
     International Journal of Computational Linguistics Research   Volume   5   Number  4    December   2014         119

B. P. Pande1, Pawan Tamta2, H. S. Dhami3
1, 2SSJ Campus, Kumaun University
Almora, Uttarakhand,
3Vice Chancellor
Kumaun University
Nainital, Uttarakhand
India
bp.pande@rediffmail.com, pawantamta0@gmail.com, profdhami@rediffmail.com

Abstract: Corpus based stemming has been devised to develop stemmers targeting language independent environment. These
stemmers are applicable to all languages based on Latin script. In the present work, we exploit the English corpus for coded
words of Devanagari script. We use the technique of Romanization and the stemmer is being tested over 100 randomly chosen
Hindi words. We show that this approach has a direct application to the standardization of regional languages. For instance,
we standardize the Kumauni language.

Keywords: Information Retrieval (IR), Stemming, Script, N-gram, Devanagari, Kumauni

Received: 12 August 2014, Revised 18 September 2014, Accepted 24 September 2014

© 2014 DLINE. All Rights Reserved

1. Introduction

Under the general Information Retrieval (IR) environment, basic goal is to retrieve documents relevant to the query seeded by
an end user. This is achieved by matching semantic substance of the query with the semantic contents of the documents. With
textual documents and queries, terms or words can be exploited to infer the meaning, and the IR system renders to match
meaning of each query term with the meaning of each document term. Now, the invariant form of the word plays an important
role for this term meaning. A general hypothesis is: words may have same meaning if they share a common root or stem.
Stemming is the process of reducing words into their base or root form. Automatic stemming (or stemmer) is applied to words to
overcome the mismatch anomalies related with text searching. By applying different techniques of stemming, additional documents
can be retrieved as a response to a user query, that do not contain the exact query terms, but have word stems that matches with
stems of query words. Thus stemming enhances the recall [13].

We have a rich literature of stemming algorithms- there are linguistic and statistical techniques. The former are rule based
techniques [4] [10] [15] [23] [24] [27] [28], in which a priori knowledge of the morphology of a particular language is required. The
latter are subject to exhaustive statistical analysis of the corpus, but work in a language-neutral way [8] [12] [16] [17] [18] [22]
[25]. There are also some lexicon based approaches [14]. Linguistic stemmers or rule based stemmers have one major disadvantage

A Devanagari Script based Stemmer



  120       International Journal of Computational Linguistics Research   Volume   5   Number  4    December   2014

that they can not perform in multilingual environment. Statistical algorithms, such as one which is based on character frequencies
can cope up with this limitation. The reader can have exhaustive details of stemming, its types and various techniques at [25].

Statistical stemmers can work in multilingual environment but they generally exploit English (Latin) based corpus. Therefore
they can be applied to only those languages that share Latin script, for example French, Spanish, and Dutch.

1.1 Early work: Stemmers for Devnagari Script
Most of the reported work in the literature is dedicated to the English and other European languages. In grammar, inflection is
a phenomenon in which a word is expended or modified to express different grammatical constructs such as tense, mood, voice,
person, number, gender and case [5]. For example, in English language, walks, walking and walked are inflected forms of the
basic verb to walk. An inflection exhibits one or more grammatical categories with a prefix, suffix or infix, or some other internal
modification. Most of the Indian languages like Hindi (the national language of India), Tamil, Malayalam, Gujarati, Marathi,
Bengali etc are highly inflected in nature. Hindi is considered as fourth most widely spoken language after Mandarin, Spanish
and English [21]. Hindi language is based on a particular script, called Devanagari script. There are many Asian languages that
are based on this script e.g. Marathi, Nepali, Kashmiri, Rajasthani, Kumauni etc. Ananthakrishnan Ramanathan and Durgesh D
Rao [29] present a lightweight stemmer for Hindi. It is based on a predefined list of suffixes developed by the authors. Upendra
Mishra and Chandra Prakash presented their stemmer called MAULIK [20]. They used the hybrid approach (combination of
brute force and suffix removal approach). A rule based stemmer for nouns only is presented by Vishal Gupta [9]. All these
techniques are linguistic technique since they depend on the morphological knowledge of Hindi language.

Some statistical techniques were developed for Hindi language as well. A statistical Hindi stemmer was developed by A. Chen
and F. C. Gey [2]. An unsupervised Hindi stemmer developed by Amaresh Kumar Pandey and Tanveer J. Siddiqui [26]. But these
techniques target Hindi language only, rather than a set of languages that are based on a same script.

1.2 Background and motivation behind present work
All the stemmers for Hindi language as mentioned above are based on the prior knowledge of Hindi language. Many Indo-Asian
languages are based on the Devanagari script like, Hindi, Nepali, Kashmiri and Marathi etc. In the present work, we give the
notion of a stemmer which is based on the Devanagari script rather than on a particular language. We hypothesize to develop
a technique which is applicable to all those languages that share the Devanagari script, like Nepali, Angika, Kashmiri, Marathi,
Hindi etc. We give a one to one mapping of each vowel and consonant of this script into an English code, called roman code. Our
technique is based on the corpus frequencies of the coded form of the word.  Our idea is to exploit English (Latin based) corpus
for such roman coded words of Devnagari script. We demonstrate the application of the present work over Hindi language, the
national language of India. We apply the technique to randomly chosen 100 Hindi words. Further we show that the same
technique is applicable to the Marathi, Kumauni, Garhwali, Nepali languages also.

1.3 Application: Standardization of the Language
A direct application of our approach could be the standardization of the regional languages. Every language or dialect exists
around us took birth as a spoken one. Oral transmission was the only medium for communication that stayed for generations.
With the development of humans and their civilizations, verbal communication started losing its glory and the need for writing
aroused. A standardized language or standardized dialect is a language variety used by a group of people in their public
discourse [6]. Standardization is a process used to create a standard for such varieties. It takes place in a specific manner that
depends on the community of people and factors such as geographical, historical and social aspects. Primary requirement for a
variety of language to be standard is that it can frequently be used in public places or public discourse [6]. Some common
features of a standard language are: a recognized dictionary, a recognized grammar, a standard pronunciation etc. [31]. Language
standardization is a broader research area. Standardization consists of the imposition of uniformity upon a class of objects [19].
We use the stemmer developed for Devnagari script to standardize the Kumauni language. Kumauni language is spoken in
Kumaun region of Uttarakhand in India. We standardize the Kumauni language over the dictionary feature, i.e. to develop rules
to find and establish a standard form of any spoken/written Kumauni word from a variety of dialects.

2. Basic concepts and setup

In Devanagari script, we have 12 vowels which are shown in Table 2.1. These symbols are basically called matras, which are
used together with consonants in a word formation process. There are 36 consonants in Devanagari script, shown in Table 2.2.
We assign a unique character (or characters) from English alphabet system to each of these Devanagari vowels and consonants.



     International Journal of Computational Linguistics Research   Volume   5   Number  4    December   2014         121

Apart from the vowels in table 2.1, we use the code M for ‘ ’(called chandrabindu). Note that the symbol ‘ ’ (called halant)
beneath each consonant in Table 2.2 denotes the atomic consonant without the ‘ ’ (a) sound. For example, ‘ ’ in the word ‘ ’.
Now, the confluence of any consonant together with each the 12 vowel sounds (or matras) produces the basic entity of a word.
Combination of corresponding roman codes of a consonant and any vowel sound (or matra) gives the roman code of that basic
entity. Table 2.3 shows the same for the consonant ‘ ’. We give the thorough codes of all possible combinations in Appendix
A.1.

Table 2.1.  Devanagari Vowels, corresponding Matras and codes

Table 2.2.  Devanagari Consonants and corresponding codes

Table  2.3. 12 possible combinations of vowel sounds (or matras) for the consonant 
For a given Hindi word , we can easily identify the basic entities. The concatenation of corresponding roman codes gives
the roman code of the whole word. Say for example, in the Hindi word ‘ ’, we have two basic enties, ‘ ’ (k) and ‘ ’ i.e. the
consonant ‘ ’ with the vowel sound ‘ ’ (yaa). So the roman code for the word ‘ ’ is ‘kyaa’.

3. Methodology

For a given Hindi word to be stemmed, we first convert it to the Romanized word or code as explained in the previous section.
As the coded form (Romanized word) consists of the characters from the English alphabet set, we look for the corpus frequencies
of different overlapping character sequences that constitute the coded roman word. These overlapping character sequences are
known as N-grams. An N-gram contains N consecutive characters of any word. For example, for the Romanized word kyaa
(equivalent of the Hindi word ‘ ’), we have four different N-grams: the 1-gram k, the 2-gram ky, the 3-gram kya and the 4-
gram kyaa.

We tend to find out the corpus frequencies of such overlapping character sequences or N-grams. That is, for the word ‘ ’,
how many times the character k occurs, how many times the string ky (k followed by y) occurs, how many time the string kya (ky
followed by a) occurs and so on in a corpus. We call frequencies of such sequential character sequences as sequential
frequencies. If a string has zero corpus frequency, it means it does not exist in that corpus. We idea is to exploit these sequential
frequencies of the coded word. From the test data, we observe that after some number of steps, we’re getting the continuous 0
frequencies. We hypothesize that this 0 frequency indicate the beginning of the Hindi word. We plot the partial word (N-gram)
length verses sequential frequencies, for instance take the word ‘ ’ (khaana). We observe that there is a continuous
decrease in the frequencies as the partial word (N-gram) length increases. After some steps, the frequency approaches the value
0 and it remains constant till the end of the word. When the frequency approaches 0 first time, we get a line parallel to the axis
of X from that point (figure 3.1). Data for the word khaanaa is given in Table 3.1. Sequential frequencies are taken from COCA
[3].

We thus define a one to one mapping from the set of Devanagari vowels and consonants to a set of character(s) from English
language alphabet system. This unique character or characters is called the roman code of the corresponding vowel or
consonant. Thus, a given Hindi word can be coded into a string of these roman codes. We call this equivalent coded form the
Romanized word.



  122       International Journal of Computational Linguistics Research   Volume   5   Number  4    December   2014

The parallel line contains the weakly minimal points of the region. Weakly minimal points of any set are the minimal points which lie on a
straight line. For a given set S, a weakly minimal point can be defined as under:

Let x be an element of the set S.  x is known as the minimal element of the set S if

Where cor(C) is the interior of the cone at x, see figure 3.2 [11].

Table 3.1. N-grams and corresponding corpus frequencies for the coded word khaanaa

Hindi Word Roman Code N-grams Frequencies

                           khaanaa

k* 421039

kh* 4497

kha* 3200

khaa* 0

khaan* 0

khaana* 0

khaanaa* 0

In figure 3.2 above, the region enclosed by the curve represents any set S and the lower region enclosed by two perpendicular
lines represents the region {x} − Cor C ). It is worth mentioning that the lower region does not include the boundary of S.
Therefore the straight line section of region S represents the region of weakly minimal points.

We observe that the stem corresponds to one of these weakly minimal points. Out of the weakly minimal points, we identify that
weakly minimal point as stem which corresponds to the first legal combination of coded characters having zero frequencies (see
section 2). We say that any combination of coded characters as legal, if it can be decoded to form a complete word in Hindi
language. A complete word always ends in a vowel. The word which ends in a consonant is not a complete word. For instance,
for the word ‘ ’ (baithanaa), we have 5 weakly minimal points (Table 3.2). These weakly minimal points correspond to
words baiTh, baiTha, baiThan, baiThana, baiThanaa. Out of these words only baiTha, baThana, and baiThanaa are complete
words as they end in a vowel. These combinations are thus legal combinations. Now, we identify the first legal combination
baitha (‘ ’) as stem.

{x} − cor (c) ∩ s = ∅

Table 3.2. N-grams and corresponding corpus frequencies for the coded word baithana

Hindi Word Roman Code N-grams Frequencies

baiThanaa

b* 2917024

ba* 417942

bai* 7031

baiT* 1124

baiTh* 0

baiTha* 0

baiThan* 0

baiThana* 0

baiThanaa* 0



     International Journal of Computational Linguistics Research   Volume   5   Number  4    December   2014         123

Figure 3.2. The region of weakly minimal points
4. Proposition of Algorithm

The crunch of the present method is the coding as described in section 2. We then look for the N-gram frequencies from some
universal corpus and finally we decode the legal combinations back into the Devanagari script. The given word in  Devanagari
script is coded according to the coding scheme developed in section 2. The acquisition of sequential frequencies of the different
N-grams is straight forward. We choose to obtain these frequencies from the COCA [3] corpus. This corpus has two benefits, first
it is very rich and second, it is easy to calculate the N-gram frequencies using wild card [*].We then find the legal combinations.
For example, take the word‘ ’ (khaana), Table 3.1. For given coded word khaana, we measure the COCA [3] frequencies of
various N-grams. The technique starts at first N-gram k (1-gram) and it proceeds to 2-gram viz. kh. We repeat the same process for
higher N-grams unless we get the first legal combination. Now, this legal combination may or may not have zero frequency. We
thus consider following two cases:

Case 1: A legal combination has a zero frequency. In our example, khaa is the first legal combination which has zero frequency.
The zero COCA [3] frequency of this 4-gram implies that the string kha followed by a does not exist in the English corpus.
Therefore, as mentioned in section 3, we recognize the string khaa as the stem of the input word. This legal combination khaa
is then decoded into Devanagri script to get the stem ‘ ’.

Case 2: A legal combination has a non zero frequency. In this case, we decode the legal combination into the Devnagari script

Figure 3.1. N-gram lengths vs. Frequencies

Weakly minimal points



  124       International Journal of Computational Linguistics Research   Volume   5   Number  4    December   2014

Hindi Word Roman Code N-grams Frequencies
˜

leTanaa
l* 1579176
le* 452985
leT* 46177
leTa 31
leTan 20
leTana 0
leTanaa 0

rotee
r* 1155249
ro* 275704
rot* 6366
rote* 159
rotee* 0

Table 4.1. N-grams and corresponding corpus frequencies for the coded word leTanaa and rotee

and obtain the next legal combination. The next legal combination is also decoded into the Devnagari script. This new legal
combination is now appended to the previously computed legal combination thereby giving updated legal combination.
Simultaneously, the new decoded combination is appended to previously decoded combination in Devnagri script to get the
updated decoded combination. This process is repeated again unless corresponding frequency of the current legal combination
turns out to be zero.

We explain this case by means of an example. Consider the word ‘ ’ (baithanaa), see Table 3.2. It is evident from Table 3.2
that the first legal coded combination is bai which is decoded into Devnagari as ( ). In Table 3.2, the legal combination bai has
frequency 7031 therefore we do not consider it as a stem and proceed further.  We obtain the second legal coded combination
Tha. It is decoded into Devanagari as ( ). We append Tha to bai to get the updated legal combination baiTha. Simultaneously
we append ( ) to ( ) to get the updated decoded combination‘ ’. Form table 3.2 the updated legal combination baitha
corresponds to zero frequency therefore it is taken as the final stem and decoded into Devanagari as ‘ ’.

It is worth mentioning that if for any given word we get at most two combinations corresponding to zero frequency, then we do
not follow the procedure mentioned above and take whole word as stem. For example, consider the words ‘  ’ (leTanaa) and
‘ ’ (rotee). Data for the coded string leTanaa and rotee is given in Table 4.1. Observe that, for the coded string  leTanaa, there
are exactly two entries with zero frequencies. Therefore, we do not apply the above stemming procedure and take the whole string
 leTanaa i.e. ‘ ’ as the stem. Similarly for the coded string rotee, since we have only one entry with zero frequency, we take the
whole string rotee i.e. ‘ ’ as the stem.

4.1 The stemming Algorithm
In this section we propose an algorithm for Devnagrai script namely “Stem-Hindi”. The steps are mentioned as under:

Procedure: Stem-Hindi
1. The given word in Devanagri script is coded into the Romanized code according to the coding explained in section 2.
2. The sequential frequencies of different N-grams of this Romanized code are taken from the COCA (Corpus of Contemporary
American English) [3].
3. If we have at most two zero frequencies, then the whole word is considered as the stem, and stop. Else, move to next step.
4. We find the first legal combination. If this legal combination corresponds to zero frequency, we decode this combination into
Devaganari script to get the stem and stop. Else, move to next step.
5. Find the next legal combination and decode it into Devaganari script. Append this current legal combination to the previously



     International Journal of Computational Linguistics Research   Volume   5   Number  4    December   2014         125

Table 5.1. Hindi words and their stems

calculated legal combination. Also, append the current decoded combination to the previously decoded combination.

6. If the current legal combination corresponds to zero frequency then the updated decoded combination is stem and stop. Else
repeat step 6. unless we get the current legal combination corresponding to zero frequency or till the whole input word (all N-
grams) is exhausted.



  126       International Journal of Computational Linguistics Research   Volume   5   Number  4    December   2014

Following table 5.2 exhibits stems resulted with our script based technique. Six different clusters are being taken into consideration.
First three clusters are of Hindi language, and remaining are of Marathi, Nepali and Kumauni languages respectively. All these
languages are based on Devanagari script. N-gram corpus frequencies are again taken from COCA [3].

6. Standardization of Kumauni Language

In this section, we develop a mathematical tool for the standardization of Kumauni language. The Hindi stemmer developed by
us gives the root of the Hindi word. Naturally the Kumauni dialect which is closest to the associated Hindi stem is a standard
one. The question is how to decide the closest word? The technique of Romanization makes it much easier. Consider the coding
developed in section 2. It is evident from Table 2.3 that the word with more phonetic complexity will have more English alphabets
when it is Romanized i.e. when its roman code is calculated. For example, the Devnagari consonant ‘ ’ has code ka when it is
Romanized, whereas the basic elements ‘ ’,‘ ’, ‘ ’ have codes kau, kan and kaH respectively. By this idea we select that
dialect of the Kumauni word as standard, whose Romanized form contains the least number of English alphabets when compared
with the Hindi stem.

The algorithm for the standardization of Kumauni language is given under

6.1 The Algorithm

In this section we propose an algorithm for standardizing Kumauni words namely Standard-KU. The steps of the algorithm are
mentioned as under:
Procedure: Standard-KU
1. Find the stem of the Hindi word by Stem-Hindi
2. Code the dialects of Kumauni language into Roman code.
3. Find that dialect as standard word which is closest to the stem.
4. Decode the standard word into Kumauni language.

6.2 Application and Results

Kumauni language is divided into two parts, western Kumauni and eastern Kumauni. These are further divided into six and four
dialects respectively [30]. In the following table (Table 6.2.1), we take 10 different forms of the transitive verb ‘ ’ ( ) and
intransitive verb ‘ ’ ( ). These words are taken from [30].

Let’s consider the first 10 dialects given in table 6.2.1. The associated Hindi word is  (khaanaa) and its stem obtained by
Stem-Hindi is  (khaa). The Romanized code of the stem is khaa and from Table 6.2.1 it is evident that among the 10 dialects of
Kumauni language khaaM is closest to khaa. Therefore by standard- the decoded form of khaaM i.e. , is identified the
standard Kumauni dialect. Similarly if we consider second 10 dialects, we get the Kumauni dialect janoo and janoon as the
standard dialect. But since jaanoo is spoken in more dialects so we prefer to take it as standard word. The standard Kumauni
word is therefore decoded as 

Table 5.2. Clusters and their stems



     International Journal of Computational Linguistics Research   Volume   5   Number  4    December   2014         127

7. Conclusion and future work

We tested our approach on 100 randomly chosen Hindi words. The aim of stemming is not to find the linguistically correct stem
but it should be the root of inflected words [7]. From the list given above 49 stems are linguistically correct (which are shown
italicized in Table 5.1) i.e. they belong to the Hindi dictionary. The advantage of the script based stemming is that it is applicable
to all languages based on Devnagari script. Now the easily available English corpus such as COCA, CLEF, TREC etc. can be
utilized for Devnagari script. Further the approach can be utilized for the standardization of those regional languages having
many dialects. An effort has been made to standardize Kumauni language. The same approach can also be utilized to standardize
other variants of Hindi language.

References

1. Appendix: Common Hindi Words available at < http://en.wiktionary.org/wiki/Appendix: Common_Hindi_words>, visited 16
Sep. 2014.
2. Chen, A., Gey, F. C. (2003). Generating statistical Hindi stemmers from parallel texts. ACM Trans. Asian Language Inform.
Process. V. 2 (3).
3. Corpus of Contemporary American English (COCA). Available at <http://corpus.byu.edu/coca/>, visited 16 July 2014.

4. John, Dawson. (1974) Suffix removal and word conflation, ALLC Bulletin 2 (3) 33-46.
5. Encyclopedia Britannica < http://www.britannica.com/ EBchecked/topic /287731/inflection>

6. Finegan, Edward. (2007). Language: Its Structure and Use (5th ed.). Boston, MA, USA: Thomson Wadsworth. p. 14.
7. Frakes W. B. (1984). Term conflation for information retrieval, In: Proceedings of the 7th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. 383-389.

8.  Peng, Funchun., Ahmed,  Nawaaz.,  Li, Xin.,  Lu, Yumao. (2007). Context sensitive stemming for web search, In: Proceedings
of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 639-646
9. Vishal, Gupta. (2014). Hindi Rule Based Stemmer for Nouns. International Journal of Advanced Research in Computer
Science and Software Engineering.  4 (1) 62-65.

10. Donna, Harman. (1991) How effective is suffixing? Journal of the American Society for Information Science. 42: 7-15

11. Jahn., J. (2011). Vector Optimization. 2ed Springer.

12. Paik, Jiaul H., et al. (2011) GRAS: An effective and efficient stemming algorithm for information retrieval. ACM Transactions
on Information Systems. 29(4) Article No. 19

13. Wessel, Kraaij., Renee, Pohlmann. (1996). Viewing stemming as recall enhancement. Proceedings of the 19th annual
international ACM SIGIR Conference on Research and development in Information Retrieval, 40-48.

14. Robert, Krovetz.  (1993). Viewing morphology as an inference process. Proceedings of the 16th Annual International ACM

Table 6.2.1. Words ‘ ’(khaanaa) and ‘ ’ (jaanaa) in 10 different Kumauni dialects



  128       International Journal of Computational Linguistics Research   Volume   5   Number  4    December   2014

SIGIR Conference on Research and Development in Information Retrieval. 191-202

15. Lovins, J. B. (1968). Development of a stemming algorithm. Mechanical Translation and Computational Linguistics. 11. 22-31

16. Prasenjit, Majumder., et al. (2007) YASS: Yet another suffix stripper. ACM Transactions on Information Systems. 25 (4) Article
No. 18

17. James, Mayfield., Paul, McNamee. (2003). Single N-gram stemming. Proceedings of the 26th Aannual International ACM SIGIR
Conference on Research and Development in Information Rretrieval. 415-416.

18. Massimo, Melucci., Nicola, Orio. (2007). Design, Implementation, and Evaluation of a Methodology for Automatic Stemmer
Generation. Journal of the American Society for Information Science and Technology. 58 (5) 673–686.

19. James, Milory. (2001). Language Ideologies and the Consequence of Standardization. Journal of Sociolinguistics 5/4. 530-
555

20. Mishra Upendra., Chandra Prakash. (2012). MAULIK: An Effective Stemmer for Hindi Language. International Journal on
Computer Science and Engineering (IJCSE),  4 (5) 711-717.

21. Nationalencyklopedin (NE), 2010 estimates, <http://www.ne.se/spr%C3%A5k/v%C3%A4rldens-100-st%C3%B6rsta-
spr%C3%A5k-2010>

22. Karanikolas, Nikitas, N. (2013). A methodology for building simple but robust stemmers without language knowledge:
overview, data model and ranking algorithm. Proceedings of the 14th International Conference on Computer Systems and
Technologies. 284-290.

23. Chris D, Paice. (1990). Another stemmer. ACM SIGIR Forum. 24 (3) 56-61.

24. Pande B. P.,  Dhami, H. S.(2011). Application of Natural Language Processing Tools in Stemming. International Journal of
Computer Applications. 27 (6) 14-19.

25. Pande B. P., Tamta, P. , Dhami, H. S. (2014). A simple algorithm for the problem of suffix stripping. International Journal of
Applied Linguistics.

26. Amaresh, Kumar., Pandey., Tanveer, J., Siddiqui. (2008). An unsupervised Hindi stemmer with heuristic improvements.
Proceedings of the second workshop on Analytics for noisy unstructured text data, p. 99-105.

27. Porter, M. F. (1980) An algorithm for suffix stripping. Program 14: 130-137

28. Sirsat,  Sandeep., et al. (2013). A Comparative Study of Truncating Stemming Algorithms. International Journal of Advanced
Scientific and Technical Research. 3 (2) 411-416.

29. Ramanathan,  A., Rao, Durgesh, D. (2003). A Lightweight Stemmer for Hindi. In: Proceedings of the 10th Conference of the
European Chapter of the Association for Computational Linguistics (EACL), on Computatinal Linguistics for South Asian
Languages (Budapest, Apr.) Workshop, p. 42-48.

30. Bisht, Sher Singh. (2005). .  Indian Publishers’ Distributers.

31. Standard language <http://en.wikipedia.org/wiki /Standard_language>

Appendix

Table A.1: Possible combinations of Devanagari consonants and vowel sounds (Mataras)



     International Journal of Computational Linguistics Research   Volume   5   Number  4    December   2014         129



  130       International Journal of Computational Linguistics Research   Volume   5   Number  4    December   2014


