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Neural Principal Component Analysis for ECG Signal Monitoring
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ABSTRACT: In this paper, we address the problem of monitoring the cardiovascular system through the integration of
automatic tools. This monitoring is to detect heart diseases starting from the electrocardiographic signal (ECG). In particular,
we propose a method for detection of defects in the ECG signal analysis exploring the non linear principal components
(NLPCA). The data matrix consists of 528 measurements and 9 variables, these variables are determined from waves and
segments of the ECG. The proposed approach allows to reduce the size of the data matrix and find the linear and non-linear
relationships between variables. Defect detection is established by the statistical SPE (square predictive error) which is
based on residues. Defective variables are found by calculating their contributions, its have the highest contributions.
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1. Introduction

The cardiovascular system is one of the biological processes which took a lot of interest by the previous and current researches.
Its analysis and its supervision was establishes through the signal supplied by the electrocardiogram called ECG. Besides
analyses workbenches by the expert (cardiologists), the supervision of the cardiovascular system by the introduction of the
tools of signal processing of and modeling can give an idea onto the state of the heart (normal or sick). This supervision is
establishes by integrating the characteristics of the ECG, its waves (P, QRS and T ) and or by its segments. It consists in the
screening and the classification of the cardiac arrhythmias. Several works introduced the artificial intelligence for the analysis of
the state of the cardiovascular system of others used the combination of various methods (neuron network, fuzzy logic) [1, 2, 3
and 4]. These applied approaches are methods of processing of quantitative and qualitative data.

These computing tools assert themselves at the moment as a new major medical technology, the purpose of which is not to
replace the work of the expert but to facilitate it. The supervision of the processes with multi-variable statistical tools is
developed during these last years. Among these statistical tools, the principal components analysis is widely used for the
surveillance of the industrial and biological processes [5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15]. The PCA is a technique of projection
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of the data towards a space of reduced dimension. This method in summer often used given its capacity to capture the linear
relations between the variables of the system at the still state. However, this approach has limits to treat data in the form of
measures on industrial or biological processes presenting generally non linear characteristics. Often by using of the linear PCA,
we cannot indicate the non linear part of variables involved in the data. For that purpose, we need methods with non linear PCA
to exploit this non linearity between the parameters for the surveillance of the system [16, 17, 18 and 19].

In this work, we propose an approach of detection of the defects by using a neural principal components analysis. This
approach is applied to a signal ECG to set up the pathological state of the cardiovascular system.

2. The Electronicardiogram ( ECG)

A cardiac fiber in the course of depolarization can be likened to an electric dipole. At the given moment, the front of the wave of
activation trained by all the elementary dipoles creates an electric field which is a function of depolarizes moments. The
recording of the temporal evolution of the resultant electric field, made by means of cutaneous electrodes, is called the
electrocardiogram of surface.

2.1 Configuration of normal ECG
For every cardiac beating, the electrocardiogram registers successively 5 waves: P, Q, R, and T (figure 1). Generally the waves Q,
R and S are grouped and we speak rather about the complex QRS [20].

Figure 1. Normal ECG

• The wave P: It represents the auricular depolarization. its duration is of the order of 90 ms. It is a positive wave the amplitude
of which is normally lower or equal in 0.2 mV.

• The complex QRS: It corresponds to the ventricular depolarization preceding the mechanical effect of contraction. its normal
duration is included between 85 and 95 ms.

• The wave T: It corresponds to the repolarization of ventricles. It is asymmetric, of a slightly oblique ascending branch and an
steeper downward branch. Its amplitude is lower than 2 mm. The normal wave T  have an amplitude lower than the complex QRS.

2.2 The ECG intervals
The intervals and the segments of the electrocardiographic plan of the important parameters, allow to estimate the normality or
not of the space between two electric events.

• The PR (or P-Q) interval: Corresponds in time between auricular and ventricular depolarization. It is the weather of propagation
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of the wave of depolarization through auricles, the atrio-ventriculaire knot, the beam of HIS and the network of PURKINJE, up
to ventricular myocardiques.

• The QT interval: C orresponds in the time of ventricular systole which goes of the beginning of the ventricles excitement of till
the end of its relaxation.

• The segment ST: It corresponds to ventricular repolarization, phase in the course of which corresponds to the phase of
ventriculars cells are quite depolarized: there is no electric extension, the segment is then iso-electric.

• The RR interval: Separates the summits of two successive waves R and represents the immediate frequency.

3. Non Linear Prinicpal Components Analysis (NLPCA)

3.1 Principle of NLPCA
The linear principal components analysis is a projection based on statistical tools traditionally used for the reduction of
dimension. We consider the matrix of data Z = [z

1
, z

2
,..., z

m
] ∈ ℜN × m, the non linear principal components analysis z is presented

as follow:
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] is the principal components matrix, P = [p

1
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m
]is eigenvectors matrix and E is the matrix of residue.

The PCA identifies linear correlations between the variables of process. On the other hand, the non-linear PCA can extract
correlations as linear as non-linear. The generalization is realized by throwing the variables of process on curves or surfaces and
not on lines or plans using the same objective, by minimizing the cost function following one:

E = {|| z − z ||2}�

The matrix of data Z can be in term of non linear principal components A where A ≺ m, by the following equation:

Z = F (T ) + E

where T = [t
1
, t

2
,..., t

m
] is the principal components matrix, F is a non linear function is which corresponds to the matrix of the eigen

vectors in case of linear PCA and E is the matrix of residues.

3.2 NLPCA based on Neural Network
The structure of neural network in the figure 2 is applied, by using five series-parallel layers. A first layer of entrance, a layer in
the middle called sleeps of constriction which determines the number of principal components and a layer of exit. In a first layer
hidden from coding, we resort to a function of non linear transfer sigmoïdale and in the third layer of decoding or reconstruction,
we have used a function of non linear transfer sigmoïdale defined by the following equation :

σ (x) = 1
1 + e − β x

(1)

(2)

(3)

(4)

The number of principal components tA in the layer of constriction is determinate using the Webb criterion [21] defined as follow:

ε (A) =
|| X − X ||2�

|| X − X ||2
(5)

where X A matrix is of which the vectors consist of average vectors of the matrix X. The A number will be increased and will be
watched at the same time.

3.3 Defect detection
For the detection of defects, we use the quadratic error called SPE expressed by the following formula:

i = 1

A
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Figure 3. Neural Network

SPE = || x ||2 = xT PP Tx = xTCx~ ~ ~ ~
(6)

with e = (I − PPT) x present the residue of the vector x.

We consider a vector of measures x which follows a normal distribution N (0, Σ) with λ
i 
, i = 1, ..., m are the eigenvalues of Σ. The

SPE limit detection is determinate by Jackson and Mudholkar [22] as follow:
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3.4 Defect localization
The calculation of contribution to a variable by the SPE method is determined by considering the large square residue associated
with a single variable:

SPE
i
 = x

i
2~ (9)

Statistical flaw detection has the quadratic form defined as follows:

statistic (x) =  xT Bx = || x ||
B
2

Whith B is equivalent to C in case of SPE method use and D for Hotelling T ² method use.

(10)
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Statistic (x) is given by the following equation:

statistic (x) = xT Bx = || B1/2 ||2  = Σ
N

i =1
(ξ

i
TB1/2x)2 = Σ

N

i =1
cstatistic (11)

The contribution of  x
i
 is appointed by cstatistic = (ξ

i
TB1/2x)2, and ξ

i 
is the ith column of the identity matrix and direction x

i
.

For statistical SPE, the contribution calculation for a variable is defined in [91] as follows:

i

cSPE = (ξ
i
T C1/2 x)2 = x

i
2~

4. Validation of Proposed Approach

4.1 Algorithm
The steps of the proposed method of ECG defect detection are described is the following diagram:

Database Matrix

Pretreatment of data

NLPCA

Number of principal component

ECG defect detection

ECG defect localization

Figure 4. Proposed algorithm

The first step is to prepare the data matrix using the characteristic waves and segments of the ECG.

Secondly, a pretreatment is called to refine the data matrix by reducing its dimensions and center its measures.

In the third step, we apply the principal component analysis based on neural network. We introduce a multilayer’s neural
network. Several learning algorithms are used and compared in terms of performance.

The number of principal components to retain is then determined. Indeed, there are several methods for this fact telque: the
cumulative percentage of total variance, average eigen values .... We chose the method based on the criterion of Webb since it
is the most compatible with the NLPCA.

In the detection phase defects, we compared the results of two techniques: SPE and Hotteling methods. The first method gives
more effective results and will be introduced for the detection of defects.

Once detected, we are called to localize defects to determine their origin. The calculation of contributions is introduced to
determinate the defectives variables.

~
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4.2 Database matrix
The database MIT/BIH provided by laboratory of the hospital of Beth Israel on Bosten in collaboration with the institute MIT
is formed by different bases. This database contain 25 registrations left are chosen among the same group to include arrhythmias
less common but medically significant. The registrations are sampled on 360 HZ per canal with the resolution of 11 bits on the
range 10 mv. Two cardiologists independently annotate each ECG.

The matrix of introduced data is 9 variables and 529 measures (9 × 529) as shown in figure 4. These variables are defined as
follow:

• PA: indicate the amplitude of the wave P.

• RA: it is the amplitude of the wave R.

• QA: it is the amplitude of the wave Q.

• TA: indicate the amplitude of the wave T.

• SA: defined the amplitude of the wave S.

• QS: it is the interval which separates the waves Q and S.

• QP: it is the interval which separates the waves Q and P.

• RR: it is the segment separating two successive R waves.

• ST: it is the segment separating the waves S and T.

4.3 Pre Treatment
To find successful results, we are called to reduce and to center the matrix of studied data. The figure below presents the various
variables after this operation:

4.4 Results
We begin with the determination of the number of principal components by using the index ε (A). The index ε (A), calculated for
the various variables, is represented in the following table:
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Figure 5. Evolution of variables
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Figure 6. Reduced and centrated variables

   A        1        2         3        4        5          6        7         8        9

ε (A)    1.00   0.87    0.88    0.86    0.81    1.13   0.95   1.10   1.23

Table 1. Index ε (A) for Each Variable

So the number of principal components to be retained in the model ACPNL is A = 4. We have four neurons in the layer in the
middle where the index ε (A) is minimal.

These fixations are proposed in the toolbox nntraintool [23] and defined as follow:

• Learning: 70 % of data are presented to the network during the learning and the network is adjusted according to its error (the
curve in blue).

• Validation: 15 % of data are used to measure the generalization of network and interrupt the learning when the generalization
stops improving (the curve in green).

• Test: 15 % of data have no effect on the learning and supply a test independent from performance of hanging network and after
the learning (the curve in red).

For the validation of our approach and during the phase of learning of the network we used the learning of back-propagation and
its various optimizations. Among these algorithms:

• Gradient descent with momentum and adaptive learning rate back- propagation (traingdx).

• Gradient descent back- propagation (traingd).

• Gradient descent with momentum back propagation (traingdm).

• Conjugate gradient back-propagation with Polak-Ribiére updates (traincgp).

• Scaled conjugate gradient back-propagation (scg).

In the following table we represent a comparative study of the different algorithms of the auto-associative learning:

The previous table shows that the algorithm based on the Gradient descent with momentum and adaptive learning rate back-
propagation have the closest value of mean square error to the threshold that is equal to 0.1 (figure 7). That is why this algorithm
will be included in rest of our study.

Figure 7 shows the mean squared error (mse) and we note that the best validation performance is equal to 0.2 at iteration 171.
This value is the closest one to the goal which is equal to 0.1.

L
ev

el



   50                               Electronic Devices   Volume  2   Number  2   September  2013

 traingdm   traingd  trainscg traincgp traingdx

Performance (mse)        1.4        1.5      0.4      0.8       0.2

           Time     89 sec     90 sec    6 sec    4 sec                    20 sec

      Iterations       1000       1000       40       18       171

     Structure 8-12-2-12-8 8-12-2-12-8 8-10-2-10-8 8-8-1-8-8 8-8-1-8-8

Table 2. Index ε (A) for Each Variable
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For the defect detection we use the SPE method defined in III.B. The following figure shows a defect detection using the SPE
statistic.

In Figure 8 we use three control limits for the SPE statistic, at 99.9% (green), 99% (red) and 95% (yellow). Exceeding these three
limitations proves the existence of a default .

The following figure shows the differents contribution of variables, the variables RA and RR which have the highest contributions
are considered defected.

5. Conclusion

In this paper, a method for the detection of defects in an electrocardiogram is approached basing on the non linear principal
components analysis. The proposed approach introduces a network of auto-associative neuron in five layers. The matrix of data
is established by 9 variables determinate from the waves and characteristic segments of the studied ECG. First, we make a
preprocessing which consists in reducing and in centering the matrix of data what is going to increase the reliability of the
results. The proposed NLPCA is applied by using the algorithm of learning based on the Gradient descent with momentum and
adaptive learning rate back- propagation. This algorithm is chosen after several tries and showed better results. The performance
in the iteration 171 found equal to 0.25 is the closest value to the threshold (0.1). In the detection of the defects we use the
quadratic error SPE and we apply it to a sick ECG. To define exactly the location of the detected defect we calculate contributions
of all variables. RA and RR which have the highest contributions are considered defected variables.
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