HardwareArchitecture Design and M apping of ‘ Fast I nver se Square Root’ Algorithm

Saad Zafar, Numair Zulfigar @"
College of Electrical and Mechanical Engineering

National University of Science and Technology

Pakistan

saadzafar31@ce.ceme.edu.pk

ABSTRACT: The Fast Inverse Square Root algorithm has been used in 3D games of past for lighting and refl ection cal culations,
becauseit offersup to four times performance gains. This paper presents a har dwar e implementation of the same algorithmon
an FPGA board by designing the complete architecture and successfully mapping it on Xilinx Spartan 3E after thorough
functional verification. The results show that this implementation provides a very efficient single-precision floating point
inverse sgquare root calculator with a practically accurate result being made available after just 12 short clock cycles. This
performance measureisfar superior to the software counterpart of the algorithm, and is not processor dependent like rsgrtss
of x86 SSE instruction set. Results of this work can aid FPGA based vector processors or graphic processing units with 3D
rendering. The hardware design can also form part of a larger floating point arithmetic unit for dedicated reciprocal square
root calculations.

Keywor ds: X5F3759DF, Digital Design, FPGA, Reciprocal Root, Reconfigurable, Verilog
Recelved: 24 November 2013, Revised 18 January 2014, Accepted 25 January 2014

© 2014 DLINE. All Rights Reserved

1. Introduction

The ‘Fast Inverse Square Root’ algorithm or often referred to simply as 0x5f3759df is a method for computing the reciprocal
square root, y = 1/sgrt (X). This algorithms has a mysterious origin with considerable confusion about where it was devel oped
and by whom [1]. Dueto no formal derivation and lack of conventional mathematical devel opment, there has been littleto none
research on why this particular algorithm works as well as it does — achieving approximately four times the performance of
previous approaches [2].

This unusual algorithm was first spotted in Quake I11 source code [3] and later found use in titles such as Crystal Space and
Titan Engine. Theworking of thisalgorithm was studied by David Eberly in [4] where an attempt was madeto give mathematical
explanation for the working, especialy about the part involving “magic number”. A slight flaw in Eberley’s explanation is
pointed out in [2], and in this report a more formal derivation is suggested. Proposals for better magic numbers and how this
technique can be extrapolated to other computational problemsis also encouraged.

The Quake 111 game appeared at atime when reciprocal square rootswere still calculated by means of software. There was no
specialized machine-level instruction to carry out the task. However, dueto the growing importance and usage of X Y2 operations,

Electronic Devices Volume 3 Number 1 March 2014 29

modern x86 processors have incorporated the rsgrtss in their SSE instruction sets. All inverse square root directives in the
compiler are assembled into rsgrtss machine level instruction, and hence the speed of operation is considerably improved [5].
AMD K7 processor’simplementations of thisinstruction is discussed in [6]. The paper showsthat theinitial seed for Newton-
Raphson method is obtained by means of alookup table, and this value is then further improved by successive iterations.

Calculation of fixed point square root calculation is discussed in [7]; but the subject algorithm of this paper handles floating
point inputs allowing alarger range. A detailed FPGA/ASIC implementation of square root cal culation with emphasis on low-
cost and low-power is presented in [8].

This paper will attempt to port the original Fast Inverse Square Root algorithm to an FPGA based hardware implementation.
Unlike the K7 SSE implementation, no lookup ROM will be stored and used for fetching theinitial guess, but instead a pure
arithmetic transformation will be carried out in keeping with the essence of original algorithm. Attempt will be madeto utilizethe
parallel architecture of FPGA board to further optimizethe performance of intermediate cal cul ations. The reconfigurablearchitecture
of FPGA can also be used to try and experiment with different magic values, to achieve an optimum between speed and accuracy.
Themain objective of this paper isto present aworking hardware equivalent of thisalgorithm, which has not been tried yet other
than some microprocessor based designs.

The paper isorganized into different sections: 11.A startsthe design by exploring a gorithm from software viewpoint. Section
[1.B proposes the architecture design by employing top-down approach. Section 11.C implements this design on FPGA and
discusses modulesthat make up the design. Then, section I11 presents synthesisand timing results. Some simulation waveforms
are also presented for performance analysis. Lastly, section 1V concludes the paper by highlighting some possible application
domains and how the work can be further improved.

2.Architectural Details

2.1Algorithm overview
Before delving into hardware mapping of thisalgorithm, it’simportant to understand the working in the original software form.
The algorithmic details of Fast Inverse Square Root is contained in the following steps:

* Sep 1: Storetheinput real number x in single-precision floating point format.

* Sep 2: Calculate and store half the input number in xhalf, also as floating point.

» Sep 3: Cast x to integer and storein anew variablei whichisinint32 format.

* Sep 4: Shift thevariablei to the right by one and then perform conventional arithmetic subtract from 0x5f3759df.
* Sep 5: Restore the floating-point equivalent of the number.

» Sep 6: Perform an iteration of Newton-Raphson to get the result. This step can be repeated to achieve better accuracy, but
generally agood value isreached after just the first iteration.

The flowchart depicting this schemeisprovidedin Figurel.

2.2Hardwaredesign

The hardware architecture followsdirectly from the software implementation. However, unlike the software flowchart of Figure
1, the hardware mapping need not be sequential . FPGA implementations allows great degree of operational parallelism and this
feature needsto be exploited in the architecture to improve performance.

Steps 1, 2, 3,4 and 5 can al be carried out concurrently. As soon as anew value of x is obtai ned, two independent sub-modules
can start preparing the operands xhalf and y0. Note that yO denotes theinitial guess for Newton-Raphson method. The x value
can be fed into a scalar floating point multiplier to obtain one-half the original value. Meanwhile, the same x value is passed
through binary shifter and then subtractor.

Thelast partition of thisdesign takesin asinput xhalf and y0 to carry out Netwon-Raphson iteration. A high-level view of this
schemeisgivenin Figure 2. From this schemeit is possible to break down the chain of stepsinto two stage process.

30 Electronic Devices Volume 3 Number 1 March 2014

Input number x

I1

Calculatexhalf = 0.5f * x

:

Get integer equivalent of x
from float and storeini

l

i = 0x 5f3759df - (i >>1)

:

Overwritex withi after
converting back tofloating point

I

Returny =1.5f* x - xhalf * x * x* x

Figure 1. Flowchart representation of Fast Inverse Square Root algorithm

! xhalf
calculator

Shift and
substract
operation

Figure 2. Highlevel design partition

Thearchitecture of xhalf calculator unit depends on two registers—onefor latching the value on x input wire, and other to latch
the xhalf wire. The xhalf will be calculated using a floating point multiplier that storesits result in the xhalf_reg register. The
multiplier also takesthe scalar value 0.5 as input for multiplication operation. This schemeis shownin Figure 3. The bottom
branch of Figure2 correspondsto generation of initial guess, y0, as seed for Newton-Raphson iteration. Thisbranch will first
perform ashift right by one operation and then subtract the result from 0x5f3759df. A shift register is not used for this purpose

Electronic Devices Volume 3 Number 1 March 2014 31

Floating point multiplier
X

0.5

Figure 3. Calculating and storing xhalf

0x5f3759df

ey —

yo .

Figure 4. Hardware design of shift and subtract operation
7 6 5 4 3 2 1 0
| ' !

0 X

Figure 5. Static shift right and input to subtractor

in the design because it will waste aclock cycle just for performing a single shift. Instead, a hard-wired approach where a bus
originating from x register, and suitably concatenated with zero-padding isfed to the subtractor. Thisparticular design choicewill
ensure that yO is available almost instantaneously whenever a change in x occurs. The design methodology is captured in the
diagram of Figure 4. An expanded view of x_reg >>1 block to demonstrate how hard-wired shift right is carried out isgivenin
Figure 5. The last design step is to map the Newton-Raphson processin hardware. The equation for this processis:

32 Electronic Devices Volume 3 Number 1 March 2014

y=y0* 1.5f—y0* yO* yO* xhalf
Unfortunately, it is the slowest and most cycle consuming operation of the entire algorithm. Although xhalf and yO are made
available almost instantaneously from previous blocks but they haveto be fed into cascaded floating point multiplierswhich lead

to afinal floating point subtractor. Each of these multiplication/subtraction operation taxes clock cycles and equation hasto be
implemented initsoriginal form without much optimization possible. Anillustration of thismapping isgivenin Figure6.

yo y0 yO xhalf

_'f" _ Floating point
K multiplier
y Floating point
' substractor

Figure 6. Newton raphson equation hardware mapping

32 X

clk

reset

Figure7. Block diagram of top-module InvSgrt

2.3HardwareDescription and I mplementation
To realize the design presented previously, it hasto be translated into a hardware description. For this purpose, Verilog HDL is

utilized to write the hardware and data flow paths. The top-level module, called InvSgrt receives the number x and al so returns
theanswer yin float. A block diagram of thismoduleisgivenin Figure 7.

Electronic Devices Volume 3 Number 1 March 2014 33

Name | Direction | Width (bits) | Description
X In 32 Input number to undergo inverse square root
clk In 1 Clock signal to synchronize operations and transfers
reset In 1 Asynchronous reset to restore every register to default value
y Out 32 Result of performing inverse square root operation on x

Table 1. Port structure of InvSgrt module

A summary of portsfor InvSgrt moduleisgivenin Table 1.

Next step is to include a floating point unit (FPU) in the hierarchy which will carry out the required multiplications and
subtraction. There are two implementation choices—first, to write a floating-point unit module from scratch and instantiate it
within thetop-level module. However, thiseffort isnot aligned with the paper goal s and time-consuming in terms of description
and verification. The second choice is to incorporate an already created floating point unit IP core and use it in this setting.
These cores are thoroughly verified by their developers and only minor port adjustment/customization is required to meet our
requirements. Xilinx CORE Generator System [9] is selected for creating and customizing the floating point modules. Thereason
being that it is already included with Xilinx | SE and provides architecture-specific core generation which helps to maximize
performance. While customizing the floating-point multiplier core, full usage of all four MULTI118X18S blocks (embedded in
XC3S500E FPGA) is made to enhance the performance of resulting module. The block diagram of generated multiplier coreis
givenin Figure 11 . There are five instantiations of this module inside InvSqrt module — four are consumed in implementing
Newton-Raphson equation multiplications and the fifth is used to multiply the value of x by 0.5. Note, that an aternative
framework for highest performancewoul d have been to convert all thefloating point valuesto their fixed point Int32 representations
and then implement all these arithmetic operations using thisform. Thisapproach would have required afl oat-to-fixed converter
before arithmetic steps and afixed-to-float converter to return result in IEEE754 format. In thisarchitecture, the algorithm could
be represented initsentirety using behavioral description and then synthesizer can help in performance and area optimizations.
But, this approach is not adopted in this paper because of the crucial factor of range. The fixed point representation is
handicapped by smaller range of values that can be stored and this limits the usefulness of the module.

A 32 RESULT 3o
/ /
B 32

xilink_multiplier UNDERFLOW

OVERALOW

INVALID_OP
clk -

A N

Figure 8. Block diagram of generated floating point multiplier

A description of the portsand their propertiesis summarized in Table 2Port structure of xilinx_multiplier module.

Second important component of FPU is the subtractor which is generated as xilinx_subtractor. There is only going to be one

34 Electronic Devices Volume 3 Number 1 March 2014

instantiation of thismoduleinside InvSgrt, and thismodulewill perform thefinal subtraction of NR iteration as shown by Figure
6. Againthemoduleis generated using Xilinx CORE generator wizard, and itsblock diagramisgivenin Figure 9. Most port pins
carry the same meaning asthe onelisted in Table 2; however, the RESULT port now givesanswer of subtracting B operand from
A operand.

Name Direction | Width (bits) Description

clk In 1 Clock signal to synchronize operations and transfers

A In 32 First single precision operand for multiplication

B In 32 Second single precision operand for multiplication

RESULT ouT 32 Theresult of performing multiplication A* B

UNDERFLOW | OUT 1 Flag raised to indicate when result istoo small to be represented in 32 bits
OVERFLOW ouT 1 Flag raised to indicate when result is too large to be represented in 32 bits
INVALID_OP ouT 1 Flag to indicate request for an invalid operation

Table 2. Port structure of xilinx_multiplier module
3. Results

The Verilog description of modulewas successfully synthesized using X ST tool and mapped on Digilent’s Spartan 3E (XC3S500E)
Starter board. The utilization summary isgivenin Table 3.

Device utilization summary
Logic Utilization Used | Available | Utilization
Number of Slice Flip Flops 748 9,312 8%
Number of 4 input LUTs 1,815 9,312 19%
Number of occupied Slices 1,108 4,656 23%
Number of Slices containing only related logic| 1, 108 1,108 100%
Number of Slices containing unrelated logic 0 1,108 0%
Total Number of 4input LUTs 1,939 9,312 20%
Number used aslogic 1,814
Number used as aroute-thru 124
Number used as a Shift registers 1
Number of borded |OBs 16 232 6%
10B Flip Flops 1
Number of RAMB 16s 16 20 80%
Number of BUFGMUXs 1 20 4%
Number of MULT18x18SIOs 2 20 10%
Average Fanout of Non-Clock Nets 3.23

Table 3. Device utili zation summary on X C3S500E

Also, theresulting clock period is6.180ns allowing aMaximum Frequency of 161.812 MHz.

A self-checking and time agnosti ¢ test-bench was used for carrying out thorough functional verification of the InvSqgrt module.

Electronic Devices Volume 3 Number 1 March 2014 35

Intensivetesting over arange of random values did not produce any unexpected results and every answer conformed to correct
outputs.

A representative clock by clock simulation showing the evolution of waveform when the input x isforced to be 16 isgivenin
Figure 10 at the bottom of this page. The output y equals 0x3e7f910ein floating point which equals0.24957678 in fixed point.

Theevolution of xhalf and y0 signalsisdepicted in Figure 11 overleaf. Notethat yO signal ismade available almost instantly after
input port x changes to a new value.

Figure 10. Signal waveform wheninput at xis 16 (fixed point)

4. Conclusion and Suggested | mpr ovements

Thelnverse Square Root calculator al gorithm was successfully designed, described in Verilog, synthesized and finally mapped
on the FPGA board. Thefinal result ismade available after only 12 clock cyclesand offers good accuracy for most practical uses.
This performance measureisfar superior to the one obtained by pure software-based cal culation not utilizing SSE support. This
module can bereadily included as part of bigger Arithmetic Unitsfor supporting fast inverse square roots. The designed module
can be used in FPGA based graphic processing units [10] [11], which require intensive reciprocal square root calculations for
lighting and shading of 3D operations especially video games. FPGA based graphic processors are still in infancy and this
module can greatly improvetheir throughput for rendering graphics by offloading other modul es. Vertex shader implementation
on FPGA asdiscussed in[12] can also utilize the module. This module can also find use in microprocessors not making use of
fast rsgrtss of SSE instruction set, especially some RISC implementations on FPGA architectures.

Ga o lTlu_lTl'm'lT!!ﬁ!ﬁ_l.l_l_l.ﬁ
b 8t | oof oooononononn — Towomwmmmome] ||

p B Chalil31:0] | 01]{00000000000000000... § 010000000000p0000000000...)0 E_ 01000001000000000000000000000K _-_

___ TR TV e T I I R

Figure 11. Clock by clock waveform testing of xhalf and yO signals

There is much room for improvement in thiswork. First of all, the cycle count can be drastically reduced by working in fixed
point. If the range of operational valuesiswell within that covered by Int32, then thisalgorithm can be efficiently implemented
by utilizing float to fixed converters. Thiswill save at least 8 cycles during Newton Raphson block, and also aid in conserving
FPGA area. But care should be taken to only use this approach if thereis absolutely no hazard of overflowing/underflowing.

Attempt ismadeto write RTL asgeneric as possible. Meaning, with little modification it should not betoo difficult to synthesize
thisfor adifferent board. Theimplementation can be sped up by using advanced target devices. By using amore modern board,
the Floating Point Unit can better make use of embedded DSP blocks and increase the overall performance of this module.

Also aswas suggested in Lomont’s report [2] on this algorithm, a better initial guess can be obtained by using arefined magic
number instead of Ox5f3759df. Hiswork suggests possible value and by adjusting the values of afew register, amore accurate
result is possible.

References

[1] Sommefeldt, R. (2013). Origin of Quake3's Fast InvSgrt(), Beyond3D, 29 November. [Onling]. Available: http://
www.beyond3d.com/content/articles/8/. [Accessed 15 June 2013].

36 Electronic Devices Volume 3 Number 1 March 2014

[2] Lomont, C. (2003). FAST INVERSE SQUARE ROQT, Department of Mathematics, Purdue University, West L af ayette.

[3] Quake3-1.32b/code/game/q_math.c, Id Software, [Online]. Available: ftp://ftp.idsoftware.com/idstuff/source/quake3-1.32b-
source.zip. [Accessed 20 June 2013].

[4] Eberly, D. (2002). Fast Inverse Square Root (Revisited), Geometric Tools, LLC.

[5] Elan. (2013). Timing square root, 16 October 2009. [Online]. Available: http://assemblyrequired.crashworks.org/2009/10/16/
timing-square-root/. [Accessed 21 June 2013].

[6] Oberman, S. F. Floating Point Division and Square Root Algorithmsand I mplementation, CaliforniaMicroprocessor Division,
Advanced Micro Devices, Sunnyvale.

[7] Sgjid, I.,Ahmed, M. M., Ziavras, S. G (2010). Pipelined implementation of fixed point squareroot in FPGA using modified non-
restoring algorithm, In: The 2" International Conference on Computer and Automation Engineering (ICCAE), Singapore.

[8] Suresh, S., Beldianu, S. F, Ziavras, S. G (2013). FPGA and ASIC square root designs for high performance and power
efficiency, in IEEE 24" International Conference on Application-Specific Systems Architectures and Processors (ASAP),
Washington DC.

[9] Xilinx CORE Generator System, Xilinx Inc., [Onling]. Available: http://mww.xilinx.com/tools/coregen.htm. [Accessed 25 June
2013].

[10] Kasik, V. (2008). FPGA -Powered Embedded Vector Graphics, in The Second | nternational Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologie UBICOMM, Vaencia.

[11] Kim, K., Cho, H.-L. S,, Park, S. (2008). Implementation of 3D graphics accel erator using full pipeline schemeon FPGA, in
International SoC Design Conference |SOCC, Busan.

[12] Middendorf, L., Mhlbauer, F., Umlauf, U., Bobda, C. (2007). Embedded Vertex Shader in FPGA, TheInternational Federation
for Information Processing, 231, p. 155-164.

Electronic Devices Volume 3 Number 1 March 2014 37

