Augmented Architectural Reliability of Split-protocol

Bharat S. Rawal, Oothongsap Phoemphun, Harold Ramcharan, L1oyd Williams o
Department of Computer and Information Sciences (QT
Shaw University

North Carolina, USA

{ brawal, poothongsap, haroldrm, llwilliams} @shawu.edu

ABSTRACT: HTTP request splitting isa novel concept where, the TCP connection and data-transfer phases are dynamically
split between serverswithout the use of a central dispatcher or load balancer. Previouswork has studied through performance
and established a throughput improvement range between 6% and 25 %, and demonstrated 84% reduction in transmission
time compare to conventional technique. We believe this higher performance results frominbuilt reliability in the architecture
of split protocol. There are plenty of researches, and literatures focusing on component-based reliability. Software Engineering
researchers assume each component has a unique service. To distinguish from underlying TCP /IP protocol reliability, we
propose modeling approaches that consider the architecture of the software and estimate the reliability of interactions
between the components, and interfaces with other components. This paper details the components of the Split —architecture,
and devises reliability assessment based on individual component of software and describes how it can be used to examine
software behavior. It highlights on an inbuilt reliability in a split-protocol due to the dual and interchangeable role of
Connection Server (CS) and Data Server (DS). Thisinnovative approach introduces a mor e effective way of offering reliability
in cluster computing and in general. To assess the reliability of the system, this paper proposes a simple mathematical model
which can capture the reliability of the system. This model compares the reliability of the split system against dispatcher
system. The results show that split system reliability is far better than dispatcher system reliability. Moreover, the system
hazard rates and Survival functions of the parallel system are provided.

Keywords: Splitting HT TP Requests, Reliability, Cluster Computing, Software, Bare Machine Computing, Parallel component,
Series component

Received: 6 November 2012, Revised 10 December 2012, Accepted 14 December 2012
© 2013 DLINE. All rightsreserved
1. Introduction

Reliability is defined asameasure of time between failures (as anumeric val ue such as meantime between failures), wherefailure
is defined as a departure from acceptabl e service for an application, acomputer system, or the network system. It isameasure
of how consistently amachine or set of machines perform thetasksthat aretheir purpose[1]. Thereliability of a software system
expresses the probability that the system will be able to perform as expected when requested. This probability isinterpretedin
the context of an expected pattern of use and a specified time frame. [2] Thereliability of a software product isusually defined
to be “the probability of execution without failure for some specified interval of natural units or time” [3].

There are multiple approachesto software reliability. Some people view reliability asbinary so that afaulty program would have
zeroreliability while aperfect onewould have areliability value of one. Thisview parallelsthat of program proving whereby the
program is either correct or incorrect [31]. Others, however, believe that software reliability should be defined as the relative

Electronic Devices Volume 2 Number 1 March 2013 9

frequency of the times that the program works as intended by the user. This view is similar to that taken in testing where a
percentage of the successful cases are used as a measure of program quality. According to the alternative viewpoint, software
reliability is a probabilistic measure and can be defined as the probability that software faults do not cause afailure during a
specified exposure period in aspecified use environment. The probabilistic nature of this measureis dueto the uncertainty inthe
usage of the various software functions. To interpret this view of software reliability, suppose that a user executes a software
product several timesaccording to its usage profile and finds that the results are acceptable 95 % of the time. Then the software
issaidtobe95 % reliablefor that user. A more precise definition of softwarereliability isasfollows[29]. Let Fbeaclassof faults,
defined arbitrarily, and T be a measure of the relevant time, the units of which are dictated by the application at hand. Then
reliability of the software package with respect to the class of faults F and with respect to the metric T isthe probability that no
fault of the class occurs during the execution of the program for a pre-determined period time [32]. If software reliability can
somehow be measured, alogical questioniswhat purpose doesit serve? Software reliability isauseful measurein planning and
controlling resources during the development process so that high quality software can be developed. It is aso a useful
measure for giving the user confidence about software correctness. As more and more faults are exposed by testing and
verification process, the additional cost of exposing the remaining faults usually rises very quickly. Thus, there is a point
beyond which continuation of testing to improve the quality of software can be justified only if such improvement is cost
effective. An objective measure like software reliability can be used to study such atradeoff [30].

L oad balancing isfrequently used to enable Web serversto dynamically share theworkload and improve system availability and
reliability. For load balancing, a wide variety of clustering server techniques [22]-[23] are employed. Most load balancing
systems used in practice requireacentral control system such asaload balancing switch or dispatcher [22]. Load balancing can
beimplemented at variouslayersin the protocol stack [21]. This paper considersa recently developed anew approach to load
bal ancing that involves splitting HT TP requests among a set of two to four servers, where one or more connection servers (CSs)
handle TCP connections and may delegate afraction (or all) requeststo one or more data servers (DSs) that serve the data[25].
For example, the datatransfer of alarge file could be assigned to DSs, and the data transfer of asmall file could be handled by
the CSitself. One advantage of splitting isthat splitting systems are compl etely autonomous and do not requireacentral control
system such as dispatcher or load balancer.

Wewill consider split-protocol asasystem and each individual protocol transaction asacomponent of a system. Such asSYN,
SYN-ACK,ACK, GET, GET-ACK, I SP(Inter Server Packet), DATA, DATA-ACK, FIN-ACK, and FIN-ACK-ACK arefunctiona
component of protocol (system). Figure 1 shows that the CS is composed of 10 components while DS is composed of three
components. The CS component types may be different from the DS component types. The numbers of CSand DS components
may be different. Assubsystems, CSand DS possess different reliability. In our experiment, the make and model of all serversare
the same and their hardwarereliability is perfect and al so the same (for simplicity, the hardware reliability isequal to one). All
protocol components have the same software reliability. To assessthereliability of split protocol componentswe do not include
reliability characteristics of TCP/IP protocol, we presumethat the TCP/I P offersreliability on top of the component reliability.

This paper proposes a simple mathematical model which can capture the reliability of the system. This model is aso used to
compare the reliability of the split system against dispatcher system. The results show that split system reliability isfar better
than dispatcher system reliability.

The remainder of the paper is organized as follows. Section Il presents related work, and Section 111 describes the split
configurations used in this study. Experimental setup ispresented in section IV. SectionV and VI present reliability analysisand
comparison study, respectively. Result discussion is presented in section V1I. Section V111 contains the conclusion.

2. Related Work

Component-based reliability analysis has been done, from the mid to late 1990s, to until this date many component-based
software model s have been proposed [4], [5], [6], [7], [8], and [9]. Most of the reliability models based on architecture take the
reliability of component asaninvariable property of the component itself, disregard thefact that the reliability changeswhen the
component interacts[3].

Weimplemented HT TP request splitting on abare PC with no kernel or OS running in the machine. Bare PC applications usethe
Bare Machine Computing (BMC) or dispersed OS computing paradigm [14], wherein self-supporting applicationsrun on abare
PC. That is; thereisno operating system (OS) or centralized kernel running in the machine. Instead, the applicationiswrittenin

10 Electronic Devices Volume 2 Number 1 March 2013

C++ and runs as an application object (AO) [15] by using its own interfaces to the hardware [16] and device drivers. Whilethe
BMC concept resembles approaches that reduce OS overhead and/or use lean kernels such as Exokernel [11]. There are
significant differences such asthelack of acentralized code that manages system resources and the absence of astandard TCP/
IP protocol stack. In essence, the AO itself manages the CPU and memory and contains lean versions of the necessary
protocols.

Splitting an HT TP request by splitting the underlying TCP connection is different from rel ated techniquesthat migrate or splice
TCP connections. In migratory TCP (M-TCP), client involvement is needed [18]. Agents migrate between nodes [17], or
virtualization isused in amobile environment [10], two separate TCP connections are established for each request. Splittingis
similar to masking failuresin TCP[19].

Inter-server DS
cs Packets
ACK
GET
DATA-A &v-
QV'
ACK /
GET
DATA- AC
FIN-ACK-ACK Client
CS: Connection Server
DS: Data Server

Figure 1. Split architecture (Configuration 1)
3. Split Configurations

The intertwined HTTP and TCP protocols for request splitting [25] are shown in Figure 1. Connection establishment and
termination are performed by one or more connection servers (CSs), and data transfer is done by one more data servers (DSs).
When a http request is split, the client sends the request to a CS, and the CS sends an inter-server packet to aDS, and the DS
sends the data packets to the client. Inter- server packets may also be sent during the data transfer phase to update the DS if
retransmissions are needed. With partial delegation, the CS delegates afraction of itsrequeststo DSs. With full delegation, the
CSdelegatesall itsrequeststo DSs. Protocol intertwining isaform of cross-layer design. The design and implementation detail
of protocol splitting is provided in [25]. Further details on bare PC applications and bare machine computing (BMC) can be
foundin[12] [13]. We consider mini Web server clusters consisting of two or more serverswith protocol splitting, and study the
performance of four different server configurationswith avarying number of CSsand DSs: (i) one CSwithone DS, (ii) oneCS
with multiple DSs (CS does not participatein datatransmission), (iii) multiple CSsand single DS (CSsdo not participatein data
transmission), and (iv) one CSwith multiple DSs (CS participatesin datatransmission).

Configuration 1in Figure 1 showsafull delegation with one CS, one DS, and aset of clients sending requeststothe CS. TheDS
and CS have different |P addresses, but the DS sends data to a client using the | P address of the CS.

Configuration 2 in Figure 2 shows asingle CSwith two or more DSsin the system with full del egation (CS does not participate
in data transmission). In partial delegation mode, clients designated as non-split request clients send requests to the CS, and
these requests are processed entirely by the CS as usual. With the full delegation, clients designated as split-request clients
make requests to the CS, and these requests are delegated to DSs[26]. When requests are delegated to DSs, we assume that
they are equally distributed among DS1, DS2 and DS3 in round-robin fashion. It is also possible to employ other distribution
strategies.

Configuration 3 in Figure 2 shows two CSs and one DS with clients. For this configuration, we used small file sizes to avoid
overloading the single DS. Although we have not done so, multiple DSs could be added asin configuration 2, and DS can also
participatein connection closing [27].

Electronic Devices Volume 2 Number 1 March 2013 11

Configuration 4in Figure 3 shows one CSwith multiple DSs. The CS participatesin datatransmission by sending theinitial block
of data. For this configuration, we used largefile sizes.

Configuration 5 and 6 in Figure 4 shows the multiple clients added to system to avoid the bottleneck at client’s sides. This
architecture ensures reliability at clients end. In configuration 5 each DSs transmit blocks of data to corresponding clients.
Clientsdo not communicate with any of DS, only Client1 communicatewith CS. However in configuration 6 DSstransmit blocks
of datato corresponding clients. And each client communicates with respected DSs from whom they receive data. However
only Client 1 initiates connection closing with CS, after receiving data compl etion massage from all other clients.

A resource file is distributed in many different parts and stored on multiple DSs. All DSs carries different segments of the
resourcefile, without any duplication. An advantage of distributing resource file on different DSsisthat, in case someintruder
is able to access data servers, he/she may not get information in its entirety.

Configuration-2

Clients

Clients
[

Clients

Figure 2. Split architecture (Configurations 2 and 3)

Inter- Server DS1 DSn
Packet

—W " s

SYN Network 1
ACK DAT. DATA
GET
DATA-ACK)
SYN-AC FIN-ACK 3
GET-AC N
FIN-ACK-
ACK \, H

Client

CS: Connection
Server
DS: Data Server

Figure 3. Split architecture (Configurations 4)

In practice, information isencrypted, and encryption keys are safely protected somewhere on other data servers. Our mechanism
allowsencryption keysto be stored on different DSs. I nthisway, one can enforce better physical information security management.
In case of packet loss /server failure, we have implemented data recovery and error correction algorithm similar to RAID 2.
However, one can implement any other reliability algorithm.

12 Electronic Devices Volume 2 Number 1 March 2013

3.1 Experimental Setup
Theexperimental setup involved aprototype server cluster consisting of Dell Optiplex GX260 PCswith Intel Pentium 4, 2.8GHz
Processors, 1GB RAM, and an Intel 1G NIC on the motherboard.

All systemswere connected to aLinksys 16 port 1 Gbps Ethernet switch. Linux clientswere used to run the http_load stresstool
[20], and in addition, bare PC Web clients capabl e of generating 5700 requests/s was used to increase the workload beyond the
http_load limit of 1000 concurrent HT TP requests/s per client. The split server cluster was also tested with Internet Explorer
browsers running on Windows and Firefox browsers running on Linux.

4. Reliability Analysis
Protocol interactions are separated into two parts: connection setup and data transmission.

4.1 Analysisof Connection setup
From Figure 1, let ¢ denotesthe probability of failure of each transaction.

7 = 1- ¢ denotes the probability of success of each transaction.

For each transaction (component or packet), 7 isequivalent to probability of successful transmission (which isaprobability of
no bit error in the packet). Thus,

_ (M 0 n
=) P°-p) 0
Where p denotes probability of abit error and n denotes the number of bits in one packet.
Thus, let R denotes the probability of successful connection setup between client and server.
Then

R=7® @
because there are eight packets for connection setup.

4.2 Analysisof Multi-Server Configuration

This configuration representsthe ordinary client-server packet transmission. A client sendsarequest for packet transmission to
the server. During this connection setup process, if the client doesn’t know |P address of a server, it will send packets to ask
Domain Name Server (DNS).

4.2.1 Single Server
Assume that the client knows | P address of the server, it will initiate the connection setup directly with the server. Inthis case,
we consider there is one data packet. Thus, the reliability of the connection setup and data transmission between client and CS
isequal to

R= 7[9 (3)

4.2.2 Multiple Servers
Assume that DNS/dispatcher (in the cluster system, DNS also works as a dispatcher) does round robin. The system will bein
serieswith parallel system of serversas shown in Figure 5 configuration -2b and reliability of the system will be

R=m3(1- (1-7%)") @

where i denoted number of servers.

4.2.3Multi-CSand Multi-DS Configuration

Split Architecturein Figure 2 and 3 allows multiple CSs and multiple DSsin the system. During datatransmission CSsand DSs
work independently; however, during connection setup, DSswill depend on the successful connection setup between CSs and
clients. In this analysis, the relationship during connection setup (i) CSs and DSs are viewed as a series component in the
system, (ii) in the system composed of multiple CSs, all CSs are considered parallely connected components, and (iii) in the
system composed of multiple DSs, all DSs are considered parallely connected components.

Electronic Devices Volume 2 Number 1 March 2013 13

CS f DS1]

Client-1 ®© © © Client-n

CS: Connection Server DS. Data Server
Configuration 6

Figure 4. Split architecture (Configurations 5and 6)

Thus, there aretotally eight packetsfor connection setup between aclient and CS and two inter server packets between aCSand
DS per connection.

Let R denotesthe probability that CSswork successfully. R, denotesthe probability that CSsand DSs have asuccessful inter
server packet transmission.

R denotes the probability of successful system setup or system reliability

R=R.sRps ©
R.¢= Probability that one of CSsworks
=1 —Probability that all CSsfail
=1— (1 - Probability of the successful setup)’
Reg=1-(1-7")' ®)

wherei denotes number of CSs
R,s= Probability that one of DSsworks
= 1—Probability that all DSsfail
=1 — (1 - Probability each DSswork properly) !

14 Electronic Devices Volume 2 Number 1 March 2013

R=1-(1-7%] 0
where|j denotes number of DSs
Thus
R=(1-(1-7"))(1-(1-7%)) ©
4.2.4 Analysisof variesconfigurations
4.2.4.1 Experimental setup with 1 CS, 1 DSwith full delegation
The configuration of thiscaseisshown in Figure 4 configuration -1a. We are using the same type of hardware configuration for

CS, DS or Single Server (SS) and only differ in software architecture. All machines have the same hardware reliability and
different software reliability according to their roleas CS, DS or SS. Reliability of this setup will be

R=(1-(1-79)(1-1-7%))

For simplicity, assume a http request isfor afile of only one packet. Thus, DSis sending only one packet, anditisinvolvedin
only three transactions which are two inter server packets, and one data packet. The reliability of the system will be

R=(1-(1-7")(1-(1-79%)
R=n%(r%=n" (10)

4.2.4.2 Experimental setup with 1 CS, 2 DSwith full delegation
The configuration of this caseisshown in Figure 5 configuration-2a. A system will never break entirely, unlessall CSand DSs
failsat the sametime, so configurationisthe parallel configuration. Reliability of the whole system (CS and DSs) will be

R=(1-(1-7)(1-1-7%")
R= (7% (1-(1-7%") 1
Where n isthe number of DSs.

4.2.4.3 Experimental setup withn CS, 1 DSwith full delegation
The configuration of this caseis shown in Figure 2 configuration 3. Thereliability of the system will be

R=(1-(1-7)") (1-(1~-7%)

R=(1-(1-7)") (x?) 1)
4.2.4.4 Special casewith n CSsand m DSs
For the special case, if the experimental setup with n CS, mDSwith full delegation and CS takes part in datatransmission. CS
sends x percent of the packets, and DS send the remaining.
Thereliability of the system will be

R=(1-(1-7)" (1- (1%)" (13

Assume that the total number of packets in that particular connection is zand CS sends x packets.

4.3 Comparison of DNSsystem and split-protocol system

4.3.1 Normal Transaction
Assumethe server without split protocol, as shown in Figure 5 configuration-1b, does minimum 10 transactions, asingle server
systemreliability is

R=x1

For the system, of two Non-Split severs requires some kind central control (scheduler/dispatcher) mechanism to forward
requests between two different servers as shown in Figure 6 configuration 3-b. L et usassumefor ssimplicity it followsthe round-

Electronic Devices Volume 2 Number 1 March 2013 15

™
@ Ds1 | Configuration-la
DNS s Configuration-1b

Configuration-2a

DNS Configuration-2b
(=)
sSs
Figure 5. Architecture for two and three system components (Configuration 1and 2)

(cs)
N

—
(DS1 ‘

Configuration-3a

k

(b2 |
)
(bss |
‘\i)

=

=)

Figure 6. Architecture for four system components

Configuration-3b

robin mechanism to share requests, and it does most strai ghtforward transactionsit receives SY N and forward SY N to one of the
servers, and receivesACK from SSthen SS handlestherest of connection and datatransfer. Thereliability of the system will be
thereliability of thisDNStimethereliability of server.

R=r¥(n1%)=71
4.3.20ne DNSwith nservers

The configurationissimilar to Figure 6 configuration 3-b except the number of serversisvariable. Thereliability of the system
is

R=r3(1-79") 14
5. Reliability Comparision

Thereliability comparison between DNS/dispatcher cluster and split cluster isasfollows. In this scenario, only data packet is
considered.

Let Ry\s- 1 ss-; denotesthereliability of one DNSand number of SSsisi.

LetReg_; ps=; denotesthereliability of the number of CSisi and asthe number of DSisj.

16 Electronic Devices Volume 2 Number 1 March 2013

We have compared two different scenarios.
Case 1: one DNS/one SSvsone CS/one DS
RDNS=1,SS=1: (%) (x*0)=n"

— (3 (8 — 11
RCS:l,Ds:l_(”)(79)=7

— _ 11
Res=1,ps=1 =”713=,[72 (5
RDNS=1,SS=1 T
Case2: one DNS/multiple SSsvsone CS/multiple DSs
RDNS:l,SS:iz(ﬂ:s) (1-(@2-7'%)")
Rcszi,Dgzj:(l_(l_ﬂ:s)s) (1_(1_7[3)j)

RCS:i,DS:j (1_(1_7[8)i)(1_(1_7r3)j)
R

(16)

ns=rss=i () (1-(1-7"))
For instance, one CS/two DS vs one DNS/two SSs
Rcs:l,Ds:z (1-1-7%)1-1-7%3)
Rons=1, 522 - (73 (1-(1-719)?)
R (7°%) (1-(1-7%)

CS=1,DS=2 _
RDNS:l,SS:z - (71'3) (1—(1—71'10)2)

Reliability ratio will be
(7°) (1-(1-7%)

CS=1,08=2 = (73 (1-(1-7)

)RDNS: 1,88=2 (17

T # of DSsor SSs Reliability ratio
01 2 99.94999

05 2 3.751832

09 2 0.95023

Table 1. Thereliability ratio between split and DNS dispatcher system

In split system, CS can take therole of DS after the connection setup and vice versa. Thus, thereliability ratio for thiscaseis:

n’+ (1-(1-m%)*") (1= (%) * (1-7°)2"Y

R _
CS=1,DS=2 = (%) (1-(1-72)?) RDNS= 1,S5=2 (18)
T # of DSsor SSs Reliability ratio
01 2 14985053610
05 2 1363.384465
09 2 2355400852

Table2. Thereliability ratio between split and DN S di spatcher
system when therole of CSand DS are interchangeable

Electronic Devices Volume 2 Number 1 March 2013 17

When CSand DS are capabl e of interchanging their roles, all componentswithin the system become parallel. The parallel nature
of this type of system means that all components must fail in order to failure of the system. From Table, | and 11, it is quite
apparent that the reliability of the split system is much higher than that seen in the DNS/dispatcher system.

If there are n data packets and m servers, the reliability ratio will be (thisis a generic case)
R 7.E8+(1_(1_n.2+n)m+1)(1_(71.8)*(1_7z.2+n)m+l)

CS=1,DS=m = Rons=1,s5=m

(%) (1-2-7""M"™)

(19

6. Discussion

Therole change over and migratory ability of split server [28] (CS can become DSvice versa) make split cluster configuration as

the system of completely parallel components. Figure 6 showsthat a system of one CS/Dispatcher and multiple DSs/SSsfor a

given component reliability 7 = 0.1 with one data packet, the reliability ratio of Split cluster and dispatcher based cluster
R(CS=1,DS=3)

R(DNS=1,S5=3)

linearly with increase’snumbers of DSs/SSs. However, thereliability of split systemisstill alot higher than the one of dispatcher

system. With the addition of each DS/SS, system reliability ratio drops by 0.05%. And the reliability ratio approaches one for
system of 100,000 DSs/SSs.

>>1. It indicatesthereliability of the split system is comparatively very high. Thereliability startsto drop

100
99.95
99.9
99.85
99.8
99.75
99.7

Reliability Ratio

99.65
99.6
99.55

99.5
1 2 3 4 5 6 7 8 9 10

No. of DS/SS

Figure 7. Reiability ratio for system of multiple DS/SSsforn =0.1

From Figure 8, we can notice that for asystem of one CS/Dispatcher and multiple DSs/SSsfor given component reliability 7 =

. - . : . R(CS=1,DS=3)
0.9 with one data packet, the reliability ratio of Split cluster and dispatcher based cluster >>1. Itindi
p y Spl p R(DNS=1,55=3) 1. Itindicates
reliability of the split system is comparatively high. Asthereliability starts dropping exponentially with increase’s numbers of
DSs/SSs, the reliability ratio approaches less than one for the system of two DSs/SSs. For higher individual component
reliability (), split system for one data packet does not offer any advantage over the regular dispatcher cluster system.

However, if weincreasethe number of datapacketsfrom 7 to 297, thereliability ratio becomes greater than 1 for numbersof DS
SS less than 4. When the number of data packets greater than 297, reliability ratio starts dropping less than 1 and thereis no
effect on the increase’s number of DSs/SSs in the system.

From Figure 9, we can notice that for asystem of one CS/Dispatcher and three DSs/SSsfor given component reliability 7 =0.9
with multiple data packets, thereliability ratio becomes greater than one when the number of data packets are greater than 7 and
continueto increase until 300 data packets. Thereliability ratio approachesto the maximum value 1.24 and stays higher than

18 Electronic Devices Volume 2 Number 1 March 2013

one for large numbers of packets.

Figure 10 showsthereliability ratio of completely parallel split system and combination of the seriesand parallel component of
DNS/dispatcher based system. We can noticethat reliability ratio isalwaysgreater than one. Thisratio is>> 1 for reliability, x of
individual component < 0.4 and approaches 1 when individual component reliability becomes 1.

1.3
m©=09
1.1
o
IS
o
> 0.9
E
8
)
T 07
“*—H____*
0.5
1 2 3 4 5 6 7 8 9 10
No. of DS/SS

Figure 8. Reliability ratio for system of multiple DS/SSsfor ©=0.9

Figure 11 showsthereliability ratio with multiple variableslike numbers of packets (n), reliability of individual components(r)
and numbers of DSS/SSs (j). We have noticed that the reliability ratio decreasesif al other components n, z and j increases
simultaneously. In real-world applications, TCP/IP protocol providesreliability by offering retransmission and various control
mechanism. In our discussion, we assume protocol reliability asadditional reliability offered in the system.

5.1 FailureRateand Survival Function

From the previous section, the distribution of each protocol component isthe binomial distribution. With the number protocol
of component n approach infinity, distribution of each component is poison distribution [33] with arrival rate, A whichisequal
to thereceiving rate of each component. Thus, servicetime or failurerate (FR) of each component isan exponential distribution
[34].

1.4

1.2 + 4 —

0.8

0.6

Reliability Ratio

0.4

0.2

0
0 25 50 75 100 125 150 175 200 225 250 275 300

No. of Data Packets

Figure9. Reliability ratio for system of 3DS/SSsfor t =0.9

Electronic Devices Volume 2 Number 1 March 2013 19

1101

1001

901

801

701

601

501

Reliability Ratio

401

301

201

101

1 * + * +
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Reliability of individual component

Figure 10. Reliahility ratio for system of multiple DS/SSsfor variablent

The systemismodeled asfollowing [33, 34]
1. All the n components servicetime X are Exponentially distributed:

F(M) =P{X<T} =1-e—AT; f(T) =Ae—-AT

25.00
50.00 -\ ~1®=Numbersof Packets In 100s
Reliablity of Individual
Component
15.00 4— _Ré‘li%iﬁty of whole System
=»¢=No|of DS/SS
10.00
5.00 +
;s E S
0.00 B=——R—i———{—lf—r
1 2 3 4 5 6 7

Figure 11. Reliability ratio for system variable DS/SSs, n packet and variablen

1. Each i component 1<i <n, Failure Rate (FR) isconstant. (,4, (t) = 4,)
2. All n componentsareidentical. Then FR of each componentisequal to A (4, = 4; 1<i<n)

3. All n components are independent. Then

20 Electronic Devices Volume 2 Number 1 March 2013

P{XAX, A X >Th=P{X >T} P{X,>T}...P{X >T}
4. Thereliability of each component, R (T) is
R(M=P{X>T}=e"

A==In(R(T)/T

T denoted system mission time.

5. Systemfailurerateis1—R (T) where R(T) denoted thereliability of the whole system.

Thereare supposed “n” protocol components and probability of non-failure (of each component (x1, X2, x3, x4...) are exponentially
distributed: For simplicity wewill assume, every i component 1<i < n probability of failureisequal for all component, i.e. Failure
Rate (FR) for each component issameand (6i (t) = 6i). For given operational time and all system components areidentical and

their failuretimeisindependent. Therefore, thereliability of, any ith component (1 <i <n) reliability “IT, (t)": “I1, (t)" = P (Xi >7)

=ef*=> 9 =—In (I, (1)) / .

First, we have assumed identical components, that areidentical DSin acluster System, and they have same FR. Also, they are

independent components are those whose failure does not affect the performance of any other system component.

First, we have assumed identical components, that are identical DS in a cluster system, and they have same FR. Also they are
independent components are those whose failure does not affect the performance of any other system component. And

Reliability of such system isthe probability of acomponent (or system) of surviving for its mission time.

6.2 Reliability of seriesof identical component:

I1(t) = P (System operate without failure) = P (Compland Comp 2...and Comp n operate without failure)

IfT12(t) =112 () =T1n(7)
=I11(t).M2(t). M3 (1)...MIn(t)=e e e e =(e®)rn.

T(7) = [ITi ()]™

Reliability of series of non-identical component: That means each component has different reliability and failurerate.

I(t) =11 1(t) . 112 (1) . [13(1) ... ITNn(7)
—a" 01t e 021 e 63‘:_“ e ot
=e "0
— o 0s(1)
N .

6s=) ., 0
Reliability of Parallel identical components:
I =1-(1-1T) x (1-1I1,) x... (1 - IT); if the component reliabilities differ
[T =1—(1-11)x (1-IT) x... (1~ IT); if the component with similar reliabilities
1-[1-11]"

Let us calculate system of two parallel components
Nr=1-{1-111(7)) 1-112(7))}

=1-{(1-e ") (1-e)}

- e—(-]lr +e 027 _ e (61+62)7

AndMTTF= u :J.:TL'(T) dr = J‘; (e‘elf + e—BZT_ e—(91+92)r)dT

_ 1,1 1
Tl 62 01+62

And FR = s = Density Function / Survival Function = —(% n(7)/11(7)

(20)

(2D)

Electronic Devices Volume 2 Number 1 March 2013

21

— (ele—ﬁl‘r + 926—621 _ (91+ 92) e—(el+62)1:)/ (e—el‘t + e—62‘r _ e—(61+62)1:) (22)

This system hazard rate 6s(t) can be calculated as afunction of any missiontimet [34] .
9. Conclusion

In this paper, describe asimple modeling approach that consider the architecture of the software and estimate the reliability of
interactions between the components, and interfaces with other components. This paper details the components of the Split —
architecture, and devisesreliability assessment based on individual component of software and describeshow it can be used to
examine software behavior. It highlights on an inbuilt reliability in a split-protocol dueto the dual and interchangeable role of
Connection Server (CS) and Data Server (DS). We discussed the split protocol reliability concept citing different application
configuration instances where spilt is ideal. Various configurations discussed for Mini-cluster and migratory models. Model
demonstratesthat the split system offersvery high reliability in comparison to thetraditional cluster system. Split architectures
offer inherent redundancy, high performance, and extremely reliable at the lower cost. The ideas presented here could also be
leveraged to construct scalable migratory server clusters based bare PC and the split protocol concept.

References

[1] Palmer, Michael. (2010). MCITP Guide to Microsoft Windows Server 2008, Server Administration: Exam# 70-646. Course
Technology Ptr.

[2] Gayen, Tirthankar, Misra, R. B. (2008). Reliahility bounds prediction of COTS component based software application,
International Journal of Computer Science and Network Security, 8 (12) 219-228.

[3] Fan Zhang, Xingshe Zhou, Junwen Chen, Yunwei Dong. (2008). A Novel Model for Component-based Software Reliability
Analysis, School of Computer Science and Engineering, Northwestern Polytechinical University, 11" IEEE High Assurance
Systems Engineering Symposium.

[4] Gokhale, S., Trivedi, K. S. (1997). Structure-Based SoftwareRdliability Prediction, In: Proc. Fifth Int’ | Conf. Advanced Computing
(ADCOMP 97), p. 447-452, Dec.

[5] Gokhale, S., Lyu, M. R., Trivedi, K. S. (1998). Reliability Simulation of Component-Based Software Systems, In: Proc.Ninth
Int'l Symp. Software Reliability Eng. (ISSRE'98), p.192-201, Nov.

[6] Gokhale, S., Wong, W. E., Trivedi, K. S., Horgan, J. R. (2004). An Analytic Approach to Architecture-Based Software
Performance and Reliability Prediction, Performance Evaluation, 58 (4) 391-412, Dec.

[7] Krishnamurthy, S., Mathur, A. P. (1997). On the Estimation of Reliability of a Software System Using Reliabilities of Its
Components, In: Proc. Eighth Int’| Symp. Software ReliabilityEng, p. 146-155, Nov.

[8] Goseva-Popstojanova, K., Mathur, A. P, Trivedi, K. S. (2001). Comparison of Architecture-Based Software Reliability Models,
In: Proc. Int’'| Symp. Software Reliability Eng., p. 22-31.

[9] Goseva-Popstojanova, K., Kamavaram, S. (2004). SoftwareReliability Estimation under Uncertainty: Generalization of the
Method of Moments, In: Proc. Eighth IEEE Int’'| Symp. High Assurance Systems Eng., p. 209-218.

[10] Ammons, G,, Appayoo, J., Butrico, M., Silva, D., Grove, D., Kawachiva, K., Krieger, O., Rosenburg, B., Hensbergen, E.,
Isniewski, R.W. (2007). Libra: A Library Operating System for aJVM in a Virtualized Execution Environment, In: VEE ' 07,
Proceedings of the 3 International Conference on Virtual Execution Environments, June.

[11] Canfora, G, Di Santo, G, Venturi, G, Zimeo, E., Zito, M. V. (2005). Migrating web application sessionsin mobile computing,
In: Proceedings of the 14" International Conference on the World Wide Web, p. 1166-1167.

[12] He, L., Karne, R. K., Wijesinha, A. L. (2008). The Design and Performance of aBare PC Web Server, International Journal
of Computersand Their Applications, IJCA, 15(2) 100-112, June.

[13] He, L., Karne, R. K., Wijesinha, A. L., Emdadi, A. (2009). A Study of Bare PC Web Server Performance for Workloadswith
Dynamic and Static Content, The 11™ IEEE International Conference on High Performance Computing and Communications
(HPCC-09), Seoul, Korea, June, p. 494-499.

22 Electronic Devices Volume 2 Number 1 March 2013

[14] Karne, R. K., Jaganathan, K. V., Ahmed, T. (2005). DOSC: Dispersed Operating System Computing, OOPSLA ' 05, 20" Annual
ACM Conference on Object Oriented Programming, Systems, Languages, and Applications, Onward Track, ACM, San Diego,
CA, October, p. 55-61.

[15] Karne, R. K. (2002). Application-oriented Object Architecture: A Revolutionary Approach, 6™ International Conference,
HPC Asia2002 (Poster), Centrefor Devel opment of Advanced Computing, Bangal ore, Karnataka, India, December.

[16] Milgjicic, D. S., Douglis, F., Paindaveine, Y., Whedler, R., Zhou, S. (2000). Process Migration, ACM Computing Surveys, 32
(3), September, p. 241-299.

[17] Zagorodnov, D., Marzullo, K., Alvisi, L., Bressourd, T. C. (2009). Practical and low overhead masking of failures of TCP-
based servers, ACM Transactions on Computer Systems, 27 (2), Article 4, May.

[18] http://www.acme.com/software/http_load.

[19] Jiao, Y., Wang, W. (2010). Design and implementation of load balancing of a distributed-system-based Web server, 3
International Symposium on Electronic Commerce and Security (ISECS), p. 337-342, July.

[20] Ciardo, G, Riska, A., Smirni, E. (2001). EquiLoad, A Load Balancing Policy for Clustered Web Servers. Performance
Evaluation, 46 (2-3) 101-124.

[21] Sujit Vaidya, Kenneth J.Chritensen. A Single System Image Server Cluster using Duplicated MAC and IPAddresses, In:
Proceedings of the 26" Annual |EEE conference on Local Computer Network (LCN’ 01).

[22] Rawadl, B., Karne, R., Wijesinha, A. L. (2011). Splitting HT TP Requestson Two Servers, The Third International Conference
on Communication Systemsand Networks: COMPSNETS 2011, January, Bangalor, India.

[23] Rawal, B., Karne, R., Wijesinha, A. L. (2011). Mini Web Server Clustersfor HTTPRequest Split, 13" International Conference
on High performance Computing and Communication, HPCC-2011, Banff, Canada, | Sept., p. 2-4, .

[24] Rawal, B., Karne, R., Wijesinha, A. L. (2012). Split Protocol Client/Server Architecture, The 17" IEEE Symposium on
Computersand Communications- |SCC 2012, p. 1 - 4 July, Cappadocia, Turkey .

[259] Rawal, B., Karne, R., Wijesinha, A. L. (2012). A Split Protocol Techniquefor Web Server Migration, The 2012 International
workshop on Core Network Architecture and protocolsfor Internet (ICNA-2012) October, p. 8-11, Las

[26] Sultan, K., Srinivasan, D., lyer, D., Lftod, L. (2002). Migratory TCP: Highly Available Internet Services using Connection
Migration, In: Proceedings of the 22" International Conference on Distributed Computing Systems, July.

[27] Cohen, A., Rangargjan, S., Slye, H. (1999). On the performance of TCPsplicing for URL-Awareredirection, In; Proceedings
of USITS 99, The2™ USENIX Symposium on | nternet Technologies& Systems, October.

[28] Zagorodnov, D., Marzullo, K., Alvisi, L., Bressourd, T. C. (2009). Practical and low overhead masking of failuresof TCP-
based servers, ACM Transactions on Computer Systems, 27 (2), Article 4, May.

[29] Cizulius, W. (1982). Private communication.

[30] Godl, A. L. (1985). Softwarerdiability models: assumptions, limitations, and applicability, |EEE Trans. Software Eng. 11 (12)
14111423,

[31] http://ftp.math.utah.edu/pub/tex/bib/sigmetrics.html

[32] http://www.ijcst.com/vol 34/3/khasim. pdf

[33] Sheldon M. Ross, A First Course In Probability, Eighth Edition

[34] START Understanding Seriesand Parallel Systems Reliability, Selected Topicsin Assurance Related Technologies, 11 (5).

Electronic Devices Volume 2 Number 1 March 2013 23

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

