on the right, finds final  such that using final as the criteria maximizes

the number of agents taking a blue edge (true positive) subject to no agent taking a red edge (false positive). We

call the agents that take a blue edge improving agents and the agents taking a red edge gaming agents. The

algorithm, although simple in structure, satisfies strong properties noted afterwards; and serves as the building

block of the learning algorithms in Section 4. Furthermore, as shown in the following subsection, natural

generalizations of the objective function make the problem computationally hard. Therefore, the algorithm

together with the hardness results tightly characterize the settings for which there is an efficient algorithm, or

the problem is NP-hard.

Overview of Algorithm 1. The algorithm takes in a weighted, colored bipartite graph = ( , E)

and outputs final, a subset of P that specifies the final criteria. Initially, final is set to . The algorithm proceeds

in rounds. In each round, it visits all the nodes (agents) in to determine whether there is an agent who takes a

red edge to its lowest cost neighbor  final. If there is such a gaming agent, its corresponding criteria, , is

removed from final. These rounds continue until there is no gaming agent and therefore no removal of criteria

in a single round, or the current set of criteria is empty.

Proposition 1. Algorithm 1 has running time of O(| |n).

Proof. Proof in Appendix A.

Theorem 2. Algorithm 1 finds the set of criteria, final, that maximizes the number of true positives subject to

no false positive.

Proof. Proof in Appendix A.

dline.info/dspaial 31

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

Algorithm 1 satisfies the following strong properties.

(a) Point-Wise Optimality: For any agent i, if there exists a solution in which i takes a blue edge and no

agent takes a red edge, then the algorithm finds such a solution.

(b)General for Weighted Setting: The algorithm works optimally in the more general setting that

each agent has a weight and the objective is to maximize the sum of weights of improving agents subject to the

constraint of no gaming agent. This is a direct implication of property a.

(c) Max-Min Fairness: Suppose the agents are from different populations and the objective is to maximize

the minimum number of agents improving from each population subject to no gaming. By property a, the algorithm

satisfies this max-min fairness notion.

(d)Heterogeneous Utilities: The algorithm works optimally in the more general setting that agents

have different values for being classified positive.

(e)Minimizing the total cost of improvement: Since the algorithm only removes  that causes an agent

to game, with final each agent incurs the minimal cost subject to no agent gaming.

Remark 3. The sets of criteria satisfying the no false positive constraint is not downward closed. In other

words, a subset of a set of criteria that satisfies the no false positives property does not necessarily satisfy this

property.

3.2 Hardness Results
In this part, we prove hardness results for maximizing the number of true positives when the constraints in the

previous subsection are relaxed. First, we show that if we relax the no false positives constraint to a bounded

number of false positives, the problem becomes NP-hard; moreover, this holds even for the simpler linear model.

Algorithm 1. Maximize true positives subject to no false positives

dline.info/dspaial 32

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

Then, for the linear model, we show if we are not given a finite set of potential criteria , it is NP-hard to find

criteria that maximize true positives subject to no false positives.

Theorem 4. Given the initial feature vectors of agents x
1
init, x

2
init, . . . , x

n
init d and a set of potential

criteria, the problem of finding a subset final  that maximizes the number of true positives subject to at

most k false positives is NP-hard.

Proof Sketch. The proof is done by a reduction from the Max-k-Cover problem with n elements where the

goal is to choose k sets covering the most elements. For every element e
i
 in the Max-k-Cover, we consider agent i,

and for every set
j
 in the Max-k-Cover problem we consider agent n + j and a target point

j
. The coordinates of

the initial points and the target points are set such that agent i corresponding to element e
i
 can only move to

target point
j
 such that e

i
 

j
 and become a true positive; moreover, agent n + j corresponding to set

j
 can

only move to target point
j
 and become a false positive. On the one hand, since including each p

j
 in the final set

of criteria, final, causes exactly one agent to be a false positive, final must contain at most k target points. On the

other hand, to maximize the number of true positives a set of k target points that the maximum number of agents

can reach to it must be selected. This is equivalent to the Max-k-Cover solution. A formal proof is included in

Appendix A.

Theorem 5. Suppose we are given a set of n agents where x
1
init, x

2
init, . . . , x

n
init denote their initial feature

vectors. Deciding whether there exists a set of target points final  Rd for which all the agents become true

positives is NP-hard.

Proof Sketch. The proof is done by a reduction from the approximate version of the hitting set problem

where given a set of elements,  = {e
1
, . . . , e

n
} and a family of sets of elements, F = {

1
,

2
, . . . ,

m
}, the goal is

to find a minimum size set *that intersects all
i
. We construct an n + 1-dimensional space, where the first n

dimensions are improvement dimensions and correspond to the n elements, and the last dimension is gaming.

We consider two sets of agents. For each
i
, we consider a corresponding agent i; these are the usual agents. We

also consider agent m + 1, a special agent that does not correspond to any particular set. The construction is

such that each agent needs to move 2k units along the improvement dimensions to become truly qualified.

Further details of the construction can be found in the full proof. The proof includes two directions. (1) If all

the agents can become true positives by reaching to a set of target points final  d, then we can construct a

hitting set of size at most 2k; and (2) if it is not possible, then there does not exist a hitting set of size k.

We briefly cover the key ideas in each direction. To show the first direction, suppose all the agents can become

true positives when presented with target points final  d. Consider the target point that each agent selects.

Using our construction, we show the special agent does not afford to reach to the target points of the usual

agents. Also, for each usual agent i, there exists element e
j
 in their corresponding set such that the target point of

the special agent has value more than 1 in coordinate j. In order for the special agent to afford to reach to its

target point, the number of improvement coordinates with value at least 1 must be at most 2k. The elements

corresponding to these coordinates constitute a hitting set of size at most 2k. To prove the reverse direction we

argue: if there exists a hitting set *of size k, there is a set of target points that encourages all the agents to

become true positives. To do so, we construct a set of target points final = {
1
, . . . ,

m+1
}, using the elements in

the hitting set, that when the size of the hitting set is k makes every agent become true positive.

dline.info/dspaial 33

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

A formal proof is included in Appendix A.

The following is a direct corollary of Theorem 5.

Corollary 6. Given the initial feature vectors of agents, x
1
init, x

2
init, . . . , x

n
initRd, finding a set of target points

final  d that maximizes the number of true positives subject to no false positives is NP-hard.

4. Learning Results

In this section we consider a learning-theoretic version of our problem, where the left-hand-side of the graph is

replaced with a probability distribution over nodes. We have sampling access to and our goal is to find a

subset final of points on the right-hand-side with good performance under . We provide two different algorithmic

results and upper bounds on the number of samples for producing a good solution, depending on the information

each sample reveals. The first upper bound works for the case where by sampling an agent, its neighborhood

(neighboring edges, their colors and weights) is revealed. The second upper bound works in a partial-information

(bandit-style) setting, where when we sample a point from we do not get to observe its edges, only where it

goes to and whether it was qualified. Finally, we provide a lower bound on the necessary number of samples for

any algorithm. The lower bound holds even for the simpler linear model.

The following definition is crucial in this section.

Definition 7. (OPT, performance, and error). Let OPT be the maximum probability mass of true positives

achievable subject to zero false positives. We denote the probability mass of true positives of an algorithm as its

performance and the probability mass of false positives as its error. A hypothesis is desired if it has comparable

performance to OPT and small error

4.1 Sufficient Number of Samples in the Full Information Setting
The main result of this section is that a number of samples linear in | | and 1/ is sufficient for Algorithm 1 to

learn a desired hypothesis with high probability. Specifically, suppose the learner has access to a weighted,
colored bipartite graph = ( , E), where X are sampled from D, and is the set of the potential criteria.

The learner runs Algorithm 1 with the graph as the input and uses the algorithm output, final  , as its hypothesis,
i.e., after the training phase it classifies any agent with an edge to final as positive and any other agent as

negative. We show that a linear number of samples is sufficient so that with high probability, the probability
mass of true positives classified by final is close to OPT and the probability mass of false positives is small.

Theorem 8. Consider final as the outcome of Algorithm 1 on = ( , E), where X contains samples

from D. For any < ,   1, if |X |  (ln(2)| | + ln(1/)) then with probability at least 1 -  the set final

achieves performance at least OPT -  (i.e., at least OPT -  probability mass of true positives) subject to at most

 error ( probability mass of false positives).

4.2Sufficient Number of Samples in the Partial Information Setting
In this section we consider a partial information (bandit-style) setting. Similar to before, the learner has access

to a sample set drawn from and a set of potential criteria . However, observing a sample in does not
reveal its edges, and the learner can only observe the criterion that the sample selects and whether it becomes

truly qualified. The main result of this section is an algorithm, Algorithm 2, for this setting and a guarantee on

dline.info/dspaial 34

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

the number of samples sufficient for it to achieve performance at least OPT -  and error at most with high

probability.

Overview of Algorithm 2. In each iteration, a set of examples of size  -1 ln(| |/) is sampled. After

agents select points in (if any), we observe the points selected and whether they became truly qualified (in a

real-world application, one can think of performing a test to check if each agent is truly qualified). If some agent

does not become truly qualified (fails the test), the algorithm deletes the point they have selected. If a set final,

survives for  -1 ln(| |/) subsequent examples, the algorithm terminates and returns final as the final set of

criteria of the algorithm. Since the number of false positives (agents taking red edges) is bounded by | |, the

algorithm will terminate after at most  | | ln(| |/) samples.

The following theorem proves that with a high probability, Algorithm 2 outputs Pfinal with a high performance

and a low error.

Theorem 9. For any 0 < ,  1, Algorithm 2 by using at most | | ln(| |/) total samples outputs a set

of criteria final that with probability at least 1- achieves performance at least OPT -  (i.e., at least OPT - 
probability mass of true positives) subject to at most

 error ( probability mass of false positives).

4.3 Necessary Number of Samples
The main result of this section is a lower bound on the necessary number of samples for learning a desired

hypothesis. The lower bound provided holds even for the simpler linear model. To restate the setup, suppose the

learner has access to a set of initial positions of agents X and a set of potential criteria (also called target points in

the linear model) where are sampled from distribution . We lower-bound the required number of samples

for any learning algorithm that with probability at least 1/2 achieves high performance and low error.

Theorem 10. Any algorithm for PAC learning a set final that with probability at least 1/2 achieves performance

at least (3/4) · OPT (i.e., at least (3/4) · OPT probability mass of true positives) subject to at most  error (
probability mass of false positives) must use  (| |/) examples in the worst case.

Algorithm 2. Learning a high performance low error final in partial-information setting

dline.info/dspaial 35

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

5. Algorithmic Results Specific to the Linear Model

The algorithmic results provided so far work in both the general discrete and the linear discrete models. In this

section we focus on the linear model and provide algorithmic results for various problems. These algorithms do

not follow the greedy structure of the previous algorithms, and use novel technical ideas. First, we consider the

problem of designing linear classifiers. Section 5.1 provides introductory observations and definitions about

linear classifiers. Section 5.2 presents the main result of this section which determines whether there exists a

linear classifier that classifies all agents accurately and causes all improvable agents to become qualified. Then,

we shift focus to general (not necessarily linear) classifiers in a two-dimensional space and in Section 5.3 provide an
algorithm for maximizing true positives subject to no false positives. In the full version of this work, we provide results for
finding a linear classifier that maximizes the number of true positives minus false positives in the two-dimensional

case.

5.1 Properties of Linear Classifiers
Before diving into discussion of the algorithmic results, we provide observations about linear classifiers to set the

context. We also provide optimal classifiers in special cases.

For the following discussion, consider linear classifier f *: a* x  b* that separates the truly qualified agents from

unqualified agents.

Observation 11 With linear classifier f : ax  b, any utility maximizing agent that achieves non-negative

utility by changing their features moves in dimension arg max
j
 a[j]/c[j].

Definition 12 (movement dimension). The movement dimension of linear classifier f : ax  b is the utility

maximizing dimension arg max
j
 a[j]/c[j] discussed in Observation 11. If there are multiple such dimensions the

ties are broken in favor of improvement dimensions and then lexicographically.

Definition 13 (encourage improvement/gaming). A classifier encourages improvement if its movement

dimension is an improvement dimension. It encourages gaming otherwise.

Definition 14 (dim-j improving). A linear classifier is dim-j improving if it encourages improvement and its

movement dimension is along dimension j.

The following definition captures the set of agents that potentially can improve to become truly qualified.

Definition 15 (improvement margin, improvable agents). The improvement margin includes all the agents

that can afford (do not have to incur a cost of more than 1) to move in an improvement dimension and become

truly qualified. Formally, any initially unqualified agent i, i.e., a* x
i
init < b*, that has distance  1/c[j] along an

improvement dimension j to f” is in the improvement margin.

Lemma 16. If f *: a* x  b* encourages improvement, the optimal classifier is f * – among all linear or nonlinear

classifiers.

Proof. f* classifies initially qualified agents and unqualified unimprovable agents accurately. Also, all the

agents

dline.info/dspaial 36

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

in the improvement margin improve, become qualified, and are accurately classified as positive.

Lemma 17. Let j be the movement dimension of classifier f *. The classifier g : a *xb*+ a* [j]/c[j] classifies

all the initially qualified agents as positive and the rest as negative.

Proof. Initially unqualified agents, a* x
i
init < b *, can move at most 1/c[j] in dimension j which is not enough to

reach to g. Therefore, these agents are classified as negative by g. On the other hand, initially qualified agents,

a* x
i
init  b *, afford to reach to g and receive nonnegative utility. Therefore, they will be classified as positive.

Corollary 18. If all the dimensions are gaming dimensions, g : a* x  b* + a* [j]/c[j] is the optimal classifier,

where j is the movement dimension of f *.

Proof. If all dimensions are gaming dimensions, there are no improvable agents. Therefore, all agents are

either initially qualified or unimprovable and unqualified. By Lemma 17, classifies all such agents accurately.

By Lemma 17, : a*x  b* +a”[j]/c[j] may be a “reasonable” solution because it classifies all the initially

qualified as positive and does not result in any false positive classifications. However, it misses out on any new

true positives resulting from encouraging agents to become qualified. From this point on, we aim to study

other classifiers (not necessarily parallel to f *) with the hope of encouraging other agents to become qualified.

5.2 Linear Classifier for Improvable Agents
In this subsection, we study a problem that takes as input three disjoint subsets of the agents, yes, no, and imp,

and outputs a linear classifier (if one exists) that satisfies the following properties.

i) Classifies agent i such that x
i
init  yes as positive.

ii) Classifies agent i such that x
i
init  no as negative.

iii) Encourages agent i such that x
i
init  imp to improve and become truly qualified, i.e., x

i
trueQ, and classifies

i as positive.

The main result of the section is solving this problem in polynomial time. When yes is the set of initially qualified

agents, no is the set of unqualified and unimprovable, and imp is the set of improvable agents, this problem

determines whether there exists a linear classifier that classifies yes and no accurately and makes all the

improvable agents qualified.

To solve this problem, we divide it into subproblems as following: Does there exist a linear classifier with movement

direction in dimension j that satisfies properties i, ii, and iii? If the answer is “yes” for some dimension j, then the

answer to the main problem is “yes”. If the answer is “no” for all 1  j  d, no linear classifier satisfying the three

properties exists.

Note that if imp is nonempty, in order to satisfy property iii, dimension j must be an improvement dimension.

Therefore, we study the following problem.

dline.info/dspaial 37

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

Problem 1. Does there exist a dim-j improving classifier (a linear classifier encouraging improvement in

dimension j) that satisfies properties i, ii, and iii?

We propose a linear program that solves Problem 1. The following definition and observations illustrate the

conditions under which a dim-j improving classifier satisfies each property for agent i.

Definition 19. For a fixed improvement dimension j and classifiers f *: a* x  b* and f : ax  b, the points x
i,f*

,

x
i,f

 , x
i,max

 are defined as follows (depicted in Figure 3.): x
i,f*

 is the projection of x
i
init on the separating hyperplane

of classifier f*along dimension j.

x
i,f

 is the projection of x
i
init on the separating hyperplane of classifier f along dimension j.

x
i,max

 is the shifted x
i
init along dimension j by 1/c[j].

More formally, for all coordinates k  j, we have x
i,f*

 [k] = x
i,f

 [k] = x
i,max

[k] = x
i
init [k].

Also, since a* x
i,f*

= b * ,we have x
i,f

*

[j] = (b*-  j a*[k] x
i
init [k])/a*[j]. Similarly since ax

if
= b, we have x

i,f
[j]

= (b-
k  j

a*[k] x
i
 init [k]) /a[j]. Finally, x

i
 ,

max
[j] = x

i
init [j] + 1/c[j]

Observation 20. A dim-j improving classifier f : ax  b classifies agent i as positive (property i) if ax
i,max

 
b. It classifies agent i as negative (property ii) if ax

i,max
 < b.

Observation 21. Using a dim-j improving classifier f, agent i becomes qualified and is classified as positive

(property iii) if and only if x
i,f*

[j]  x
i,f

 [j]  x
i,max

[j]. See Figure 3.

Figure 3. Depicting x
i
init, x

i,f
*, x

i,f
 , x

i,max
 in Definition 19 and Observation 21 The horizontal axis shows dimen-

sion j in the definition

Proposition 22. The following LP captures Problem 1, where the variables are a and b.

a[k] a[j]

c[k] c[j]

 

b ax
i,max

  j


xi

init yes

(1)

(2)

dline.info/dspaial 38

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

 x
i,f

 [j]x
i,max

[j]

 ax
i,max

< b

x
i,f
* [j]  x

i,f
 [j]


xi

init no


xi
init imp


xi

init imp

(3)

(4)

(5)

Constraint 1 asserts that the movement direction of the classifier is along dimension j.

Constraint 2 asserts property i. Constraint 3 asserts property ii. Finally, constraints 4 and 5 assert property
iii.

Theorem 23. Given the sets yes, no, and imp, there is a polynomial-time algorithm that outputs a linear
classifier (if one exists) that satisfies Properties i, ii,iii, or declares non-existence of such a classifier.

Proof. If imp , run LP 1-5 for all improvement dimensions j. If imp = , run the LP for 1  j  n. By
Proposition 22, if there exist feasible solution a and b for one of these LPs, f : ax  b is a classifier satisfying
properties i, ii, and iii.

Corollary 24. There is a polynomial-time algorithm that determines whether there exists a linear classifier
that classifies the initially qualified as positive, unqualified unimprovable agents as negative, encourages the
agents in the improvement margin to improve to become qualified, and classifies them as positive. If such a
classifier exists, it maximizes true positives subject to no false positives.

Remark 25. Theorem 5 asserts that given the initial feature vectors of agents, x
1
init, x

2
init

 , . . . , x

n
init  d,

deciding whether there exists a classifier for which all the agents become true positives is NP-hard. However,
when limiting to linear classifiers this problem is no longer NP-Hard. Using Theorem 23, by setting yes to the
set of initially qualified agents, and imp to the rest of the agents, this problem is solvable in polynomial time.

5.3 Optimal General Classifier in Two-Dimensional Space
In this subsection, we consider the problem of maximizing true positives subject to no false positives in a 2-
dimensional space, where the horizontal dimension is improvement, and the vertical dimension is gaming. We
provide an algorithm in the linear model that given a set of agents, returns a set of target points finalR2 that
maximizes true positives subject to no false positives. Note that unlike Algorithm 1, our algorithm in this
subsection does not take a finite set of target points as input. For simplicity, by scaling we may assume wlog
that c = c[1] = c[2].

Overview of Algorithm 3. First, all the points x
i
init for 1  i  m are sorted along the gaming dimension in

a descending order, such that x
n

init has the smallest value in the gaming dimension. Our goal is to find designated
points, x

i
, for each x

i
init. Starting with x

n
init, for each point x

i
init,move x

i
init along the improvement dimension until

it crosses the line a*x = b* at x
i,min

 (See Figure 4). Let x
i
, the designated point of x

i
init, be initially x

i
 = x

i,min
. If

given the current set of designated points for agents n, n - 1, . . . , i, another point x
j
init for j > i maximizes utility

by moving to x
i
and becomes false positive, push x

i
 upward along the gaming dimension, until x

 j
init no longer

picks x
i
. When pushing x

i
along the gaming dimension, let x

i,max
 denote the furthest point that x

i
init can afford to

reach to it. If the final point x
i
 is such that x

i
init cannot afford to move to it, i.e. x

i
[2] > x

i,max
[2],discard x

i
.

Otherwise, x
i
 is added to final.

dline.info/dspaial 39

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

Note that we assume that if a point x
j
init can improve to x

j
 and game to x

i
 with the same cost, it would pick the

improvement option.

Figure 4. In Algorithm 3, x
i
 is pushed along the gaming dimension so x

j
init no longer moves to it

Theorem 26. Given initial feature vectors of agents, x
1
init, x

2
init, . . . , x

n
init R2, Algorithm 3 maximizes the

number of true positives subject to no false positives.

Proof. Proof is deferred to Appendix B. Remark 27. By Corollary 6, this problem is NP-hard when X  Rd for

general (not constant) d.

Algorithm 3. Maximizing the number of true positives in 2-dimensions

dline.info/dspaial 40

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

References

[1] Ahmadi, Saba., Beyhaghi, Hedyeh., Blum, Avrim., Naggita, Keziah. (2021). The strategic perceptron. In

Proceedings of the 22nd ACM Conference on Economics and Computation (pp. 6–25). Association for Com-

puting Machinery. https://doi.org/10.1145/3465456.3467629

[2] Ahmadi, Saba., Beyhaghi, Hedyeh., Blum, Avrim., Naggita, Keziah. (2022). On classification of strategic

agents who can both game and improve. arXiv Preprint. https://arxiv.org/abs/2203.00124

[3] Alon, Tal., Dobson, Magdalen., Procaccia, Ariel., Talgam-Cohen, Inbal., Tucker-Foltz, Jamie. (2020).

Multiagent evaluation mechanisms. In Proceedings of the AAAI Conference on Artificial Intelligence, 34(2),

1774–1781. https://doi.org/10.1609/aaai.v34i02.5543

[4] Bechavod, Yahav., Ligett, Katrina., Wu, Zhiwei Steven., Ziani, Juba. (2020). Causal feature discovery

through strategic modification. arXiv Preprint. https://arxiv.org/abs/2002.07024

[5] Braverman, Mark., Garg, Sumegha. (2020). The role of randomness and noise in strategic classification. In

Proceedings of the 1st Symposium on Foundations of Responsible Computing, FORC 2020 (pp. 9:1–9:20).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FORC.2020.9

[6] Brückner, Michael., Scheffer, Tobias. (2011). Stackelberg games for adversarial prediction problems. In

Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(pp. 547–555). Association for Computing Machinery. https://doi.org/10.1145/2020408.2020495

[7] Dong, Jinshuo., Roth, Aaron., Schutzman, Zachary., Waggoner, Bo., Wu, Zhiwei Steven. (2018). Strategic

classification from revealed preferences. In Proceedings of the 2018 ACM Conference on Economics and

Computation (pp. 55–70). Association for Computing Machinery. https://doi.org/10.1145/3219166.3219193

[8] Feige, Uriel. (1998). A threshold of lnn for approximating set cover. Journal of the ACM, 45(4), 634–652.

https://doi.org/10.1145/285055.285059

[9] Frankel, Alex M., Kartik, Navin. (2019). Improving information from manipulable data. Theoretical Eco-

nomics. https://doi.org/10.1093/jeea/jvab017

[10] Haghtalab, Nika., Immorlica, Nicole., Lucier, Brendan., Wang, Jack Z. (2020). Maximizing welfare with

incentive-aware evaluation mechanisms. In Proceedings of the Twenty-Ninth International Joint Conference

on Artificial Intelligence, IJCAI-20 (pp. 160–166). International Joint Conferences on Artificial Intelligence

Organization. https://doi.org/10.24963/ijcai.2020/23

[11] Hardt, Moritz., Megiddo, Nimrod., Papadimitriou, Christos., Wootters, Mary. (2016). Strategic classifica-

tion. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, ITCS ‘16

(pp. 111–122). Association for Computing Machinery. https://doi.org/10.1145/2840728.2840730

[12] Harris, Keegan., Heidari, Hoda., Wu, Zhiwei Steven. (2021). Stateful strategic regression. arXiv Pre-

dline.info/dspaial 41

Digital Signal Processing and Artificial Intelligence for Automatic Learning Volume 4 Number 1 March 2025

print. https://arxiv.org/abs/2106.03827

[13] Hu, Lily., Immorlica, Nicole., Vaughan, Jennifer Wortman. (2019). The disparate effects of strategic

manipulation. In Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT ’19*

(pp. 259–268). Association for Computing Machinery. https://doi.org/10.1145/3287560.3287597

[14] Kleinberg, Jon., Raghavan, Manish. (2019). How do classifiers induce agents to invest effort strategically?

In Proceedings of the 2019 ACM Conference on Economics and Computation, EC ‘19 (pp. 825–844). Associa-

tion for Computing Machinery. https://doi.org/10.1145/3328526.3329584

[15] Miller, John., Milli, Smitha., Hardt, Moritz. (2020). Strategic classification is causal modeling in disguise.

In Proceedings of the 37th International Conference on Machine Learning, ICML 2020 (pp. 6917–6926).

PMLR. Retrieved from http://proceedings.mlr.press/v119/miller20b.html

[16] Milli, Smitha., Miller, John., Dragan, Anca D., Hardt, Moritz. (2019). The social cost of strategic classifica-

tion. In Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT ’19* (pp. 230–

239). Association for Computing Machinery. https://doi.org/10.1145/3287560.3287576

[17] Shavit, Yonadav., Edelman, Benjamin., Axelrod, Brian. (2020). Learning from strategic agents: Accu-

racy, improvement, and causality. In Proceedings of the 37th International Conference on Machine Learning

(pp. 8676–8686). PMLR. Retrieved from http://proceedings.mlr.press/v119/shavit20a.html

[18] Xiao, Shenke., Wang, Zihe., Chen, Mengjing., Tang, Pingzhong., Yang, Xiwang. (2020). Optimal common

contract with heterogeneous agents. Proceedings of the AAAI Conference on Artificial Intelligence, 34(5),

7309–7316. https://doi.org/10.1609/aaai.v34i05.6224

