
 International Journal of Computational Linguistics Research   Volume 1 Number 1  March 2010 41

Semantic aware matching and mapping for XML schemas 

Tadeusz Pankowski 
Institute of Control and Information Engineering
Poznań University of Technology, Poland 
tadeusz.pankowski@put.poznan.pl 

AbstrAct: Discovering matches and mappings between heteroge neous, independently designed data sources, is a challeng
ing issue in data exchange and data integration. To deal with the problem we enrich XML schemas with seman tic information 
from a domain ontology by annotating the schema. In this paper we discuss how the annotations can be used to establish 
matching and mapping formulas be tween XML schemas automatically and propose a set of rules to infer these formulas. 

Keywords: XML Schemas, Data sources, Data mapping, Data integration, Domain ontology, Semantic information

Received: 16 September 2009, Revised 11 November, Accepted 18 December 2009

© 2009 D-Line. All rights reserved.

1. Introduction 

Establishing of schema matching and schema mapping are two important issues in developing data integration and 
data exchange systems, especially when schemas evolve and the data sources are considered in dynamic P2P data 
integration systems [15]. In this paper we discuss the prob lem of automatic creation of schema matching based on 
XML schema annotations into a domain ontology, and on the ontology itself. Next, the discovered matches are used 
to generate schema mappings. 

Annotations are commonly used to enrich semantics of XML schemas [5, 20]. Schema matching techniques re ceived a great 
deal of attention and were reported in many papers and surveys ([18, 10]). Matches create a key input to the creation of 
schema mappings. A formal foundation of mapping specification for relational data was proposed in [9]. An adaptation of 
this concept to XML data integration was discussed in [3, 13]. 

The contribution of this paper is the following: (1) we discuss annotation of XML schema as an annotation of its labels 
and (generalized) edges, into an OWL Lite domain ontology; (2) we define a language (based on tree-patterns) to express 
matches and mappings between schemas; (3) we propose inference rules to generate semantically meaning ful matches based 
on annotations. 

The paper is organized as follows: In Section 2 we dis cuss and illustrate by examples the ideas underlying the re search. In 
Section 3, XML schemas and tree-pattern for mulas are defined. XML schema annotation is discussed in Section 4, and rules 
for inferring schema matching are pro posed in Section 5. In Section 6 we illustrate application of the method on an example. 
Section 7 concludes the paper. 

2 Motivation and basic concepts 

2.1 Basic concepts of annotation 
To explain our ideas of generating schema matches and schema mappings from annotation, consider two sample XML 
schema trees (representing DTDs) in Figure 1. Text-valued variables placed in the figure are used to denote correspondences 
between text values of schema instances. Dotted arrows denote some (generalized) edges over DTDs chosen for the annota-
tions. An edge can start with a la bel and end with: (a) its child, e.g. (paper, conf); (b) it self (a loop), e.g. (paper, .paper); (c) 
its descendant, e.g. (pub, //year); (d) its parent, e.g. (writer, ..pub); (e) its sibling, e.g. (conf, ../year). 

Annotation of a schema concerns some labels and edges of the schema. The constructs are annotated with some terms from 
an OWL Lite ontology [12, 4]. These terms are: class names (c), and property names (p). Among properties we distinguish: 



42 International Journal of Computational Linguistics Research   Volume 1 Number 1  March 2010

object properties that are triples of the form (c, p, ć ), where c is the domain, p is the name, and ć
 
is the range of the property, 

and datatype properties, i.e. triples of the form (c, p, String), where c is the domain, p is the name, and String is the range 
of the property. 

1.  Annotation of labels. A label l is annotated (by a function λ) with a set of OWL class names. Then c ∈ λ (l ) means that c 
is a class name annotating l. For example: Paper ∈ λ(paper) (for D1), and Publication ∈ λ(pub) (for D2). 

2.  Annotation of edges. An edge is a pair of the form (l, θl´, where l and ĺ are labels and θ is an operator indicat ing how ĺ can 
be reached from l. An edge is annotated (by a function δ) with a set of OWL property names. For exam ple: Author of ∈ 
δ(author, paper) (for D1), Presented at ∈ δ(pub, conf) (for D2); Title of paper ∈ δ(paper, .paper) (for D1), Title of publication 
∈ δ(pub, title) (for D2), Par ticipant of ∈ δ(author, //conf) (for D1), and Year of con ference ∈ δ(conf, ../year) (for D1). 

2.2 Similarity of names and compatibility of labels and edges 
The annotating ontology O is a common domain ontol ogy used by information engineers to annotate schemas. In general, an 
ontology is based on description logic (DL) [4] and is defined by means of a language based on DL OWL [12] or RDF(S). 
Then the DL inference rules, based on the solid semantics, are used to reason about concepts and as sertions [17]. However, 
from our point of view seman tic relations in DL, such as subsumption ( ) and equiv alence (≡), are often too restrictive. In 
many ontology-based applications some weaker semantic relations are as sumed [7, 19]. We will use the similarity relation (≈), 
that holds between similar terms, for example between names from classes which have a common superclass. For exam ple, 
Author ≈ W riter, P aper ≈ P ublication, Author of ≈ inverseOf(Written by), etc. We assume that the set of axioms in a domain 
ontology O consists of strong re lationships, formed using subsumption and equivalence, as well as from weak relationships 
constructed by means of ≈. Note that A ≡ B implies A ≈ B, and that ≈ is reflexive, symmetric but, in general, not transitive. 

The crucial problem is establishing of a compatibility (or matching relation) between labels of two schemas. Intu itively, a label 
l from D is compatible with a label l

´ 
from D́

 
 
 
if for any instance I´ of D´ there is an instance I´

 
of D´

 
such that a nonempty 

part of I corresponds to a nonempty part of I´, and some additional semantic conditions are satisfied. The correspondence is 
specified by a matching formula that has a form of equivalence between two tree-pattern formu las (TPFs) [3, 13] over D and 
D´, respectively. For exam ple, a matching formula between author and writer is (the universal quantification of variables is 
assumed): 

//author[name[. = x1]]  //writer[. = x1], 

thus the relation author ~ writer is the consequence of this formula. In this case the compatibility relation, author ~ writer 
between labels, coincides with the sim ilarity relation Author ≈ Writer in the ontology. How ever, in general, such coincidences 
are not necessary. For example, it is easily seen that subtrees rooted in author and in pub are compatible, even though class 
names Author ∈ λ(author) and Publication ∈ λ(pub) are not similar, however we are able to define a matching formula be-
tween subtrees rooted in these labels. To enrich the semantic re lationship between schemas, we additionally take into ac count 
semantics of edges leading from the root label of the subtree to its subtrees. 

2.3 Matching and mapping of XML schemas 
Matching formulas specify how the data from instances of compatible (parts of) schemas correspond to each other. In such 
specification the descendent operator, //, may occur in both sides of the equality, for example (Figure 1): 

//paper[. = x2, year[. = x3]]  //pub[title[. = x2], //year[. = x3]] (1)

A mapping formula is an implication created from a matching formula, where there is not any occurrence of in the right-hand 
side. The right-hand side is used to create the target instance for the set of variable valuations deter mined by the left-hand 
side of the mapping formula. Thus, the structure of the target must be defined unambiguously. To create the target instance 

Semantic aware matching and mapping for XML schemas

Tadeusz Pankowski
Institute of Control and Information Engineering,

Poznań University of Technology, Poland
tadeusz.pankowski@put.poznan.pl

Abstract

Discovering matches and mappings between heteroge-
neous, independently designed data sources, is a challeng-
ing issue in data exchange and data integration. To deal
with the problem we enrich XML schemas with seman-
tic information from a domain ontology by annotating the
schema. In this paper we discuss how the annotations can
be used to establish matching and mapping formulas be-
tween XML schemas automatically and propose a set of
rules to infer these formulas.

1 Introduction

Establishing of schema matching and schema mapping
are two important issues in developing data integration and
data exchange systems, especially when schemas evolve
and the data sources are considered in dynamic P2P data
integration systems [15]. In this paper we discuss the prob-
lem of automatic creation of schema matching based on
XML schema annotations into a domain ontology, and on
the ontology itself. Next, the discovered matches are used
to generate schema mappings.

Annotations are commonly used to enrich semantics of
XML schemas [5, 20]. Schema matching techniques re-
ceived a great deal of attention and were reported in many
papers and surveys ([18, 10]). Matches create a key input
to the creation of schema mappings. A formal foundation
of mapping specification for relational data was proposed in
[9]. An adaptation of this concept to XML data integration
was discussed in [3, 13].

The contribution of this paper is the following: (1) we
discuss annotation of XML schema as an annotation of its
labels and (generalized) edges, into an OWL Lite domain
ontology; (2) we define a language (based on tree-patterns)
to express matches and mappings between schemas; (3) we
propose inference rules to generate semantically meaning-
ful matches based on annotations.

The paper is organized as follows: In Section 2 we dis-
cuss and illustrate by examples the ideas underlying the re-
search. In Section 3, XML schemas and tree-pattern for-
mulas are defined. XML schema annotation is discussed in
Section 4, and rules for inferring schema matching are pro-
posed in Section 5. In Section 6 we illustrate application of
the method on an example. Section 7 concludes the paper.

2 Motivation and basic concepts

2.1 Basic concepts of annotation

To explain our ideas of generating schema matches and
schema mappings from annotation, consider two sample
XML schema trees (representing DTDs) in Figure 1. Text-
valued variables placed in the figure are used to denote
correspondences between text values of schema instances.
Dotted arrows denote some (generalized) edges over DTDs
chosen for the annotations. An edge can start with a la-
bel and end with: (a) its child, e.g. (paper, conf); (b) it-
self (a loop), e.g. (paper, .paper); (c) its descendant, e.g.
(pub, //year); (d) its parent, e.g. (writer, ..pub); (e) its
sibling, e.g. (conf, ../year).

authors

author*

year
x
3

paper+
x
2

name
x
1

conf
x
4

D1:

3

1

2

4

5

6

pubs

pub*

title
x
2

writer+
x
1

conf

year
x
3

name
x
4

D2:

3

12

4

5

6

Figure 1. Sample schemas (DTDs) D1 and D2,
and generalized edges (dotted arrows) cho-
sen for the annotation

Annotation of a schema concerns some labels and edges
of the schema. The constructs are annotated with some
terms from an OWL Lite ontology [12, 4]. These terms are:

67

Figure 1. Sample schemas (DTDs) D1 and D2, and generalized edges (dotted arrows) chosen for the annotation 



 International Journal of Computational Linguistics Research   Volume 1 Number 1  March 2010 43

we can apply chasing proce dure [1, 22]. In this procedure Skolem functions may be used [8, 14]. Thus, when we want to use 
the formula (1) to specify a mapping (transformation) from the left-hand side to a document with the root in pub, we must 
rewrite it (uni versal quantification of x2 and x3 is omitted, and result is an invented new root label): 

//paper[. = x2, year[. = x3]] ⇒ x1,x4( /result[pub[title[. = x2], writer[. = x1], conf [year[. = x3], name[. = x4]]]]). (2)

Semantics of TPFs is defined as a set of variable valu ations for which the formula is satisfied on an instance I [16]. For ex-
ample, the formula //paper[. = x2, year = x3] is satisfied on the instance I1 for valuation ω1, such that ω1(x2)= Mapping XML, 
ω1(x3) = 2009. 

In general, an equivalence, like (1), is satisfied for a pair (I1, I2) of instances, if the set of valuations for which the left-hand 
side is satisfied on I1, is equal to the set of valua tions for which the right-hand side is satisfied on I2. 

3. XML schemas and tree-pattern formulas 

We assume that XML schemas are defined by simplified non-recursive DTDs (Document Type Definition), where at tributes 
are represented by text nodes, and each regular ex pression has a simple form (like in [2]). As has been shown in [6, 11] such 
DTDs are very common in practice and cover about 70% of real-world situations. Let Σ be a set of labels, Text be a symbol 
denoting text values, and Str be a set of values of type String. 

Definition 3.1 (DTD) A tuple D =(top, Lab, Text,ρ) is a DTD, if Lab ⊆ Σ, top ∈ Lab is the root (the outermost) label, and 
ρ is a function assigning simple regular expres sions, e, over Lab\{top} ∪ {Text} to labels, 

e ::= Text | l | l? | l+ | l* | e e, 

where: l ∈ Lab\{top}, and each label from Lab, except for top, occurs at most once and exactly in one regular expres sion.  

A label l ∈ Lab is: a terminal label, if ρ(l ) = Text; a mixed label, if both Text and at least one label from Lab occur in 
ρ(l ); a nonterminal label, if Text does not appear in ρ(l ). 

Definition 3.2 A treepattern formula (TPF) over a set Σ of labels and a set x of variables is an expression with the syntax 

E  :: = (. = x) | θl [E ] | E, ..., E, 

θ  :: = e | . | // | .. | .. /, 

where l ∈ Σ, x ∈ x, e denotes an empty operator.  

The meaning of operators in TPFs, i.e. the dot operator (.) and θl, in a context node n coincides with the semantics of XPath 
[21], i.e.: 

. : abbreviates self :: node( ) and selects the context node n; 

l : abbreviates child :: l and selects l child of n; 

.l : abbreviates self :: l and selects n if its label is l; 

//l : abbreviates descendant-or-self:: l and selects the node 
labeled l from the set consisting of n, all its children and all its 
descendants;

..l : abbreviates parent :: l and selects the parent of n if its label is l;

../l : abbreviates child :: l[parent :: node( )] and selects the l child of 
the parent of n, i.e. an l sibling of n. 

4. Schema annotation 

An XML schema D can be annotated in a domain ontol ogy O. The annotation process assigns names of three OWL categories 
[12, 4]: class names, object property names, and datatype property names to schema constructs (labels and edges in the schema). 



44 International Journal of Computational Linguistics Research   Volume 1 Number 1  March 2010

An annotation graph GD for a DTD D, is a pair (Lab, Edg), where Lab is the set of labels from D, and Edg is a set of edges 
of the form (l, θl´

´
); l, l´ ∈ Lab, θ ∈{e, ., //, ../, ..}. For an edge (l, θl´

´
), we say that be gins with l, ends with l´

´
, and operator 

θ determines the way in which l´
´
 is reachable from l. 

Among edges we distinguish nonterminal, mixed, and terminal edges, according to the kind of the ending label l
´
. 

Let CNames, OP Names and DT P Names be sets of, respectively, class names, object property names and datatype property 
names in O. 

Definition 4.1 An annotation of D is a tuple Ann(GD ) = (λ, δ), where: 

1. λ : Lab → 2CNames – a function annotating labels with sets of class names; 

2. δ : Edg → 2OP Names ∪ DTP Names – a function an notating edges with sets of property names. 

Example 4.1 Annotations of some labels from D1 and D2 are given in Table 1. Annotations of edges with object prop erty 
names are listed in Table 2, and annotations of edges with datatype property names are given in Table 3. 

Note that some object and datatype properties may have equal names, (e.g. Presented at in Table 2 and in Table 3). It means 
that the union OP Names ∪ DT P Names in Definition 4.1 is understood as the disjoint union. 

DTD Label Class name 
D1 paper Paper 
D1 paper Title of paper 
D1 year Year of publication 
D1 conf Name of conference 
D1 conf Conference 

· · · · · · · · · 
D2 pubs Publications 

D2 pub Publication 
D2 title Title of publication 
D2 writer Writer 
D2 writer Name of writer 

· · · · · · · · · 

Table 1. Annotations of labels from D1 and D2 

DTD Edge Property name 
(E1) D1 (authors, author) Contains 
(E2) D1 (author, paper) Author of 
(E3) D1 (author, //conf) Contributed to 
(E4) D1 (paper, conf) Presented at 
(E5) D2 (pubs, pub) Contains 
(E6) D2 (pub, conf) Presented at 

· · · · · · · · · · · · 

Table 2. Annotations of edges with object property names 

DTD Edge Property name 
(E7) D1 (paper, conf) Presented at 
(E8) D2 (pub, writer) Written by 
(E9) D2 (pub, //year) Year of publication 
(E10) D2 (writer, .writer) Name of writer 
(E11) D2 (pub,//name) Presented at conference 

· · · · · · · · · · · · 

Table 3. Annotations of edges with datatype property names 



 International Journal of Computational Linguistics Research   Volume 1 Number 1  March 2010 45

5. Schema matching 

5.1 Compatibility relation between labels and edges 
Definition 5.1 (Compatibility relation between labels) Two labels l and l´ from, respectively, schemas D and D́  are compat
ible, denoted 

l ∼ l´, 
iff a subtree rooted in l can be matched with a subtree rooted in l´, i.e. there exists the following matching formula be tween 
D and D́  

∀x(//l[E(x)] ⇔ //l´[E´(x)]),  (3) 

where //l[E(x)] and //l´[E´(x)] are TPFs over D and D́  , respectively. 

Definition 5.2 (Satisfaction of a matching formula) A matching formula (3) is satisfied for schemas D and D́  , iff for any 
instance I of D there exists an instance Í  of D́   , such that the equality holds 

[//l[E(x)](I)] = [//l´[E´(x)](Í  )], 

where [E(x)(I)] is the value of E(x) on the instance I. This value is the set of valuations of variables in x, for which the formula 
E(x) is true in I, i.e. 

[E(x)(I)] = {ω ∈ [x → String] | I |= E(ω(x))}. 

Further on the universal quantification in matching for mulas will be omitted. 

Definition 5.3 (Compatibility relation between edges) Two edges, (l1, θl2) and (l´1
 ,θ´l´2

 ), are compatible, denoted

(l1, θl2) ∼ (l´1
 ,θ´l´2

 ),

iff one of the following conditions holds: 

1. property names assigned to edges are similar, class names assigned to predecessors of these edges are sim ilar, and the 
labels in the successors of the edges are compatible, i.e. 

δ(l1,l2) ≈ δ(l´1
 ,l´2 ) ∧ λ(l1) ≈ λ(l´1

 ) ∧ l2 ∼ l´2
 ;

2. the object property name assigned to both edges is Contains, and the labels in the successors of the edges are compatible, i.e. 

δ(l1,l2) ≈ δ(l´1
 ,l´2 ) = Contains ∧ l2 ∼ l´2

 .

Additionally, 

(l1,l2) ≈ inverseOf (l´1
 ,l´2 ) = (l´1

 ,l´2 )−1 iff (l1,l2) ≈ (l´2
 ,l´1

 ).

5.2 Inferring semantically meaningful matching rules 
Semantically meaningful matches are equivalences ob tained by the following rules. 

(R1) Matching determined by mixed or terminal labels. If l and l´ are terminal labels, and λ(l) ≈ λ(l´ ), then 

//l[. = x] ⇔ //l´ [. = x] 

(R2) Matching determined by compatible edges. 
If (l1, θl2) ∼ (l´1

 ,θ´l´2 ), and //l2[E] ⇔ //θ2
 [E´], then

//l1[θl2[E]] ⇔ //l´1
 [θ´l´2

 [E´ ]].
(R3) Additivity. 

If //l[E1] ⇔ //l´  [E´1 ], and //l[E2] ⇔ //l´  [E´2], then

//l[E1,E2] ⇔ //l´[E´1
 ,E´2].

(R4) Matching determined by inverse of edges. 
If (l1,l2) ∼ inverseOf (l´1

 ,l´2
 ) and

//l1[E1] ⇔ //l´2[E´2] and //l2[E2] ⇔ //l´1[E´1] then
//l1[E1,l2[E2]] ⇔ //l´1

 [E´1
 ,l´2[E´2

 ]].



46 International Journal of Computational Linguistics Research   Volume 1 Number 1  March 2010

(R5) Nesting for matches. If (l´1
  ,θ´l´2

 ) is an element edge, 

//l1[θl2[E1]] ⇔ //l´1[E´], and //l2[E2] ⇔ //l´2[E´2
 ],

then 
//l1[θl2[E1,E2]] ⇔ //l´1

 [E´1
 ,θ´l´2

 [E´2
 ]].

Example 
Consider two sample XML schema trees, D1 and D2 in Figure 1. Variables in Figure 1 are intended to denote corre spondences 
between text values of instances of these trees (note that paper is the label of mixed element). The goal is to discover those 
correspondences based on annotations of XML schemas. Annotations of D1 and D2 are listed in Tables 1 – 3. Axioms of the 
annotating ontology are given in Table 4. 

(A1) Author ≈ W riter 
(A2) P aper ≈ P ublication 
(A3) Author of ≈ inverseOf(Written by) 
(A4) Name of author ≈ Name of writer 
(A5) Title of paper ≈ Title of publication

Table 4. Axioms in the annotating ontology 

D1              D2 Matching formula
name ∼ writer //name[. = x1] ⇔ //writer[. = x1] 
paper ∼ title //paper[. = x2] ⇔ //title[. = x2] 
year ∼ year //year[. = x3] ⇔ //year[. = x3] 
conf ∼ name //conf[. = x4] ⇔ //name[. = x4] 

Table 5. Compatibility of terminal labels 

Compatibility relation on terminal labels is listed in Ta ble 5. The second entry follows from the similarity between class names 
assigned to labels (see axiom (A5) in Table 4), i.e. λ(paper) ∋ Title of paper ≈ Title of publication ∈ λ(title). Compatibility 
between terminal edges is given in Table 6. 

Matching formulas for edges annotated with datatype property names listed in Table 6, are given in Table 7. They all are 
created in force of rule (R2). 

Matching formulas in Table 8 are created as follows: 

M7 = R• 3(M1,R3(M2,M4)), 

M8 = R• 3(M3,M5), 
                                                                                                   D1                                       D2

(1) (paper, .paper) ∼ (pub, title) 
(2) (paper, year) ∼ (pub, //year) 
(3) (conf, ../year) ∼ (conf, year) 
(4) (paper, conf) ∼ (pub, //name) 
(5) (conf, .conf) ∼ (conf, name) 
(6) (author, name) ∼ (writer, writer) 

Table 6. Compatibility of terminal edges 

(M1) //paper[. = x2] ⇔ //pub[title[. = x2]] 
(M2) //paper[year[. = x3]] ⇔ //pub[//year[. = x3]] 
(M3) //conf[../year = x3] ⇔ //conf[year = x3] 
(M4) //paper[conf[. = x4]] ⇔ //pub[//name[. = x4]] 
(M5) //conf[. = x4] ⇔ //conf[name[. = x4]] 
(M6) //author[name[. = x1]] ⇔ //writer[. = x1] 

Table 7. Matching formulas for terminal edges (from Table 6) 



 International Journal of Computational Linguistics Research   Volume 1 Number 1  March 2010 47

M• 9 = R4(E2 ∼ E8−1,M6,E8 ∼ E2−1,M7), 

M• 10́ = R5(M4,M8,E4 ∼ E6), 

M• 10 = minimize(M10́ ), 

M• 12 = R2(E1 ∼ E5,M11). 

Using (M9), and after removing ambiguities (resulting from occurrences of // ), the following mapping between subschemas 
of D1 ans D2 can be obtained (see also (2)): 

//author[name[. = x1], paper[. = x2, year[. = x3],  
conf [. = x4]]] ⇒ /result[pub[title . = x2], 
writer[. = x1], conf [year[. = x3], name[. = x4]]] 

Note that mapping specifies how data from the source instance is to be transformed into the structure described by the right-
hand side (the target structure). It means, that the right-hand side must unambiguously determine the target structure, thus 
the operator // may not occur in the right-hand side TPF. 

6. Conclusion 

In this paper, we propose a method for discovering XML schema matching and mapping using semantic annotation of XML 
schemas, where a schema is understood as a graph over the underlying DTD. The graph consists of labels and generalized 
edges determined by the DTD. The predeces sor of an edge is a label and the successor – a label reach able from the predeces-
sor by means of a simple operator (self, child, descendent or sibling). Labels and edges are annotated in a common domain 
ontology. The annotation forms the base for deriving matches and mappings between 

(M7) //paper[. = x2, year[. = x3], conf[. = x4]] ⇔ //pub[title[. = x2], //year[. = x3], //name[. = x4]] 

(M8) //conf[../year[. = x3],. = x4] ⇔ //conf[year[. = x3], name[. = x4]] 

(M9) //author[name[. = x1], paper[. = x2, year[. = x3], conf[. = x4]]] ⇔ //pub[title[. = x2],  
//year[. = x3], //name[. = x4], writer[. = x1]] 

(M10´) //paper[conf[. = x4, ../year[. = x3],. = x4]] ⇔ //pub[//name[. = x4], conf[year[. = x3], name[. = x4]]] 

(M10) //paper[year[. = x3], conf[. = x4]] ⇔ //pub[conf[year[. = x3], name[. = x4]]] 

(M11) //author[name[. = x1], paper[. = x2, year[. = x3], conf[. = x4]]] ⇔  
//pub[title[. = x2], conf[year[. = x3], name[. = x4]], writer[. = x1]] 

(M12) //authors[author[name[. = x1], paper[. = x2, year[. = x3], conf[. = x4]]]] ⇔  
//pubs[pub[title[. = x2], conf[year[. = x3], name[. = x4]], writer[. = x1]] 

Table 8. Complex matching formulas 

schemas annotated in the same ontology. We propose a set of rules to infer these relationships. 

The proposed method of XML schema annotation and inferring schema mappings is implemented in SixP2P (Se mantic 
integration of XML data in P2P) system [15]. In SixP2P implementation, schema mappings are translated into XQuery 
programs [13]. 

Acknowledgement 

The work was supported in part by the Polish Ministry of Science and Higher Education un der grant 3695/B/T02/2009/36, 
and in part under grant 45 083/DS/10. 

References 

[1] Abiteboul, S., R., Hull, Vianu, V. (1995) . Foundations of Databases. Addison-Wesley, Reading, Massachusetts.
[2] Amano, S., Libkin, L.,Murlak,  F (2009). XML Schema Mappings. In:  PODS Conference, p. 33–42.
[3] Arenas, M., Libkin, L (2005).  XML Data Exchange: Consistency and Query Answering. In: PODS Conference,  

p. 13–24.



48 International Journal of Computational Linguistics Research   Volume 1 Number 1  March 2010

[4] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Petel-Schneider, P. ed. (2003). The Description Logic Handbook: 
Theory, Implementation and Applications. Cambridge University Press.

[5] Beneventano., D., Bergamaschi, S. (2004). The MOMIS methodology for integrating heterogeneous data sources. In: 
IFIPCongress Topical Sessions, p. 19–24.

[6] Bex, G. J., Neven, F., den Bussche, J. V (2004). Dtds versus xml schema: A practical study. In WebDB, p. 79–84.
[7] Euzenat, J. (2007). Semantic precision and recall for ontology alignment evaluation. In: M. M. Veloso, ed. IJCAI,  

p. 348– 353.
[8] Fagin, R., Haas, L. M.,  Hernández, M. A., Miller, R. J.,  Popa, L., Velegrakis, Y. (2009). Clio: Schema mapping creation 

and data exchange. In:  Conceptual Modeling: Foundations and Applications, volume Lecture Notes in Computer 
Science 5600, p.198–236.

[9] Fagin, R., Kolaitis, P. G., Popa, L., Tan, W. C. (2004). Composing schema mappings: Second-order dependencies to 
the rescue. In: PODS, p. 83–94.

[10] Madhavan, J., Bernstein, P. A.,  Doan, A., Halevy, A. Y. (2005).  Corpus-based schema matching. In: Proceedings of 
the 21stInternational Conference on Data Engineering, ICDE, p. 57–68. IEEE Computer Society.

[11] Martens, W., Neven, F., Schwentick, T (2007).  Simple off the shelf abstractions for XML schema, SIGMOD Record, 
36 (3) 15–22.

[12] OWL (2004). Web Ontology Language Overview. w3.org/TR/owlref 
[13] Pankowski, T.  (2008).  XML data integration in SixP2P – a theoretical framework. In: EDBT Workshop Data Management 

in P2P Systems (DAMAP 2008), ACM Digital Library, p. 11–18.
[14] Pankowski, T. (2008). XML Schema Mappings Using Schema Constraints and Skolem Functions. In:  Knowledge 

Engineering and Intelligent Computations, p. 199–216. Knowledge-Driven Computing, Springer Verlag.
[15] Pankowski, T. (2009). Schema mappings and annotations in semantic integration of XML data in P2P data integration 

systems. In:  Application of Digital Information and Web Technologies (ICADIWT´09), p. 505–510.
[16] Pankowski, T., Cybulka, J., Meissner, A  (2007). XML Schema Mappings in the Presence of Key Constraints and Value 

Dependencies. In:  ICDT 2007 Workshop EROW´07, p. –15. CEUR Workshop Proceedings, CEURWS. org,V. 229.
[17] Pankowski, T., Hunt,. E (2005). Data merging in life science data integration systems. In: Intelligent Information 

Systems, New Trends in Intelligent Information Processing and Web Mining, p. 279–288. Advances in Soft Computing, 
Springer Verlag.

[18] Rahm, E., Bernstein,. P. A (2001).  A survey of approaches to automatic schema matching. The VLDB Journal, 10 (4) 
334–350.

[19] Shvaiko, P.,  Euzenat, J. (2005).  A survey of schema-based matching approaches. J. Data Semantics IV, 3730. 146–
171.

[20] Xiao, H., Cruz, I. F. (2006).  Integrating and Exchanging XML Data Using Ontologies. Journal on Data Semantics 
VI:Special Issue on Emergent Semantics, Lecture Notes in Computer Science 4090, Springer, p. 67–89.

[21] XML Path Language (XPath) 2.0, 2006. www.w3.org/TR/xpath20.
[22] Yu, C., Popa, L. (2004).  Constraint-Based XML Query Rewriting For Data Integration. In:  SIGMOD Conference, p. 

371– 382.


