
International Journal of Computational Linguistics Research  Volume  Volume   3   Number   2   June   2012        59

Hussein Abu-Mansour1, Jaber Alwidian1, Wael Hadi2

1ITC department
Arab Open University
Riyadh- Saudi Arabia
2CIS department
Philadelphia University
Amman- Jordan
{hmansour, j.alwidyan}@arabou.edu.sa,whadi@philadelphia.edu}

ABSTRACT: In recent decades, our computers tolerate multidimensional data to be stored and maintained depending on the
high computational strength of these computers. As a result, the two-dimensional pattern matching considered as one of the
hot research areas. In this paper, we investigate the exact two dimensional pattern matching problem. A new algorithm to solve
the main problem in this field is proposed which converts the two dimensional problem into one dimensional problem before
searching process which required high computational cost in preprocessing phase. The proposed algorithm deals with white
and black images, specifically, with text images. Experimental results show the superiority of the proposed algorithm when
comparing with (Brute-force algorithm, RK-KMP algorithm). The results of our algorithm point to the number of comparisons
have been reduced in many cases. In another side, when we apply the proposed algorithm on one dimensional text, its time is
proportional to θ (n), that means our time in this case is linear.

Keywords: Pattern Matching, Two-dimensional Pattern Matching, RK-KMP Algorithm, Brute-force Algorithm

Received: 25 January 2012, Revised 19 March 2012, Accepted 26 March 2012

© 2012 DLINE. All rights reserved

1. Introduction

Three major efficient pattern matching algorithms were proposed in the recent decade, KMP algorithm [13], BM algorithm [4],
and RK algorithm [8] these algorithms are one dimensional pattern matching algorithms. Baker [3] and independently Bird [5]
introduced the first worst case linear time algorithm for two dimensional pattern matching. The main step in their algorithm is to
run finite automation in order to perform a linear scan on text. In recent years, there has been unceasing interest in two and more
dimensional pattern matching problems; such interest is substantiated by the growing computational strength of the computers
allowing multidimensional data e.g. scans photographs to be processed [17].Several algorithms have been presented by
researchers for the exact two dimensional pattern matching problem, which have been reported in [14].

The two dimensional pattern matching problem can be classified into six types as follow: (1) Exact two dimensional matching, (2)
Approximate matching of rectangular patterns, (3) Approximate matching of non rectangular patterns, (4) Scaled matching, (5)
Compressed matching. And (6) Dictionary matching.

Efficient Algorithm for Two Dimensional Pattern Matching Problem (Square Pattern)



       60        International Journal of Computational Linguistics Research  Volume   3   Number   2   June   2012

 2. Problem Statement

String matching is an important problem in text processing and is commonly used to locate one dimensional pattern (string) in
a text. The expansion of imaging, graphics and multimedia required the use of pattern matching to higher dimensions leading to
the two- and multi-dimensional pattern matching problem [7]. The main problem of two dimensional pattern matching is the huge
number of comparisons which are needed to find occurrence of two-dimensional pattern in two- dimensional text. Most of the
algorithms that have been proposed to solve this problem are used to reduce the two dimensional problem into one dimensional
problem, and this process is considered as new problem in these algorithms because of the need to for preprocessing phase to
construct the necessary structure before searching the text [7].

In two dimensional patterns matching problem there are different types of text which can be used such as: binary alphabet,
alphabet of size 8, English alphabet, and DNA alphabet [16] and [7]. In this research we will focus on binary text. For example,
consider two matrices X and Y defined as show in Figure 1, X as a Text and Y as a Pattern and we need to find the occurrence of
Y in X.

0    0     1     0    0
0    1     1     1    0
1    1     0     0    1
0    1     1     0    0
0    0     0     1    1

1    0     0
1    1     0
0    0     1

X =

Y =

Figure 1. Two binary matrices X and Y

The main objective of this paper is to propose an efficient algorithm in exact 2D pattern matching problem when alphabet is
binary {0, 1} without the reduction of the two dimensional arrays into one dimension ones. In fact, reducing the two dimensional
pattern into one dimensional pattern is considered as a problem in many algorithms because of the need to preprocessing phase
to construct the necessary structures before searching the text [7]. The importance of this algorithm lies in the detection of an
object in white and black images which is considered as one of the main problems in pattern recognition and image processing
[6]. Also, binary data have been occupying a special place in the domain of data analysis [15].

This paper is structured as follows: the problem statement is  presented in Section II. In Section III, the related work is presented.
The proposed algorithm is discussed in section IV. Experimental results are presented and discussed in section V. Finally,
conclusions are given in Section VI.

3. Related Work

The two dimensional pattern matching problem is the first generalization of the one dimensional pattern matching [7]. In one
dimensional pattern matching problem we need to find all occurrences of a pattern in a text string where most of algorithms in this
field focus on pattern, and the searching in the text is done by using one direction (from left to right) [10] as shown in Figure 2a.
But in two dimensional pattern matching we need to find all occurrences of a two dimensional pattern in a two dimensional text
matrix as shown in figure 2b.



International Journal of Computational Linguistics Research  Volume  Volume   3   Number   2   June   2012        61

Figure 2a. One dimensional pattern matching

Figure 2b. Two dimensional pattern matching

The two dimensional pattern matching problem can be classified into six types: (1)Exact two dimensional pattern matching, (2)
Approximate matching of rectangular pattern, (3) Approximate matching of non rectangular pattern, (4) Scaled matching, (5)
Compressed matching, and (6) Dictionary matching [1]. The most important types of two dimensional pattern matching problem
in practice are exact two dimensional pattern matching problem and two dimensional approximate pattern matching [17]. In this
section we will focus on the first, second, and third types. The exact two dimensional pattern matching problem is defined in [1]
as: Let q be an alphabet, given a text array T (n * n) and pattern array P (m * m), report all locations (i, j) in T where there is an
occurrence of P, i.e. T (I + k, j + l) = P (k, l) for 0 <= k, l <= n and m <= n.

Many of applications adopts the exact 2-D pattern matching algorithms such as the edge detecting process for any type of
images, where a set of arrays of edge detectors are matched against the picture [9]. One of the applications that presents the
importance of pattern matching problem is compressed matching problem, defined in [2] it is the problem of finding all occurrences
of pattern in compressed images. The compressed matching problems motivated by the vast increase of stored compressed
data, is the problem of finding all occurrences of pattern in a compressed text without the need to decompress this image [2].
Another application that shows the importance of the problem was presented in [1] which is about searching aerial photographs.
The practical goal of this application is to read an aerial photograph and a template of some patterns, and the output is all
locations on the aerial photograph where the template abject appears.

Many of the studies focus on exact 2-D pattern matching problem when the alphabet is binary. This problem appears in the
detection of an object in white and black image that is considered as one of the main problem in pattern recognition and image
processing [6]. Also, Binary data have been occupying a special place in the domain of data analysis [1]. In [15] the exact 2-D
matching algorithms were classified based on two criteria (1) Reduction of the 2-D pattern matching problem into one dimension
such as (Bird and Baker, Weiner’s or Creight’s algorithm) and (2) The analysis of the 2-D structure of the pattern and make use
of it in text scanning step such as (2-D periodicity idea).

4. The Proposed Algorithm

In this section, a comprehensive explanation about the  proposed algorithm is presented. The proposed algorithmconsists
mainly of two phases, the preprocessing phase and the matching phase. Figure 3 depicts the block diagram of the main steps of
the proposed algorithm.

4.1 Preprocessing Phase
With regard to what have been mentioned in the research objectives the proposed algorithm treats with ‘0’s and ‘1’s matrices



       62        International Journal of Computational Linguistics Research  Volume   3   Number   2   June   2012

white and black images), our algorithm conducts preprocessing step to construct the necessary structure before searching the
text. Let Pattern size is n * m, Time is O (3 * n * m) which can be divided into three parts as follows:

Pattern Text

Preprocessing Phase

Matching Phase

Figure 3. The main steps of the proposed algorithm
1. let

Pattern =

Text =
b11    b12   ….   b1m
b21   b22   ….    b2m

bn1   bn2   ….   bnm

 .         .                .
 .         .                .

We need to convert the pattern into unique value first by using the following formula:

Pattern value = a11* (21) + a12 * (22) +…anm * (2 (n*m))

By using this formula we will have fragment from the geometric form or full geometric form as shown in following formula:

  21 + 22 + 23 +…………. + 2n = (2 (n +1) - 2)

For example, if we have the following pattern:

By using formula 1, value of this pattern = 1 * (21) + 0 * (22) +1 * (23) +1 * (24) + 0 * (25) + 0 * (26)

= 1 * (21) + 1 * (23) + 1 * (24)

= 21 + 23 + 24

The resulted value is considered as geometric form fragment as shown in formula 2, which is unique value , that means there
should not be any pattern that has the same value with different geometric form fragment.

Proof 1: assume the Pattern = 101100, then
- Change the element which comes after the last ‘1’ in the Pattern to ‘1’. In this example the pattern will become 101110.

⎩
⎧Pattern =

1    0    1
1    0    0

⎫
⎭

a11    a12   ….   a1m
a21   a22   ….    a2m

an1   an2   ….   anm

 .         .                .
 .         .                .⎩

⎧ ⎫
⎭

⎩
⎧ ⎫

⎭

(1)

(2)



International Journal of Computational Linguistics Research  Volume  Volume   3   Number   2   June   2012        63

- Change all elements that come before the last ‘1’ in the new Pattern to zeroes. In this example the pattern will become 000010.
- By using formula 1 and 2, the value will be greater than the previous value. So that change any element will give unique value.

If the size of the Pattern equal n*m, the time of this part is proportional to O (n*m). The Pseudo Code is as shown in Figure 4.

1   Position =1
2   Hashsub = 0
3   // Hashsub is the value of the pattern
4   // size if pattern = n * m
5   // n is number of rows
6   // m number of columns
7   // tem is one dimension array include values from 21 to 2n*m

8   // sub is a Pattern
9   For i =1 to n
10 For j =1 to m
11 Hashsub = Hashsub + sub(i) ( j)*tem ( position)
12 End for
13 End for

Figure 5(a). The pseudo code of part 1

2. Convert the first pattern which can be created from the text into one value by using the same way which used in the previous
part where its time is proportional of O (n * m). For example, let

Text =
0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

⎧

⎩
⎢ ⎢

⎫

⎭
The first pattern that can be created from the Text will be:

1    0    1
1    0    0

Value of this pattern by using formula 1 = 0 * (21) + 1 * (22) +0 * (23) +1 * (24) + 0 * (25) + 1 * (26)
= 1 * (22) +1 * (24) +1 * (26)

The Pseudo Code of this part is as shown in figure 5.

3. Create one dimensional array that has the same size of pattern (n*m). for example, if the pattern has size equal 2 * 3 , then the
size of one dimensional array will be equal 6. This array contains values from 21 to 2n*m . For example,

The size of new one dimensional pattern will be equal 6 elements, and these elements are {2, 4, 8, 16, 32, and 64}. The Pseudo
Code of this part is as shown in figure 6, where time of this part is proportional to O (n*m).

4.2 Matching Phase
The basic procedure of the proposed algorithm is derived from the Karp and Rabin algorithm. The order of comparisons is
performed from left to right until a complete match occurs.

This example will be explained in an example as follows:

If the pattern =
1    0    1
1    0    0

⎩
⎧ ⎫

⎭

⎩
⎧ ⎫

⎭



       64        International Journal of Computational Linguistics Research  Volume   3   Number   2   June   2012

1   Hashmain = 0
2   Position =1
3   // Hashmain is the value of the first pattern which is created from the Text
4   // size if pattern = n * m
5   // n is number of rows
6   // m number of columns
7   // tem is one dimension array include values from 21 to 2n * m

8   // largematrix is a Text
9   For i =1 to n
10 For j =1 to m
11 Hashmain = Hashmain + largematrix (i)(j) * tem ( position)
12 End for
13 End for

Figure 5(b). Pseudo code of part 2
Let

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

Text =
⎧

⎩
⎢ ⎢

⎫

⎭

In this example, a comparison between the value of the pattern and the first pattern that is derived from the text  should be done
in order to find a match between them. In the case of no match, further steps should be applied to find the match:

1. To get a new pattern from the text, a shift to the right by one column should occur to the whole pattern if possible. As shown
in figure 3.5.

1 tem (1) = 2
2 // tem is one dimensional array
3 // n*m size of the pattern
4 For I = 2 to n*
5 tem (i) = tem (i -1) * 2
6 End for

Figure 6. The pseudo code of part 3

⎧
⎢ ⎢

⎫

⎩ ⎭

⎧
⎢ ⎢

⎫

⎩ ⎭
The current pattern The new pattern

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

Figure 3.5. Create new pattern by shifting to the right one column

In this case, the following formula is used to calculate the value of this new pattern:

Value of the next Pattern = (PV - FCPP)/2 + LCNP
Where

⎩
⎧Pattern =

1    0    1
1    0    0

⎫
⎭



International Journal of Computational Linguistics Research  Volume  Volume   3   Number   2   June   2012        65

PV is Previous Value
FCPP is First Column of the Previous Pattern
LCNP is Last Column of the Next Pattern

Applying formulas 1 and 3, to the example:

Let

⎧
⎢ ⎢

⎫

⎩ ⎭

⎧
⎢ ⎢

⎫

⎩ ⎭
The current pattern The new pattern

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

First step (PV - FCPP) / 3 should be found:

0     22   0
24   0    25

0
24

22   0
0    26- =

Second step, summation of (PV - FCPP)/2 and LCNP should be found:

(PV ) (FCPP) (PV - FCPP) / 2

21    0
0    25

0
26

- =
22   0    0
0    25    26

(PV - FCPP)/3 LCNP = (PV - FCPP)/2 + LCNP

2. in the case of shifting pattern to right by one column is no longer available, a shift down by one row to the current pattern
should be done if possible, in order to come up with new pattern from a certain text. As shown in figure 3.6.

⎧
⎢ ⎢

⎫

⎩ ⎭

⎧
⎢ ⎢

⎫

⎩ ⎭
The current pattern The new pattern

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

Figure 3.7. Create new pattern by shifting down by one row

In this case, the following formula is used to calculate the value of this new pattern.

Value of the Pattern = (PV - FRPP) / 2m  + LRNP
Where

PV is Previous Value
FRPP is First Row of the Previous Pattern
LRNP is last row of the Next Pattern
m is the number of columns in the Pattern

Applying formulas 1 and 4 to the example

⎧
⎢ ⎢

⎫

⎩ ⎭

⎧
⎢ ⎢

⎫

⎩ ⎭
The current pattern The new pattern

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

⎩
⎧ ⎫

⎭ ⎩
⎧ ⎫

⎭⎩
⎧ ⎫

⎭

⎩
⎧ ⎫

⎭ ⎩
⎧ ⎫

⎭ ⎩
⎧ ⎫

⎭

/ 2

=



       66        International Journal of Computational Linguistics Research  Volume   3   Number   2   June   2012

Using the formulas 1 and 4, the result will be as follow:

0     0   0
24   25  26 0  0  0-

==

=[ ] [ 24   25  26 ]

[ 21   22  23 ] + [ 24   0  26 ] 21   22  23

24   0   26

3. In the case of no match between the patterns that has been created from step 2 and the pattern, a shift to the left by one column
should be done, and shifting should be repeated to the left has to be done until a match with the pattern is found or no more
shifting is available due to no more new columns in the text. As shown in figure 3.8.

⎧
⎢ ⎢

⎫

⎩ ⎭

⎧
⎢ ⎢

⎫

⎩ ⎭
The current pattern The new pattern

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

Figure 3.8. Create new pattern by shifting to left by one
column

In this case the following formula is used to calculate the value of the new pattern:

Value of the next Pattern = (PV – LCPP) * 2 + FCNP
Where

PV is Previous Value
LCPP is Last Column of the Previous Pattern
FCNP is First Column of the Next Pattern

Applying formulas 1 and 5 to the example

⎧
⎢ ⎢

⎫

⎩ ⎭

⎧
⎢ ⎢

⎫

⎩ ⎭
The current pattern The new pattern

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

Using the formulas 1 and 5, the result will be as follow:

21   22  23

24   0   26 - =

+ =
0   22  23

0   25   0

23

26
21   22

24   0 * 2

=
22   23

25   0
0
0

4. In the case of no match between the patterns that have been created in step 3 and the pattern, and when shifting the pattern
to the left by one column is no longer available, a shift down by one row should be done in order to come up with new pattern
if possible. As shown in figure 3.9.

⎧
⎢ ⎢

⎫

⎩ ⎭

⎧
⎢ ⎢

⎫

⎩ ⎭
The current pattern The new pattern

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

0   1   0   0   0
1   0   1   1   1
1   0   1   0   1
0   0   1   0   0

Figure 3.9. Create new pattern by shifting down by one row

⎩
⎧ ⎫

⎭

⎩
⎧ ⎫

⎭

⎩
⎧ ⎫

⎭

⎩
⎧

⎩
⎧ ⎫

⎭
⎫
⎭

⎩
⎧ ⎫

⎭

⎩
⎧

⎩
⎧

⎫
⎭

⎫
⎭



International Journal of Computational Linguistics Research  Volume  Volume   3   Number   2   June   2012        67

Figure 7. The main text image

In this case, formulas 1 and 4 will be applied.

Reaching this step and in the case of no matching between the patterns that have been created and the pattern, steps from 1 to
4 should be repeated if possible, until a match is found or no new patterns can be created.

By using these formulas we do not need to visit all elements in the Patterns, just we need to visit 2 columns or 2 rows, and then
when we compare between these values and the value of the original Pattern by using one operation it will tell us if they are the
same or not. So that number of comparisons will be reduced form Θ (NMnm) time to Θ ((N - n + 1)*(M - m + 1) * 2n) which is
proportional to Θ (NMn).

This algorithm can be used for one dimensional Text. For example, if we have the following text with size 1*18:
“101100010101000101” , and we are searching for a Pattern of length 1 * 8, we can compute the value of second Pattern which is



       68        International Journal of Computational Linguistics Research  Volume   3   Number   2   June   2012

“01100010" from the value of the first Pattern which is “10110001” by subtracting the number added for the first ‘1’ of  “10110001”,
i.e. 1 * 21(1 value of first element and 2 is the base we are using), dividing by the base and adding for the last ‘0’ of  “ 01100010”,
i.e. 0 * 28. If the substrings are long, this algorithm achieves great savings for number of comparisons. The worst case time for
this application is Θ (M).

5. Experimental Results

In this section, ….compare the results of our approach and the results of Brute force and RK-KMP algorithms which proposed
by Rabin and Karp in [12]. These algorithms are tested on text images that have white and black colors with square patterns that
have different sizes as shown in figures 7 and 8.

Figure 8. The pattern

10×10  20×20    30×30   40×40
50×50  50×50    50×50   50×50

Bruteforce
new approach

RK-KMP algorithm

size of pattren
size of text

5000

4000

3000

2000

1000

     0

Figure 9. Comparison between Brute Force, RK-KMP, and New approach matrix
containment algorithms in the preprocessing phase when text has size (50*50)

5.1 Experimental Methodology
In this section we present the testing methodology which is used in our experiments in order to compare our algorithm with the
main algorithms in the tow dimensional pattern matching problem. There are set of parameters which describe performance of
these algorithms which they are: Size of text, Size of pattern and Size of alphabet .

Bruteforce
new approach

RK-KMP algorithm

size of pattren
size of text

20000

15000

10000

 5000

     0

   20×20      40×40        60×60       80×80
100×100   100×100   100×100  100×100

There are different types of data can be used in the tow dimensional pattern matching problem, in our research we will focus on
binary alphabet where Σ  = {0, 1}. The main motivation of using this alphabet is the vast increase of stored white and black
images and the problem of finding occurrence of patterns in these images. For the comparison of the two dimensional pattern

Figure 10. comparison between Brute Force, RK-KMP, and New approach matrix
containment algorithms in the preprocessing phase when text has size (100*100)



International Journal of Computational Linguistics Research  Volume  Volume   3   Number   2   June   2012        69

matching algorithms we used the number of character comparisons as measures. This way in [Smith, 1991] is used in string
matching problem to create comparison between some of algorithms

250×250    250×250     250×250      250×250

Bruteforce
new approach

RK-KMP algorithm

size of pattren
  size of text

12000
10000

  8000

  6000
 4000

  2000
      0

20×20       40×40         60×60        200×200

N
um

be
r 

of
 v

is
it

ed
el

em
en

ts

Figure 11. Comparison between Brute Force, RK-KMP, and New approach matrix
containment algorithms in the preprocessing phase when text has size (250*250)

Bruteforce
RK-KMP
new approach

  sub matrix
 main matrix

2*2 4*4 6*6
8*8 8*8 8*8

500

400

300

200

100

    0

number oc comparisons

Figure 12. Comparison between Brute Force, RK-KMP, and New approach
matrix containment algorithms in worst case when text has size (8*8)

5.2 Results of preprocessing phase
In this section, the new approach will be compared to the other algorithms in the preprocessing phase.

In figure 9, 10, and 11, as shown in all experiments, the Brute Force algorithm no need preprocessing phase. It just looks for the
pattern at all possible positions in the text. The new approach is better than the RK-KMP algorithm in all experiments because
the preprocessing time of the new approach is proportional to O (2* m1* m2), where the preprocessing time of the RK-KMP

Bruteforce
RK-KMP
new approach

4*4 4*4 6*6
8*8 8*8 8*8

  sub matrix
 main matrix

6000

5000
4000
3000
2000

1000
     0

nu
m

be
r 

oc
 c

om
pa

ri
so

ns

Figure 13. Comparison between Brute Force, RK-KMP, and New Approach
matrix containment algorithms in worst case when text has size (16*16)



       70        International Journal of Computational Linguistics Research  Volume   3   Number   2   June   2012

algorithm is proportional to O (m1* m2 + n1* n2).

5.3 Results of exact matching with square size of pattern
In this section, the new approach will be compared to the other algorithms when the pattern is square (m = n).

In figure 13, as shown in the first experiment where size of the pattern (2 * 2) and the size of the text (8 * 8), the BF algorithm is
better than the RK-KMP algorithm and the new approach, and it is because that the BF algorithm does not need the preprocessing
phase while the others need it in different ways, also the pattern contains only two columns that prevent the other two
algorithms to work properly, as mentioned before.

Bruteforce
RK-KMP
New approach

   8*8 16*16 24*24
32*32 32*32 32*32

  sub matrix
 main matrix

80000
70000
60000
50000
40000
30000
20000
10000
     0nu

m
be

r 
of

  
co

m
pa

ri
so

ns

Figure 14. Comparison between Brute Force, RK-KMP, and New approach
matrix containment algorithms in worst case when text has size (32*32)

16*16                  32*32                 48*48
64*64                  64*64                 64*64

1200000

1000000

 800000

 600000

 400000

 200000

         0

Bruteforce
RK-KMP
New approach

  sub matrix
 main matrix

nu
m

be
r 

of
  

co
m

pa
ri

so
ns

Figure 15. Comparison between Brute Force, RK-KMP, and New approach
matrix containment algorithms in worst case when text has size (64*64)

Bruteforce
RK-KMP
New approach

16*16                  32*32                 48*48
64*64                  64*64                 64*64

  sub matrix
 main matrix

20000000
18000000
 16000000
 14000000
 12000000
 1000000
       8000000
6000000
4000000
2000000
              0nu

m
be

r 
of

  
co

m
pa

ri
so

ns

Figure 16. Ccomparison between Brute Force, RK-KMP, and New approach
matrix containment algorithms in worst case when text has size (128*128)



International Journal of Computational Linguistics Research  Volume  Volume   3   Number   2   June   2012        71

50*50           100*100          150*150           200*200
250*250          250*250           250*250          250*250

Bruteforce
RK-KMP
New approach

  sub matrix
 main matrix

nu
m

be
r 

of
  

co
m

pa
ri

so
ns

250000000

200000000

150000000

100000000

50000000

             0

Figure 17. Ccomparison between Brute Force, RK-KMP, and New approach
matrix containment algorithms in worst case when text has size (250*250)

Bruteforce
RK-KMP
New approach

100*100        200*200          300*300          400*400
500*500        500*500          500*500          500*500

  sub matrix
 main matrix

nu
m

be
r 

of
  

co
m

pa
ri

so
ns

4.00E+09
3.50E+09
3.00E+09

2.50E+09

2.00E+09

1.50E+09

1.00E+09

5.00E+08
0.00E+00

In figure 12 and 13, the new approach algorithm is the best algorithms among the others, except the first experiment that is shown
in figure 1, where size of the pattern (2*2) and size of the text (8*8).

In figures 14,15,16,17, and 18, the RK-KMP algorithm shows better performance than the other algorithms. the proposed
algorithm scored low in the first attempt due to the difference between the size of the pattern and the text, in the first attempt the
size of pattern is equal to the quarter size of the text. The proposed scored high with comparing with other algorithms in the rest
of the attempts since the size of the pattern is bigger than the quarter size of the text.

As a result, when the difference in the size, between the pattern and the text is little, the number of comparisons will decrease in
the new approach, and will increase in the other algorithms. The process of shift to right by one column will decreases visiting
large number of elements that represent most of the text which leads to increase the matching speed.

Further, when the difference in the size between the pattern and the text is little, the number of patterns that can be created from
the text will be little as well, and because the main operation in the new approach is deleting a column and adding another for
each pattern. That will decrease the number of visited columns and then the number of visited elements will be decreased too.
While in the other algorithms, there is no relation between the number of patterns that can be created from the text and the
number of visited elements.

Figure18. Ccomparison between Brute Force, RK-KMP, and New approach
matrix containment algorithms in worst case when text has size (500*500)



       72        International Journal of Computational Linguistics Research  Volume   3   Number   2   June   2012

6. Conclusion and Future Works

6.1 Conclusion
In this paper, we present a fast exact two dimensional pattern matching algorithm. Experiments results shows that this algorithm
has better performance in most experiments, faster than the other algorithms in two cases; (1)when the pattern has size greater
than quart of the Text and (2) when the Pattern and the Text have very small size, So that, our algorithm is effected with size and
form of patterns. The proposed algorithm has the least number of character comparisons in most cases; therefore it is feasible
that this method can be used in applications related to exact two dimensional patterns matching in white and black images
databases.

6.2 Future work directions
The works that can be done in the field of our research is open and many improvements can be done on the proposed algorithm.
Recommended future works can be summarized as following:

- Enhancing the proposed algorithm to find not only the first occurrence of the pattern with low number of comparisons but also
find all occurrences of the pattern in the text with low number of comparisons.

- Devising new equation that can convert the pattern into unique value when we treat with colored images or gray scale images.

- Build an efficient algorithm to find all rotated occurrences of pattern in two dimension array when we restricted our  alphabet
to {0, 1}.

- Build an efficient algorithm to reduce number of computations which needed to find the correlation between image (binary
image) and object template.

References

[1] Amir, A. (1992). Multidimensional pattern matching: A survey, Technical Report GIT-CC-92/29, Georgia Institute of Technology,
College of Computing.

[2] Amir, A. and Benson, G. (1992), Efficient two dimensional compressed matching, In: Proc. of Data Compression Conference,
p. 279-288.

[3] Baker, T. (1978). A technique for extending rapid exact string matching to arrays of more than one dimension. SIAM Journal
on Computing, 7 (3) 533–541.

[4] Bayer, R., Moore, J. (1977), A fast matching algorithm. ACM, 20 (10) 762-772.

[5] Bird, R. (1977). Two dimensional pattern matching, Information Processing Letters, 6 (5) 168–170.

[6] Brown, L. (1992). A survey of image registration techniques, ACM Journal, Computing Surveys, 24 (4) 325-376.

[7] Charalampos S., Kouzinopoulos, Konstantinos G. (2008), Improving the Efficiency of Exact Two Dimensional On-line Pattern
Matching Algorithms, In: Proc. of IEEE Panhellenic Conference on Informatics, Samos, p. 232-236.

[8] Davies, G., and Bowsher, S. (1986). Algorithms for pattern matching. Software Predicates and Experience, 16 (6) (16, 575-601).

[9] Fan, J., Su, K. (1995). The design of efficient algorithms for two dimensional pattern matching. IEEE, Transactions on
knowledge and data engineering. 7 (2) 318-327.

[10] Hudaib, A., Al-khalid, R., Suleiman, D., Itriq, M., Al-anani, A. (2008), A fast pattern matching algorithm with tow sliding
windows (TSW). Journal of computer science, 4 (5) 393-401.

[11] Jain, A. (2003), Fundamental of digital image processing, the tenth Indian reprint, New Delhi-India: Prentice Hall of India
private limited..

[12] Karp, R., Rabin, M. (1987). Efficient randomized pattern-matching algorithms. IBM, 31 (2) 249-260.

[13] Knuth, D., Morris, J., Pratt. V. (1977). Fast pattern matching in strings. SIAM Journal of Computing, 6 (2) 323-350.

[14] Kouzinopoulos, C., Margaritis, K. (2008). Exact Two Dimensional On-line Pattern Matching Algorithms: Survey and
Experimental Results. Technical Report, University of Macedonia, Department of Applied Informatics.



International Journal of Computational Linguistics Research  Volume  Volume   3   Number   2   June   2012        73

[15] Li, T. (2005). A general model for clustering binary data. In: Proc. of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, Chicago, Illinois, USA, p. 188–197.

[16] Michailidis, P., Margaritis, K. (2001) On-line String Matching Algorithms: Survey and Experimental Results. International
Journal of Computer Mathematics, 76 (4) 411-434.

[17] Zdarek, J., Melichar, B. (2006). On Two-Dimensional PatternMatching by Finite Automata. In: Proc. Of Implementation and
Application of Automata Conference, Springer /Heidelberg. 3845, 329-340.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


