Designing Performance Monitoring Tool for NoSQL Cassandra Distributed
Database

Prasanna Bagade, Ashish Chandra, Aditya B.Dhende 7
Pune Institute of Computer Technology (QW
University of Pune

Pune

ABSTRACT: The popularity of NoSQL databases (especially Cassandra) has been increasing day by day. Now, as many
companies are developing Cassandra applications, they may need new tools to monitor database performance efficiently.
Developers have difficulty optimizing something they can't see. When problems related to performance occur and proper
analysis is needed, the statistical data generated by monitoring tool will be of a lot help. To optimize NoSQL applications,
developers need to have an idea about how the database is behaving in different working scenarios. Cassandra is easy to
configure, but for the proper performance tuning it is necessary to study the performance requirements for a particular
application. This can be judged by monitoring tool. The paper describes the design of such monitoring tool and the results
generated ie. statistics and graphs. The tool will be used primarily for low end machines as they are cost effective.

Keywords: Distributed Databases, NoSQL Databases, Database Performance, Parameters of Performance

Received: 22 December 2011, Revised 10 February 2012, Accepted 17 February 2012

© 2012DLINE. All rightsreserved

1. Introduction

Cassandrais NoSQL distributed database system which is known for managing large amount of distributed data. It provides
high availability without single point of failure, the reason behind this is that it treats failure of node as norm rather than
exception. It isalso famousfor high write throughput without harming read efficiency. Asit isdistributed databaseit replicates
datato keep search latency small. Every keyspace when created, it isassigned areplication factor. Cassandra providesreplica-
tion polices namely rack aware, rack unaware and data center aware[1].

Thedatamodel of Cassandrais column oriented, columnstogether form column family. Column family isnothing but collection

of columnsassociated with the key. Column has aname, value and timestamp. Different rowsin the same column family may not
have same number/type of columns.

| keyl | |column||co|umn " column|

[key2 | [column|fcolumn|

Figure 1. Datamodel of Cassandra-I

Super- column family islike column family within acolumn family. Every super column family isthe collection of similar/related
columns[3].

International Journal of Computational Linguistics Research Volume 3 Number 1 March 2012 17

Super1 Super2

keyl |column Il column " columnI |column Il column " columnl

Super1 Super2

key2 |column Il column " cqumnI |column Il cqumnI

Figure 2. Datamodel of Cassandra-I|

Cassandradynamically partitionsthe data acrossthe cluster and it provides different partitioning methodslike random partitioner
and order preserving partitioner. Cassandrais much easier to configure compared to other distributed database. It also allows
fine performance tuning as per changing requirements. Mainly Cassandra system can be contains three layers — core layer,
middlelayer and top layer.Thetop layer isalowsefficient, consistent reads and writesusing asimple API. Cassandra provides
simple queriesinsert, get & delete. The CassandraAPI is made up of simple getter and setter methods and has no reference to
the database distributed nature. Hinted hand-off is also the part of top layer. This occurs when a node goes down - the
successor node becomes a coordinator and temporarily receives and stores write activities (hint) for downed node. When
downed node becomes live, thisinformation is given(handed) by coordinator node to live node.

The middle layer contains functions for handling the data that is being written into the database. Compaction is the process
which triesto combine keys and columnsto increase the performance of the system by freeing the memory. The different ways
of storing data such as Memtable and SSTable are also handled here[3].

The core layer dealswith the distributed nature of the database, and contains functions for communication between nodes, the
state of the cluster as awhole (including failure detection) and replication between nodes[2].

Core Middle Top
Messaging Indexes Compaction | Hinted handoff
service | Commitlog Read repair
Failure detection | pemtable Monitoring
Cl uster state SSTable Admin tools
Partitioner
Replication

2. TheDesign

The nodetoal utility in Cassandraallowsto collect Cassandra performance statistics. Also commandslike TOP, SAR are useful
to collect stastistics. Asthereisbuilt in support of performance countersthat providesinformation about how system is doing.
Recoding the information from these counters is very much necessary for troubleshooting in the development phase of
application. The main performance parameters we should consider here are CPU utilization, Memory utilization, Thread Pool
Statistics, Read Write counts & latencies for Column Family, Read Write counts & latenciesfor Keyspace. So here we haveto
writetotal five shell scriptsto collect the statisticsrepeatedly after someinterval of timeand storeit inthefile. We havetowrite
aprogram which will read thefiles and display statistics graphically.

21GUI
The GUI consists of panel of buttons & some textboxes to choose which statistics user wants to see.

KEYSPACE |Keyspace KP_COUNT | KP_LATENCY |

COLUMN_FAMILY |CF_Ma”b0X CF_COUNT | CF_LATENCY |

CPU | MEMORY | THREAD POOL |

Figure3. GUI

18 International Journal of Computational Linguistics Research Volume 3 Number 1 March 2012

2.2Thread Pool Satistics

Cassandra is implemented by Staged Event Driven Architecture (SEDA), therefore instead of spawning thread per request,
reguests are transferred between queues of bounded size called thread pools. If these pools are filled, requests get backlogged
which effectsin delays or exceptions. We can diaghose this problem by collecting thread pool statistics (tpstats). It givesthe
number of operations active, pending and completed at different stages. Any stage that has the non zero number isin the active
or pending column is backlogged. A healthy system shows near zero at most timesin all stages for both the active and pending
stages. (Figure 4)

100

Threadpool Statistics
90 X Axis-Timein Seconds
: Y Axis-Number of threadsf

B ActiveThreads H
80 i B Pending Threads

70

60

50

40

30

20

10

e
R Rt

10 20 30 40 50 60 70 80I 90 100
Figure 4. Threadpool Statistics

R

The graph shows total active & pending thread count including all the stages.

2.3 Column Family Satistics

Each column family has a humber of performance countersthat provide proper diagnostics. The cfstats (column family statis-
tics) option shows ahigh level summary of the column family information. The main parameters are Read Count, Write Count &
Read L atency, Write L atency. The graph will show Reads/Writes per second & Read/Writelatency over time. The more requests
on agiven column family, the more system resources are being used. Usethisinformation to: Correlate with Disk and CPU usage
graphs to determine approximately how many operations per second a system can support, Track these values over time to
monitor usage patterns. Latency isan important factor when serving datato clients.Cassandratrackslatency, it countstime the
reguest is received to the time it is found or inserted to disk. During read operations, Cassandra tracks information on the
cumul ative time spent searching for dataand makes this available as Total ReadL atencyMicros. Use thisinformation to Ensure
that latency stays within acceptable values & Compare thislatency with results from yesterday or last week.

2.4 Count Graph of Column Family
The graph shows Figure 5.

2.5L atency Graph of Column Family
The graph shows Figure 6.

2.6 Keyspace Satistics
The keyspace contains many Column Families. Hence the main parametersfor keyspace are Read Count, Write Count & Read
Latency, WritelL atency. They represent the values for whole keyspace.

2.7CPU
The percentage CPU utilization by Cassandra processis abtained by Top command. This graph is used to check whether CPU
isunder load or not. (Figure 7)

2.8Memory
The percentage memory utilization by Cassandra process is obtained by Top command. This graph is used to check whether
memory isunder load or not. (Figure 8)

International Journal of Computational Linguistics Research Volume 3 Number 1 March 2012 19

5000, 50

Column Family Count Statistics Column Family Latency
X Axis-Timein Seconds X Axis-Timein Seconds =
4500, Y Axis-Number of Operators &3 Y Axis-Latencyinmillsec i
B WriteOperators B WriteLatency -
4000 B Read Operators 40 M Read L atency
3500 35
3000, 30
25004 25
2000! 20
15001 15
10004 10 i
500 § E 5
i i
10 20 30 40 50 60 70 30 90 100 10 20 30 40 60 90 100
Figure5. Count Graph of Column Family Figure6. Latency Graph of Column Family

100

CPU Utilization
Axis-Timei

T T
W Memory Utilization 3
X Axis-Timein Seconds 3

90 Y Axis-CPU Utilization in% 3

80

70

20

30

20

10

.
%

%MMMMMM

0

0 20 30 40 60 70 80 90 100

Figure 7. CPU utilization by Cassandraprocess Figure8. Memory utilization by Cassandraprocess

Thelow end machines are cost effective than high end machines. So many small application designing organizationswill go for
low end machines. Firstly it isnecessary to create an application which will fire queries on database & whose query load can be
adjustable as per requirement. Then the monitoring tool will be run on each node present in the cluster. The query load will be
increased/decreased, the nodes will be added/removed and simultaneously the change in performance will be observed. Based
on observations the user will be ableto configure performance tuning parameters correctly. It is necessary to show the graph of
performance parameters against time or transactions per second.

3.Mathematical Model
Let S be the system which collects the statistics and stores it.

S={FR,|,CPU, MEM, CF, TP.CF, G}

Where,
F={F1, F2, F3,F4, F5}

20 International Journal of Computational Linguistics Research Volume 3 Number 1 March 2012

Thisisthe set of functions which collect & store statistics in respective result sets.

R={R1, R2, R3, R4, R5}
| =timeinterval &t after which statisticsis collected again and again.
CPU - percentage CPU utilization.
F1()- function Collects& StoresCPU in R1
MEM- Memory Utilization
F2() -function Collects & StoresM in R2
TP={SIL, X2,............. , St14}

TPisthreadpool statisticswhereS’ meansthe ‘stage’ of operation(as explained in previous section).

S={A,PC}

A, P& C arethe number of tasksthat are active, pending & completed respectively inastage ‘'S’

F3()-function Collects & StoresTPin R3
CF={KSRP.CFL,CF2,........ , CFn}

CFiscolumn family statisticswhere KSPis K eyspace statistics & CFx standsfor statistics of X’ th column family in that keyspace.

KSP={RC,RL,WC, WL}
RC - read count
RL - read latency
WC - write count
WL - writelatency
CFx={N, SS,MT, RW, CA, CC}
N - Nameof column family
SS={SSTC, SUL, SUT}
SSTC - SSTable Count
SUL - Space used(live)
SUT - Space used(total)
MT={MTC,MTD, MTS}
MTC - Memtable column count
MTD - Memtabledatasize
MTS - Memtable switch count
RW={RC,RL,WC, WL, PT}
RC - Read Count
RL - Read Latency
WC - Write Count
WL - Write Latency

PT- Pending Tasks

] CA ={KCC,KCS,KCHR, RC}
KCS- Key CacheSize

KCHR- Key CacheHit Rate
RC- Row Cache

International Journal of Computational Linguistics Research Volume 3 Number 1 March 2012

21

CO={CMNS,CMXS,CMES}
CMNS- Compacted Row minimum size
CMXS- Compacted Row Maximum Size
CMES- Compacted Row Mean Size
F4()-function Collects& StoresKSPin R4
F5()-function Collects & StoresRW in R4
Now, after every 6t set of functions F, all functions can work simultaneously so asto produce result set R. So any X'th resultin
set Risintegration of x'th functionin set F over thetime T1to T2.
Rx="Fx()
G={G1,G2,G3,G4,G5}
Thisisthe set of graph drawing functions which take Result as input and work simultaneously to draw graphs.
G1(R1) - draws CPU utilization with respect totime
G2 (R2) - draws memory utilization with respect totime
G3(R3) - drawstpstats with respect to time
G4 (R4) - draws Keyspace rel ated attributes with respect to time.
G5 (R4) - draws RW (read write attributes) with respect to timefor each column family seperately.

4. Limitations

The system will fail infollowing scenarios

1) Network failure: The network failure stands for breakage or saturation of link between two nodes and if the node goes down
dueto power failure.

2) System Crash: The System may crash due to excessive load on a specific machine.
5. FutureWork

The future work includes adding some more performance parameters to this tool. The limitations mentioned should be over-
come. Also it will be good to design an intelligent system that will analyze the statistics generatedto suggest the most suitable
settings as per the real time environment. The graphical user interface can be made efficient so that it will properly convey
changesin performance.

6. Conclusion

NoSQL technol ogies enable enterprises to deliver rich application services to more users than ever before. So its necessary to
design a performance monitoring tool which will help to make decisionsto optimize performance as per different environments.
In the paper we saw the design of the monitoring tool. With the graphs generated by monitoring tool we are able to get picture
about performance of the database & this helps to make decisions about storage strategy of database.

References

[1] Prashant Malik, AvinashL akshman, (2009). Cassandra —a decentralized structured storage system. The 3rd ACM SIGOPS
International Workshop on Large Scale DistributedSystems and Middleware (LADIS 09), October.

[2] Bingwei Wang, Si Peng, Xiaomeng Zhang, Mark Bownes, Rob Paton, FarshidGolkarihagh, (2010) Cassandra as used by
Facebook, December 15.

22 International Journal of Computational Linguistics Research Volume 3 Number 1 March 2012

[3] Nabeel AhamedAkheel, Cassandra.
[4] DietrichFeatherston, Cassandra: Principles and Application.

[5] PrasannaBagade, Ashish Chandra, Aditya Dhende. Performance Monitoring Tool for NoSQL Column Oriented Distributed
Database (Cassandra).

International Journal of Computational Linguistics Research Volume 3 Number 1 March 2012 23

