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ABSTRACT: In wireless sensor networks, which can be configured to put some sensor nodes in sleep mode to save energy.
This approach is a special case of a randomized scheduling algorithm, in which k subsets of sensors work alternatively. In this
paper, we first study the performance of the randomized scheduling algorithm via both analysis and simulation in terms of
intrusion coverage intensity, and detection probability, then, we also study the asymptotic coverage and other properties.
Finally, we analyze a problem of maximizing network lifetime under Quality of Service constraints such as bounded detection
delay, detection probability, and network coverage intensity. We prove that the optimal solution exists, and provide conditions
of the existence of the optimal solutions.
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1. Introduction

Wireless sensor networks (WSNs) have become an important technology, combining sensing technology, embedded computing,
distributed information processing, and wireless communication technology [1] [2] [3]. So WSNs have broad applications [4]
[5]. And sensor nodes are usually deployed in hostile environments. As a result, nodes and communication links are prone to
failure. In the early centralized algorithms is used, but which is undesirable in sensor networks using resource-limited sensor
nodes. In contrast, localized distributed algorithms are welcome to be used because they are simple and robust to network
topology.

As for cooperative processing in a sensor network, the information of interest is aggregate statistics amid a group of sensor
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nodes. So emerging models of sensor networks are more constrained than general models of distributed systems, For instance,
the function f(v) = ∑ci fi (vi) is the sum aggregate of values ci fi(vi) which are pre-processed from vi on all nodes.

Unlike previous work, in this paper, we present randomized algorithms (RA) for these problems and measure their complexity in
the comparison model [6]. In that model, the algorithms use random bits to help determine which comparisons will be made, and
RA is more efficient than gossip-based algorithms like Uniform Gossip. Because RA can works correctly and efficiently on all
topologies, and which take advantage that can all nodes hear and receive a wireless transmission within the radio coverage.We
suggest a modified broadcast based flooding to mitigate this pitfall and compare it with AR by simulations.

Because the research work shown that tree based algorithms face challenges in efficiently maintaining resilience to topology
changes. Then, the authors of sensor tech report [1] build an optimal aggregation tree to efficiently computed the aggregates,which
have addressed the importance and advantages of in-network aggregation. Now, we know that the minimum steiner tree problem
problem is NP - Hard. Althougha a distributed heuristic tree approach could save the cost of coordination at the tree construction
stage, the aggregation tree will need to be reconstructed whenever the topology changes, before aggregate computation can
resume or re-start. On the other hand, distributed localized algorithms such as our proposed RA, Gossip algorithm of Boyd et al.
Hence, distributed localized algorithms are more robust to frequent topology change in a wireless sensor network.

In contrast to conventional deterministic uncertain system models, the stochastic uncertain system models may be substantially
richer, and converge with all nodes knowing the aggregate computation results. So, the computed results become robust to
node failures, especially the failure of sink node or near-sink nodes [7] [8] [9]. Also, it is convenient to retrieve the aggregate
results, and that can be especially helpful then the mobile agents need to stroll about the hostile environment to collect
aggregates.

In this paper, we adopt the uncertainty model introduced in Ref. 3 to set our algorithm, which is nontrivial to show that it
converges to the correct aggregate value an to bound the time needed for convergence. On this basic, our analysis uses the
eigen-structure of the underlying graph in a novel way to show convergence and to bound the running time of our algorithms.
In contrast to existing randomized algorithms that deal with control problems described in terms of LMIs or quadratic Riccati
inequalities, the robust guaranteed cost jump linear quadratic regulator problem considered in this paper reduces to more
general matrix inequalities that include additional nonlinear matrix terms.

The rest of the paper is organized as follows. We introduce related work on object detection in sensor networks in Section 2, and
we analyze the intrusion coverage intensity and asymptotic coverage. in Sections 4 and 5, the results are extended to more
realistic cases, in which sensor node deployment follows Gaussian distribution in a two-dimensional plane. Finally, Section 6
concludes the paper.

2. Related Work

Many efforts in WSNs have been dedicated to tracking and locating objects. In [10], cooperative tracking, which proposed a
method for tracking object with combining acoustic information from neighboring sensor nodes and estimating the location of
objects. In [11], the authors provided an upper limit to how far a mobile intrusion object can reach along a straight line within a
dense wireless sensor network before it is detected.

According to the features of wireless sensor networks, the load balancing is an invariable problem in any application of wireless
sensor networks. In [12], under the assumption of graph is the random walk on the underlying graph. The authors bound the
necessary running time of gossip algorithms for nodes to converge to the global average within an accuracy requirement, and
they propose an alternative distributed broadcast-based algorithm to analyze its convergence. But the algorithm runs very fast
in certain graphs on an expander, which is however, not a suitable graph to model sensor networks. In [13], the authors propose
a algorithm called Randomized gossiping algorithm, which can be used to compute the aggregates in arbitrary graph. And in
arbitrary directed graphs, all the nodes will know all others’ initial values by postprocess all the information it received to get the
aggregates. However, this approach is not suitable for resource constrained sensor networks, since the number of transmission
messages grows exponentially.

In previous work, most studies do not consider the size and the shape of the intrusion object. However, every intrusion object
has a size and a shape which greatly impact the detection and the deployment of sensor nodes as well [14]. In a different



application, intrusion objects are also different in shape. But we only need fewer sensor nodes to save resources and reduce the
waste of dead sensor nodes in the environment. So, one sensor node is as large as the size of the sensing field, and one sensor
node is enough for detecting the presence of the object, no matter how small its sensing range is. In this scenario, sensor nodes
could be more efficiently deployed according to sizes and shapes of different intrusion objects. Thus, it will help understand the
performance and deployment of sensor networks by studying sensor network scheduling algorithms, which is the main focus
of this work.

3. Simulation Program and Parameter

In this section, we presents the computer simulation program and the default parameters, which are applied only when simulations
are used unless stated otherwise. An intrusion event is generated randomly, and to predict beforehand of the intrusion object’s
is difficult. We developed our own simulation program called detection algorithm, which is an implementation of discrete event
simulation, and occurs when the associated intrusion event is detected by at least one sensor node. Therefore, fewer sensor
nodes are required for the detection of a larger object.

3.1 Network Coverage Intensity
Let r, a and k denote the size of sensing area of each sensor, the size of the whole sensing field, and the number of disjointed
subsets, respectively. Therefore, we have the Cn which is covered by any active sensor for any given point and any given time.

Cn = 1- [1- r/(ak)]n (1)

where r/(ak) is the probability that the sensor is active and covers a given point in any round.

From (1), we know that the network coveragge intensity is the probability that a given point at a given time is covered by at least
one active sensor, and edge effect error rate stands for the coverage intensity. Since a coverage area of a sensor node may not
be completely inside the entire sensing field. Fig. 1 shows that the error rate between the simulation results and the analytical
results is very small.

3.2 Asymptotic Coverage and Other Properties
From (1), we can easily get the following lemma.

Lemma 1 Network coverage intensity is f(x):

{f(x) ⇒ an increaseing function limn→∝ Cn = 1,
a decreasing function limk→∝ Cn = 0.

Figure 1. Error of coverage intensity between analytical and simulation results



Lemma 1 implies that k and number of sensors is inversely, so we assuming that k and n are proportional such that n = km, where
m is the number of sensors per subset/shift and is fixed, we have

where C(m) is a function of the number of sensors per shift (m), which is an interesting feature of network coverage intensity.

3.3 Intrusion Period
In this subsection, we evaluate intrusion period, which is important in deriving detection probability and detection delay in later
sections.

Let us study the number of cycles in which an intrusion overlaps. Let L denote a duration when an intrusion event lasts, let T
denote the length of a scheduling cycle,and let Y denote a random variable representing the beginning of the intrusion event. Let
us define s = (L/T + 1 - ⎡L/T⎤).

Where s is the remainder of the intrusion period in terms of the number of cycles when L ≠ iT, where i = 1, 2, · · · , and we have
s = (L/T + 1- ⎡L/T⎤) = (L/T -  ⎣L/T⎦ ); when L = iT , where i = 1, 2, · · · , s = (L/T + 1 -  ⎡L/T⎤) ≠ (L/T -  ⎣L/T⎦ ).

Since the intrusion duration L may overlap either ⎡L/T⎤ or ⎡L/T⎤ + 1 cycles. So we use L/T - ⎡L/T⎤ + 1 instead of L/T - ⎡L/T⎤.

The average number of overlapping cycles of the intrusion period, Z, which let Z denote the average number of overlapping
cycles of the intrusion period, can be calculated as :

Z =  ⎡L/T⎤ (1- s) + (⎡L/T + 1)s = L/T + 1 (3)

(2)

We hypothesize that interposable communication can create pseudorandom technology without needing to harness virtual
archetypes [15]. Despite the results by N. Anderson et al., we can confirm that multicast methodologies and Markov models can
collaborate to address this challenge. This is an appropriate property of our solution. The question is, will Yew satisfy all of
these assumptions? Unlikely.

Our system chooses to investigate the emulation of expert systems. Further, consider the early frame-work by Robinson and
Brown [16]; our architecture is similar, but will actually realize this intent. This may or may not actually hold in reality. The design
for our framework consists of four independent components: symbiotic configurations, virtual technology, the study of Markov
models, and lossless configurations. This may or may not actually hold in reality. We postulate that Internet QoS and the
transistor can agree to address this grand challenge.

4. Asymptotic Detection

In this section, we derive and study asymptotic coverage, as well as other properties. We get the following lemma:

Lemma 2 Intrusion coverage intensity is an increasing function of n and limn→∝ Vn = 1 holds. Intrusion coverage intensity is
a decreasing function of k, and limk→∝ Vn = 0 holds.

Lemma 2 implies that given a fixed number of subsets, any intrusion detection intensity can be achieved by increasing the
number of sensor nodes deployed, and that given a fixed number of sensor nodes deployed, increasing the number of subset
decreases intrusion detection intensity.

Assuming that k and n are proportional such that n = km, where m is the number of sensor nodes per subset, we have

(4)
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4.1 Intrusion object
In this subsection, we assume that a sensor node can detect an intrusion object with size o in a 2D and 3D situation. Because 2D
object waw seen as a special mapping, so, we only solve the 3D case by projecting a 3D intrusion object and sensing range into
2D planes. But the above intuition may not correct [17]. For example, a spherical object, its projections are three circle areas with
sixes equal to π[3√3φ /(4π)]2. However, considering an object which has projections o the exact three circle areas with sizes equal
to π[3√3φ /(4π)]2, the object may be larger than the spherical object.

In common, a three-dimensional object is made by three orthogonal cylinders. Its projections on these 2D planes are exactly the
same as the projections of a sphere, which are three circular areas with the same size [18]. But, this object is totally different from
the sphere, this is because, each cylinder only shares a circle line with the sphere on the surface, which is the tangency. The
surfaces of this object are formed by these three cylinders [19]. In other words, all the points on the surface of object are on the
surface of these three cylinders. So, we can achieve a three-dimensional object, that has the same projections as a sphere, but
only share three circle lines on its surface. Different objects can have the same projections on these three planes, so this method
is not accurate for calculating the probabilities.

4.2 Intrusion Object under Gaussian Distribution
In the above section, we assume that sensor node deployment follows a uniform distribution. In this subsection, we assume that
the sensor node deployment follows a two-dimensional Gaussian distribution with mean (X/2, Y/2), and that the whole deployment
is denoted as [0,X] × [0, Y ].

We assume that a sensor node can detect an intrusion object with size o in a two-dimensional situation. We use φ to denote the
sensing area of a sensor node. We assume that an intrusion object’s central point is (g, h). Let p(g, h/k) is the probability that the
intrusion object is covered by an active sensor node. The probability that an intrusion object whose central point is (g, h) is
detected by at least one active sensor node . Since (g, h) is a randomly chosen from the network field, for the intrusion detection
intensity, we have

Vn = E(Vn(g,h)) = ∫
X

∫
0

Y

0
Vn(g,h) f (g,h) dgdh

∼
(5)

where f (g, h) = 1/(XY) and E (Vn(g, h)) is the mean function, since (g, h) is random variable, so, we need to derive p (g, h) in the
following subsections to solve (5).

5. Detection Probability

We now study the number of sensor nodes or the number of subsets required to achieve a certain degree of intrusion detection
intensity when the the intrusion object occupies an area or apace. It is equal to the probability that a random sensor node’s area
overlaps the area of a random intrusion object. In the reality applications [20], the shape of intrusion object is different, in this
scenario, sensor nodes could be more efficiently deployed according to sizes and shapes of different intrusion objects. So we
can abstract it as rectangles or circles. Thus, we choose rectangle and circle as the shapes of intrusion objects in the 2D
situation.

We first assume that a sensor node’s coverage area is a circle, and denoted as p1 that a sensor node can detect an intrusion
object with size o in the 2D situation. Furthermore, a sensor node does not overlap an intrusion object if the sensor node is far
away from the boundary of the intrusion object. The probability that a sensor node detects intrusion object is expressed as
follows:

∼

(6)

But, in many applications, an intrusion object with size o′  in the 3D situation. In order to derive the probability, we assume that
the object shape is either a spherical or cuboid, which are first-order approximations of many detectable objects. Let o′ denote
the size of an intrusion object, if the object is spherical, we denote radius is 3√3ο / (4π). If the object is cuboid, its length, width
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and height as b, c and o/(bc), respectively. So, the probability that a sensor node detects a spherical or cuboid intrusion object
is expressed as follows:

(7)

5.1 Sensor network deployment
In this section, we study the nuber of sensor nodes required to achieve a certain degree of intrusion detection intensity when
the intrusion object occupies an area or space.

Lemma 3 Given a required intrusion coverage intensity Vn-req, the minimum number of sensor nodes to achieve Vn-req is at least

n ≥
In (1 - Vn-req)
In (1 - p1/k) (8)

Lemma 3 implies that intrusion detection intensity can be achieved can be achieved by increasing the number of sensor nodes,
and let k is a fixed number of subsets, when the k increasing, the intrusion detection intensity is decreases.

Lemma 4 For intrusion object, the minimal intrusion coverage intensity min(Vn) is achieved when b = √o, where:

min (Vn) = 1 - [    1- 1
a (o + 4√οΦ) /k ]

n

(9)

Proof 1 Obtaining the minimal Vn, From formula Vn = 1 - [1 - p/k]n, we can have obtaining the minimal p, p = 1/a (o + 2(b + o/
b√r/π)), so, we can obtain the minimal b + o/b. Let f(b) = b + o/b, b > 0, o > 0, we have o/b > 0, then we derive f ’(b) as follows:
f’(b) = 1 - o/b . And when f’(b) = 0, we can have b = √o. Furthermore, if b > √o , we have f ′(b) > 0, and if b <√o, f′ (b) < 0. So,
we can see that f(b) is an increasing function, on the other hand, min(b + o/b) is achieved when b =√o. Therefore, we obtain
9.

5.2 Detection Probability
Assume that all sensor nodes are developed in a two dimensional plane. We first derive the probability, denoted as X, that a
random variable representing the number of sensor nodes covering a point where the intrusion event happens. It is equal to the
probability that a random sensor node’s area overlaps the area of a random intrusion object. In order to derive the probability,
we assume that a sensor node’s coverage area is a circle. We use Bn,j to denote the event that the intrusion event cannot be
detected in all of h rounds if X = j and the intrusion period does not finish. We have

Pr(Bn,j) = ∏
n

i=1 (1- 1
k +1- i )

j

= ( k-h
k ) (10)

Pd = 1 - ∑ Aj Pr (X = j) = 1 - (1-r/a)n - I [L < (k - 1)T]
n

j=0

∑
n

j=1
 Aj( n

j () r
a )

j

(1-
r
a )

n - j

(11)

It is clear that Pd depends on L, let Aj = Pr(UD | X = j) denote the probability of being unable to detect the intrusion event when
X = j, and plugging 10 and 11 into 12 We have
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Pd = 1 - (1 - r/a) - I [L < (k - 1)T] × ∑
j=1

n

Gj ( )n
j  ( r

a )
j

 (1 - r/a)
n - j

(12)

5.3 Evaluation of Detection
In this subsection, we study asymptotic coverage, from above work, we can easily get the following lemma:

Lemma 5 When a intrusion object with a cuboid shape, the minimal intrusion detection intensity min (Vn) is achieved when b
= c = 3√ο, where

min (Vn) = 1 - (1 - 1/ak (o + 6 3√3Φο2/(4π) + 33√πΦ2/16) ) (13)

Proof 2 Now, we need to prove is that b = c = 3√ο achieves the minimum, and we know obtaining the minimal Vn = 1 - [1 - p1/
k]n is equivalent to obtaining the minimal p1, From 9, we have the relation of p1 and Vn, and obtaining the minimal p1 is
equivalent to obtaining the minimal for both f = bc + o/b + o/c and g = b + c + o/(bc) with the same parameters.

For b > 0, c > 0, o > 0, we have bc + o/b + o/c ≥  3 3√(bc) (o/b) (o/c) = 3 3√ o2. Then, f  = bc + o/b + o/c ≥ 3 3√ o2. Similarly, we
can prove that g = b + c + o/(bc) ≥ 3 3√bco/(bc) = 3 3√o. Therefore, b = c = 3√o achieves the minimal value for p1.

6. Detection Delay

6.1 Detection Delay
For the rest of the paper, we only consider a finite value of detection delay D < ∝. Under the condition of X = j, let E(D) denote
the average detection delay. Note that the first round is the 1st round instead of 0th round. We have

Figure 2. Detection delay(D) D versus n

Pr( Ai,j) = [1- (1- 1
k+1- i

j

) ] ∏
h=1

i-1
(1 - 1

k+1- h )
j
= ( k- i +1

k )
j
- ( k- i

k )
j

(14)

where the Ai,j denote the event that the intrusion event is detected in the ith round. In the following derivations, a common
technique is to use the conditional property, i.e. Let Xi is a division of the total set. When D ≠ ∝, the intrusion event canno be
detected. So, D = 0, and plugging 14, we have

E(D|D≠∝) =      (D |X=j) Pr(X=j) =      Mj∑
j=1

n

∑
j=1

n

( j )n ( r
a )

j

(1-( r
a ))n - j

(15)
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where

(16)

6.2 Evaluation of Detection Delay
Fig.2 shows D versus n. As illustrated in the figure, when D decreases as n increases, and consistent with our intuition, when
n goes to infinity, D goes to 0.

Fig.3 shows D versus L. As illustrated in the figure, a smaller k value results in a smaller D, and D increases as L increases, when
L goes to infinity, D goes to a positive sixed value. It appears that the analytical results and simulation results of D with a small
k have a better match than those with a large k.

Figure 3. Detection delay(D) D versus L

These two figures show that analytical results almost match the simulation results, but not exactly. This is mainly because in the
simulations, those sensors in the boundary of the field have the edge effect, which is not considered in the analytical model.

7. Performance evaluation

In this section, we evaluate the performance of different intrusion detection scenarios, including both 2D and 3D situations. We
focus on factors that influence the detection intensity, as well as the impact of object size on the deployment of sensor networks.
Such studies are helpful in the deployment of sensor networks especially when the kind of intrusion objects, such as the size of
objects, is of interest. We analyze the expected number of comparisons performed during the procedure. Comparisons in steps
2 and 3, for 1 ≤ j ≤ m let ρ(rj) denote the rank of rj in Sj ∩ X. The number of comparisons needed for the interval in which x lies,
if one is found, the cost within the interval. Thus, the step 2 requires at most: comparisons.

∑ 2log ( |j : rj ≤ x, x ∈ Sj ∩ X| )

In step 3, the m sets S’j have size at most t + ρ(rj). Therefore the set-sort algorithm takes at most To computer the above
conclusion, we determine the following upper bounds.

x∈X
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n log ( ∑ ( t + ρ(rj) )2 / n)
j

Theorem 1 For every realization of u, the algorithm pays at most

             1 - 1/ zk
k

1 - 1/ zk

. Tu

It follows froms Theorem 1 that min (Nr, r1+· · ·+rN) must be solved in order to construct a quadratic Lyapunov function or design
a robust controller for the uncertain system. However, this does not relieve the nonplynomial complexity of the problem, since
for large number of forms N, solving a reduced set N · 2N-1 to N · N - 1.

we adopt the setup of Ref. 3, let f (t, n,m) denote the average cost of conclude of theorem 1, we will show by induction that for
m ≥ 2n and t ≥ 16:

f (t,n,m) ≤ 2n log (mt/n) (17)

So, assume that n > 16. Then, examining all stages of the algorithm, we see that 22 satisfies the following equation:

f (t, n, m) ≤ cn log (mt/n) + E(f (t, |R|, m) ) + E(f (mt3/n, |R|, n) ) + E( f (t, |Y|, m) ) (18)

where the expectations are taken over the distribution of the sample R. Thus (mt3/n) |Y| ≤ | ((x, j) : x ≥  rj , x ∈ Sj)| = ∑j ρ (rj). Hence
E(|Y |) ≤ mt2/(mt3/n) = n/t.

By induction and because n log 1/n is concave, we may write:

f (t, n, m) ≤ cn log (mt/n) + 2(2c(n/t) log(mt2/n))
+ 2c(n/t) log(mt4/n) ≤ cn log (mt/n) (1 + 8/t + 8/t)
≤ 2cn log (mt / n) (19)

since t ≥ 16 and m ≥ 2n.

7.1 Performance evaluation with a 2D intrusion object
In this subsection, we study the performance of detection probability and intrusion coverage intensity via both simulation and
analytical results. All of the shape of the intrusion objects could be consider. Simulations were conducted with discrete event
simulation using C++.

We study the performance of intrusion coverage intensity versus number of sensor nodes, number of subsets, and object size.

Fig 4, simulations are conducted with parameters as follows: K=2 or 4. Both analytical results and simulation results are studied.
Fig 4(a) shows the performance with a circular intrusion object, and from the figure we observe that the more the number of
nodes the more intrusion coverage intensity. From above section, we know that n will lead to high intrusion coverage intensity,
and when n goes to infinity, the coverage intensity runs to 1. Fig 4(b) shows the similar performance of intrusion coverage
intensity with a rectangular intrusion object.

In Fig 6, parameters are chosen as k = 2 or 4, n = 1000 and φ = 30. Analytical results is studied. fig 5(a)and 5(b) shows the
performance with a circular intrusion object and a rectangular intrusion object, respectively. Both figures show a similar
performance of intrusion coverage intensity. By intuition, in the figure, the intrusion coverage intensity increases as the
intrusion object size increases. In both Fig 5(a) and 5(b), the analytical results match the simulation results nicely.

Fig 5(c) shows the performance of intrusion coverage intensity vs object length b of a rectangular intrusion object, with
parameters as follows o = 25 and n = 500. As illustrated in the figure, when the b increases the intrusion coverage intensity first
decreases and the increases. We observe from the figure that the intrusion coverage intensity reaches its minimum value when
b = √o. Intuitively, the lowest intrusion coverage intensity should correspond to the smallest intrusion object size.
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(a) Vn vs Number of Sensor Nodes: circular object

(b) Vn vs Number of Sensor Nodes:rectangular object

Figure 4. Intrusion coverage intensity vs number of sensor nodes

(a) Vn vs Number of Object Size: circular object
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(b) Vn vs Object Size:rectangular object

(c) Vn vs Intrusion object length:rectangular object

Figure 5. Intrusion coverage intensity vs object size

Theorem 2 Suppose that there exists a collection of matrices (M1, M2 · · ·Mn) which satisfying the following coupled matrix
inequalities:

Mi A(i)’ + A(i) Mi - B(i) G(i)-1 B(i)’ + Mi

(R(i) + ∑ qv
ij Mj

-1)
j=1

N

Mi ≥ 0 (20)

where i = 1, · · · , N and v = 1, · · · , r, then, we let H = H′ ≥ ε I,where ε > 0, and which is a given positive definite matrix. Suppose
that there exist symmetric matrixes M1, M2, · · · ,MN such that

Mi A(i)’ + A(i) Mi + Mi (H + ∑ qv
ij Mj

-1 Mi ≥ 0)
j=1

N

(21)
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where i = 1, · · · , N and v = 1, · · · , r. Then, the above results suggest that one can solve N × r coupled matrix inequalities when
designing a guaranteed cost controller or verifying the stability. Hence, the above count gives N · 2N(N-1) matrix inequalities to
render feasible. Consider a randomized distributed algorithm in a model in which all random events are internal to individual
processes, suppose further that the adversary has the power to kill up to k of the processes.

We are given a universe x of n elements from some total order and S1, S2, · · · , Sn is subsets of x. and similarly to the previous
studies which is a function of k, and denote by zk > 1, Our algorithm choose a value u with uniform distribution in the interval [0,
1), that is u ∈ U [0, 1].

Given a threshold value T, we denote Tu = mini∈Zzk
i+u, that is, the smallest value in the bid which is at least T.

Step 1 For 1 ≤ j  ≤  m, let rj be the element of rank t in R ∩ ∩ ∩ ∩ ∩ Sj, where R be the sample generated by choosing each x ∈ X, and call
to Large(t, R, Sj) finding the largest elements in the set Sj . Then, we choose the largest value in each set to be the maximum
sample element.

Step 2 For each x ∈ X, If x > tx, then put x in Y , else x ≤ tx, then comparing x to the elements of tx, until finding x is less than bottom
rank 2k ≤ mt3/n. After this we know for each Sj which are at least as big as the representative rj .

Step 3 Let S′j = {x ∈      Sj ∩ ∩ ∩ ∩ ∩ (x - y) : x ≥ rj}     ∪     {largest elements in each Sj ∩     Y }, as required.

Theorem 3 Consider a block snoopy multiprocessor system, there is a on-line randomized caching algorithm with a competitive
factor against a weak adversary. In fact, if all blocks start out shared, the expected cost of M on any sequence equals ep/(ep -
1) times the optimal cost.

Proof 3 Proof Let ρk is any sequence of requests consisting of k writes by one of the caches, followed by a read by the other
cache of some variable in X. Hence any sequence ρ of requests can be decomposed into subsequences of type ρk achieves a
competitive factor of α overall, and we construct a randomized algorithm for sequences of type ρk with the best competitive
factor. A randomixed algorithm is just a choice of a probability distribution π that is the probability that the algorithm
chooses algorithm variables on any write starting from the shared situation.

We observe that the expected cost of algorithm on seuence ρk is

E (Cx (ρk ) ) = ∑ πi (p + i) + (1 - ∑ πi) k

Our goal is to choose values for πi such that and ρ is minimized. Therefore, setting the preceding inequalities  to equalities

E (CA (ρk) ) ≤ (1 + ρ) k k ≤ p
E (CA (ρk) ) ≤ (1 + ρ) ρ k > p (22)

and solving for ρ by setting ∑ 1 ≤ i ≤ p π = 1, then we can get

ρ =

{
1

(1 + 1/p)p - 1. (23)

So, this probabilistic algorithm yields a competitive factor of

1 + ρ =
ep

ep - 1 → e
e -1

≈ 1.58. (24)

Finally, we describe the algorithm which we call M′. At the beginning of each write run algorithm selects a value i according to
the probabilities πi. To see that algorithm M′ achieves the same competitive factor, partition ρ into subsequences τi consisting
of operations by a single cache.

8. Maximization Under Qos

1≤i≤k 1≤i≤k
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In this section, we study an optimization problem, i.e., to maximize network lifetime under Quality of Service constraints such as
bounded detection delay, detection probability, and network coverage intensity.

We provide the following definition for the network lifetime as follows: TN = kTS, where TS denote the average lifetime of a typical
sensor. Note that the above definition, we can maximize TN to search the maximum k value to satisfy the QoS constraints. But,
there is an upper bound on k value, since Cn ≥ QoScn > 0, so we can written the range of the k:

1 ≤ k ≤ r
a(1 - (QoScn) 1/n ),

to find the maximum k value, we need to per-defined Qos, QosDD value, and we can get a conclude that D is an increasing
function of k. Based on the conclude, Pd is decreasing function of k and limk → ∞ Pd = 0. Therefore, the following set is bounded.
It is also not empty since 1 ∈ Sa. Since D, Pd are monotonic functions of k, so, that can be found by using a procedure similar to
binary search. Then we know that the maximum number of steps to find the best k is

O (log2

r

a(1 - (1 - QoScn) a/n )
)

(a) maximum k versus QoScn

(b) Cn versus QoScn
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(c) Pd versus QoScn

(d) D versus QoScn

Figure 6. comparisons for QoScn

Another way of looking up the definition of network lifetime is that the network lifetime is defined as (10) together with the first
three conditions defined in optimization theorem 1.

As illustrated in the Fig.6(a), the maximum k value versus QoScn with fixed QoS constraints on Pd and D, and the maximum k value
remains flat when QoSn is small, but when QoScn is large enough, it decreases sharply as QoScn increases.

Figs. 6(b), 6(c) and 6(d) compare Cn, D and Pd with the maximum k values obtained from Fig.6(a). As illustrated in the Fig.6(b)
when QoScn is small, the cases of kmax + 1 and kmax + 5 have large D than the required QoSDD. In the other word, the cases of kmax
+ 1 and kmax + 5 do not satisfy all QoS requirements.

9. Conclusion

In this paper, we studied the intrusion detection problem in the sensor network through both analysis and simulation. In
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addition, we studied the sensor network deployment in more realistic settings, and we evaluated the performance of the
randomized scheduling algorithms with several issues. We analyze the problem of maximizing network lifetime under QoS
constraints such as the bounded detection delay, detection probability, and coverage intensity. In addition, we study properties
and asymptotic properties and present the conditions of the existence of the optimal solutions. Our results provides us with a
guideline of the network design and parameter selection.
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