
 International Journal of Computational Linguistics Research Volume 7 Number 1 March 2016 25

Multi-Verb Constructions - Parsing with a Deterministic Finite State Automaton

Kalyanamalini Sahoo
EFL University, Hyderabad
India
kalyana@efluniversity.ac.in

ABSTRACT: This article discusses the parsing of multi-verb constructions in the Indic language Odia, in a Deterministic
Finite State Automaton (DFA). It deals with two verb (V-v) sequences, and in the case of passivization, 3 verb sequences.
These V-v sequences are formed by combining a main verb and a fully or partially bleached ‘light’ verb; where the main
verb carries the lexical semantic information; the Tense, Aspect, Mode marking occurs on the light verb; and the sequence
as a whole determines the argument structure. Although both the verbs in the V-v sequences are form-identical with a
main verb in the language, the second one is a light verb because of its semantic and grammatical bleaching. The verbs
cannot change their position, and are always spelled as a single word. Such double positional slots for the verbs pose
constraint for the processing of the string by DFA, as it would be different from a standardly accepted single verb string.
Moreover, both the verbs vary in their grammatical and semantic functions, and hence, choose a particular type of verb
to co-occur with. This paper proposes the parsing of such multi-verb constructions in a DFA. Such morphological parsing
is new in Odia and can be used in various applications like morphological analyzer, spell-checker, machine translation,
information retrieval, etc.

Keywords: Morphological parsing, Deterministic Finite State Automaton, Multiword expressions, Morphotactics

Abbreviations: DFA: Deterministic Finite state Automaton; FSA: Finite State Automaton; 1SG: 1st person singular; 3SG:
3rd person singular; AGR: agreement; ASP: aspect; AUX: auxiliary; CAUS: causative; CL: classifier; CM: conjunctive
morpheme; FUT: future; HYP: hypothetical; INSTR: instrumental; NEG: negation; PASS: passive; PERF: perfective; PROG:
progressive.

Received: 18 October 2015, Revised 20 November 2015, Accepted 5 December 2015

© 2016 DLINE. All Rights Reserved

1.Introduction

Morphological analysis of words is a basic requirement for automatic language processing, and indispensable when dealing
with agglutinative languages like Odia, an Indo-Aryan language spoken in the eastern part of India. As we know, for natural
language processing some applications such as lemmatization, tagging, machine translation, information retrieval, phrase
recognition, etc. require a detailed morpho-syntactic parsing of the whole word. In this context, considering Odia multi-verb
constructions, this work proposes a model for designing a morphological parser which can provide lexical, morphological
and syntactic information for each lexical unit in the analyzed verbal form. It draws out a finite-state machine that accepts
valid sequences of morphemes in a verbal form and rejects invalid ones. We can use the DFA to solve the problem of
morphological recognition; determining whether an input string of morphemes makes up a legitimate Odia word or not. We

 26 International Journal of Computational Linguistics Research Volume 7 Number 1 March 2016

do this by taking the DFA and plugging in each multi-verb sequences into it.

Considering morphological analysis, such a parser focuses on three main aspects, as proposed by (Ritchie, Pulman, Black &
Russel 1992):

(1) i) Morphographemics: occurrence of orthographic variations while linking morphemes.

ii) Morphotactics: the co-occurrence restrictions of morphemes for the formation of valid words.

iii) Feature-combination: the way these morphemes can be grouped so that their morpho-syntactic features can be
combined.

As a consequence of rich morphology of Odia we control morphotactic phenomena, as much as possible, in the morphological
segmentation phase. Alternatively, a model with minimal morphotactic treatment, as noted by (Ritchie, Pulman, Black &
Russel 1992) would produce too many possible analyses after segmentation, which could be rejected in a second phase. They
do not adopt finite state mechanism to control morphotactic phenomena, and their two-level implementation incorporates a
straightforward morphotactics, reducing the number of sub-lexicons to the indispensable (prefixes, lemmas and suffixes).
This approximation would be highly inefficient for agglutinative languages like Odia, as it would create many nonsensical
interpretations that would be rejected by the system. Therefore, we separate sequential morphotactics (i.e., which sequences
of morphemes can or cannot combine with each other to form valid words), which will be recognized by means of continuation
classes, and non-sequential morphotactics like long-distance dependencies that will be controlled by the word-grammar.

The remainder of this paper is organized as follows. Section 2 gives a brief description of the Odia verbal forms including
multi-verb constructions. Section 3 discusses the syntactic and semantic aspects of multi-verb constructions. Section 4 de-
scribes the architecture for morphological processing, specifies the phenomena covered by the analyzer, explains its design
criteria, and presents the processing details. Section 5 shows an evaluation of the DFA and ends with some concluding re-
marks.

2. Odia Verbal Forms

2.1 Single-verb Verbal Forms
Odia is a syntactically head-final and morphologically agglutinative language. A number of morphemes carrying different
grammatical functions get affixed to the verbal root to make a verbal form. The major inflectional subsystems that cluster
around the verb are: tense, aspect, agreement markers, negation markers, auxiliary morpheme etc. Considering single-verb
verbal forms, Odia typically contains a verbal root followed by a sequence of morphemes, as in (2).

(2) kar-i-paar-u-na-th-il-aa
do-CM–Modal-ASPPROG–NEG-AUX-TensePAST-AGR3rd SG
‘(S/he) was not able to do.’

In (2), the verbal root ‘do’ is followed by the conjunctive morpheme (CM), the ability modal morpheme, the progressive
aspectual morpheme, the negative morpheme, the auxiliary morpheme, the past tense morpheme and the 3rd person singular
morpheme.

Agreement distinguishes finite verbal forms from non-finite verbal forms in Odia, although tense has extended functions in
both finite as well as nonfinite constructions. In a finite verbal form, the realization of the verbal root, Agr. and Tense (except
for the present tense) is obligatory, while the realization of Asp, Aux, Modal or CM is optional. The sequence of items in a
finite verbal form can be shown as follows (Sahoo 2001):

(3) Root-(CM)-(Modal)-(ASP)-(NEG)-(AUX)-Tense-AGR
Nayak (1987) also has proposed the same sequence of items but for CM and modal. The morphemes that occur in a finite
verbal form can be listed as follows: there are two Aspect morphemes: u (Progressive) and i (Perfective); three Auxiliary
morphemes: achh (Present), th (Past and Future), and thaa (Hypothetical); one modal morpheme: paar, one conjunctive
morpheme: i. The Tense morphemes are realized as il (Past), ib (Future) and ant (Hypothetical). The present tense morpheme

 International Journal of Computational Linguistics Research Volume 7 Number 1 March 2016 27

is not lexically realized (Sahoo 2001; Nayak 1987). Agreement morphemes are marked for person, number and honorificity.
In a finite clause, the Auxiliary and Aspect are interdependent morphemes, in the sense that, the Auxiliary morpheme cannot
occur in the absence of the Aspect morpheme, and the vice versa. However, the Aspect morpheme can occur in the absence of
an Auxiliary morpheme in a nonfinite construction. Similarly, the Modal morpheme is dependent on the CM, but the reverse
is not true.

Participials (PRTP), gerundives (GER), conditionals (COND), infinitivals, telic affirmative affixes (Tel Aff) and conjunctive
morphemes (CM), which lack agreement features are realized in non-finite verbal forms in Odia. So, the classification of
verbal forms in the language can be shown as follows (Sahoo 2001):

Figure 1. The classification of verbal forms in Odia
2.2 Two verb sequences
Two verb sequences (marked in bold in the examples (4)-(6)) are formed by combining a main verb and a fully or partially
bleached light verb, where the main verb carries the lexical semantic information, and the Tense, Aspect and Mode (TAM)
marking occurs on the light verb. The two verb sequence is considered as a single word. E.g.

(4) kie glas-Taa bhaang-i-de-i-ch-i
somebody glass-the break-CM-give-PERF-AUX-3SG
‘Somebody has broken the glass.’

(5) se sandhyaa naheuNu soi-(i)-paD-il-aa
he evening NEG-happen sleep-(CM)-fall-PAST-3SG
‘He slept off before evening.’

(6) se raajaa-dwaaraa taara sabu kaama kar-aa-i-ne-l-aa
he Raja-by his all work do-CAUS-CM-take-PAST-3SG
‘He got all his work done through Raja.’

Note that in the above examples, V1 is usually the combination of a verbal root and a conjunctive suffix (usually -i-)1,
although in the presence of a CAUS morpheme (as in (6)), first the CAUS morpheme (–aa–) gets attached to the verbal root
and then the CM morpheme gets attached to the V-CAUS sequence. Hence, in a way, the CM morpheme conjoins V1 and V2.
The light verb (V2) is combined with several morphemes carrying grammatical features like ASPect, AUXiliary, Tense,
AGReement, etc. Interestingly, the CAUS morpheme can be added to the V1 (not to V2), as in (6), which adds an extra
causative layer; in other words, the CAUS morpheme in (6) expresses the causation relationship between the subject (se
‘he’) and Raja (in an Instrument role) who did the actual work.

1This affix ‘i’ can be compared with ‘tvaa(ya)’, or ‘(t)ya’ / ‘(t)yaa’ suffixes in Sanskrit, which were used to form gerun-
dives. These suffixes were also sometimes referred to as conjunctive participles (Butt & Lahiri 1998).

 28 International Journal of Computational Linguistics Research Volume 7 Number 1 March 2016

In a two verb sequence, both the verbs may carry contrastive lexical meaning, still can co-occur, in the case where the
meaning of the light verb is completely bleached; but cannot co-occur in the case of partial bleaching of the light verb. E.g.

(7) ghara bhitaraku aas-i-jaa
house inside-to come-CONJ-go-IMP
‘Come inside the house.’

(8) bahiTaa eThaaru *ne-i-die / *de-i-nie / ne-i-jaa
book-CL from here *take-CONJ-give-IMP / *give-CONJ-take-IMP / take-CONJ-go-IMP
‘Take away the book from here.’

In (7), it is possible for the contrastive verbs ‘come’ and ‘go’ can co-occur, while this is not possible for ‘take and ‘give’ as in
example (8). This indicates that in example (7), the light verb is bleached completely, so that the meaning of ‘go’ is not involved
in the sequence, as the overall meaning is ‘come in’, which is represented by the main verb. In example (8), the sequence ‘take-
go’ denotes the meaning ‘take away’, so we can say that the meaning of ‘go’ is not completely bleached. Moreover, if we
consider example (4), in the sequence ‘break-give’, as the light verb ‘give’ is bleached semantically, it does not carry any
thematic role like ‘Giver’ , ‘Receiver’, or ‘Gift’. This indicates that the light verbs are semantically bleached either completely or
partially to certain extent. Such semantic bleaching of light verbs, not only differentiates them from regular main verbs in the
language, but also indicates their grammaticalization status.

2.3 Types of Light Verbs
Types of light verbs that occur in Odia as second element in V-v constructions can be listed as follows (Sahoo 2012; Lemmens
& Sahoo (to appear)):

(9) Motion verbs: jaa ‘go’, aas ‘come’, chaal ‘walk’, paD ‘fall’, pakaa ‘drop’, uTh ‘rise’
Stative verbs: bas ‘sit’, rah ‘stay’
Transfer verbs: de ‘give’, ne ‘take’

Types of V-v sequences by using these light verbs are listed in the following tables.

Table 1. List of Motion Verbs

 International Journal of Computational Linguistics Research Volume 7 Number 1 March 2016 29

List of stative verbs List of transfer verbs

Table 2. List of Stative & Transfer Verbs

Table 3. Passivized two verb sequences resulting in 3 verb sequences

Passivized two verb sequence resulting in 3 verb sequences

3. Syntactic and Semantic Features

3.1 Transitivity
Considering the transitivity aspect of the two verb sequences, question arises as the light verbs are semantically bleached and
no longer assign thematic roles, can we still consider them as transitive or intransitive as their form-identical lexical
counterpart.

The answer is yes, because generally the choice of the light verb for co-occurrence with a main verb is determined by
transitivity constraints. This is shown in example (10).

(10) a. Sequence of intransitive verbs (includes alternation verbs used intransitively):

[Vintrans - vintrans] *[Vtrans- vintrans]
-jaa ‘-go’ : come-go, die-go *kill-go

 30 International Journal of Computational Linguistics Research Volume 7 Number 1 March 2016

-paD ‘-fall’: slip-fall, sleep-fall
b. Sequence of transitive or ditransitive verbs:

[Vtrans - vtrans] *[Vintrans - vtrans]
-de ‘-give’ : break-give, kill-give *die-give
-pakaa ‘-drop’ : embrace-drop, give-drop

3.2 Causatives and Passives
Causative and passive morphemes play a major role in multi-verb constructions. Passivization, which is done by using the
passive morpheme –aa and the passive auxiliary jaa ‘go’, transforms the two verb sequence into a three verb sequence.
Causatives play a role from the point of transitivity. The causative morpheme can get attached to an alternating verb and hence,
can co-occur with a transitive light verb.

A single verb can be causativized in the following way, where the causative morpheme occurs getting attached to the verbal
root:

(11) mu lahuNi taraL-aa-il-i
I butter melt.CAUS-1SG
‘I melted the butter.’

The structure of causation of a V-v sequence can be shown as follows:

(12) [[V + CAUS] - [vtrans]]
[[Valternating + CAUS] - [vtrans]]

The structure can be illustrated in the following example:

(13) mu lahuNi taraL-aa-i-de-l-i
I butter melt-CAUS-CM-give-PAST-1SG
‘I made the butter melt.’

Passivization of a verbal form is done by using the passive morpheme –aa (which is form-identical with the causative morpheme
-aa) and the passive auxiliary jaa ‘go’. Passivization of a single verb sequence can be done as the following:

(14) (mo-dwaara) lahuNi taraL-aa-ga-l-aa
(I-INSTR) butter melt-PASS-go-PAST-3SG
‘The butter was melted (by me).’

Please note that in the above example (14), the second verb ga-l-aa ‘went’ is not a light verb, it is the passive auxiliary ‘go’.
Passivization of a V-v sequence follows the following structure as in (15) and this can be illustrated in the example as in (16):

(15) *[Vintrans - vintrans]
[Vtrans - vtrans]
[[Valternating + CAUS] - [vtrans]]

(16) (mo-dwaara) lahuNi taraL-aa-i-di-aa-ga-l-aa
(I-INSTR) butter melt-CAUS-CM-give-PASS-PAST-3SG
‘The butter was melted (by me).’

3.3 Completive Meaning
The light verb construction indicates the completion of event/action, whereas in the single verb construction the completion
of the action is not in focus or presupposed.

~

~

 International Journal of Computational Linguistics Research Volume 7 Number 1 March 2016 31

(17) tu ebe khaa-i-di-e, mu pare khaa-ib-i
you[-Hon] now eat-CM-give-3SG, I later eat-FUT-1SG
‘You eat (complete eating) now, I will eat later.’

Note that also future tense marking is possible, preserving the completive meaning:

(18) tu paLaa, mu bahi-Taa library-re pheraa-i-de-b-i
you leave-IMP, I book-CL library-PP return-CM-give-FUT-1SG
‘You leave, I will return the book in the library.’

The light verb can co-occur with a perfective morpheme as well as with a progressive morpheme. This is shown in the examples
(19) and (20), respectively.

(19) mu bahi-Taa aaN-i-kar-i tumaku de-i-de-i-th-il-i
I book-CL bring.CM-do-PERF you.ACC give-CM-give-PERF-AUX-PAST-1SG
‘(Me) having brought the book, I gave (it) to you.’

(20) chakleT rakh-u rakh-u-ta tu sabu khaa-i-de-u-chh-u
chocolate keep-PROG keep-PROG-EMP you all eat-CM-give-PROG-AUX-2SG
[‘Chocolate keeping keeping, you are eating up all (the chocolates).’]
‘While keeping the chocolates, you are eating up all of them.’

As illustrated in (21), the light verb constructions cannot have negation. (21a) shows the negation of a single verb construction,
while (21b) shows the negation of a two verb sequence. E.g.

(21) a. bahi-Taa mu taaku de-l-i, kintu se ne-l-aa-ni
book-CL I him give-PAST-1SG but he take-PAST-3SG-NEG
‘I gave him the book, but he didn’t take it.’
[= ‘I offered it to him, but he didn’t take it.’]

b. *bahi-Taa mu taaku de-i-de-l-i, kintu se ne-l-aa-ni
book-CL I him give-CM-give PAST-1SG but he take-PAST-3SG-NEG
‘I gave him the book, but he didn’t take it.’
[means, the ‘giving’ act is completed, but as the receiver didn’t take it...]

Note that there is a completive meaning associated with the light verb in (21b), which necessarily denotes the completion of the
event and thus, does not allow the event to be shown ‘undone’, hence, not prone to negation. So, these light verbs give a
completive meaning of the event/action.

Summarizing, we can say that the light verbs differ from the form-identical main verbs in grammatical function and semantic
content. Unlike the regular main verbs, the semantic content of light verbs are bleached either completely or partially. Hence,
they may not have their thematic roles. The multi-verb constructions are not prone to negation as they denote a completive
meaning of the action/event.

In the following section, we will show the kinds of morphological knowledge that needs to be represented to produce a well-
formed multi-verb construction in Odia. For this purpose, we choose a DFA for the computation of verbal forms.

4. A Deterministic Finite State Automaton

Since we cannot list every word in the language, computational lexicons are structured as a list of stems and affixes with a
representation of the morphotactics. One way to model morphotactics is the finite-state automaton. We use a DFA to solve
the problem of morphological recognition. It will determine whether an input string of morphemes makes up a legitimate

~

~

~

~

~

 32 International Journal of Computational Linguistics Research Volume 7 Number 1 March 2016

Odia verbal form or not. Such identification of sequences has a number of practical applications like spell checker, machine
translation, information retrieval, etc.

4.1 The Machinery
As popular in the literature (Roche & Schabes 1997; Jurafsky & Martin 2000; Hanneforth 2011; Moore 2014) a deterministic
Finite State Automaton is a device that receives a string of symbols as input, reads the string one symbol at a time from left
to right, and after reading the last symbol halts and indicates either acceptance or rejection of the input. The automaton
performs computation by reacting on a class of inputs (on strings or sequences of symbols). The concept of a state is the
central notion of an automaton. A state of an automaton is analogous to the arrangement of bits in the memory banks and
registers of an actual computer. Here, we consider a state as a characteristic of an automaton which changes during the
course of a computation and which serves to determine the relationship between inputs and outputs. For our automaton, the
memory consists simply of the states themselves. The computations of a DFA are directed by a ‘program’, which is a finite
state of instructions for changing from state to state as the automaton reads input symbols. Given an input, the computation
begins in a designated state, the initial state. After reading the input, the automaton either accepts or rejects it after some
finite amount of computation. Given the current state and the symbol, it has only one choice of state to move to. As such a
DFA has no memory to store information except for its current state, and it cannot return to earlier states in the string either.

In a more formal way, a deterministic finite state automaton can be defined as follows (Roche & Schabes 1997; Jurafsky &
Martin 2000).

(22) A (deterministic) finite-state automaton is a quintuple (Q, ∑, q0, F, δ) where

- Q is a finite set of N states q0, q1, … , qn

- ∑ is a finite input alphabet of symbols

- q0 ∈ Q is the initial state

- F ⊆ Q, the set of final states

- δ (q, i) is the transition function or transition matrix between states. Given a state q ∈ Q and an input symbol i ∈ ∑, δ (q, i)
returns a new state q’∈ Q. δ is thus a relation from Q × ∑ to Q.

Thus, if the automaton is in a state q ∈ Q and the symbol read from the input is a, then d (q, a) uniquely determines the state
to which the automaton passes. This property entails high run-time efficiency, since the time it takes to recognize a string is
linearly proportional to its length. The FSA is called deterministic as it defines at most one transition for each state and each
input symbol. Formally, it is called deterministic if for all symbol state pairs q, a, | δ(q, a) | < 1 (Hanneforth 2011).

Succinctly, if the Machine configuration is like (23):

(23) [q, ω] wherre q ∈ Q, ω ∈ ∑*

Then it would yield relations like the following:

(24) [q, aω] *
M [δ (q, a), ω]

And the language could be represented as the following:

(25) {ω ∈∑* | [q0, ω] *M [q, λ] Λ q ∈ F }

4.2 The DFA for Odia
This section discusses how the DFA can be conceived as applying to Odia verbal forms. Figure 2 shows the processing of multi-
verb verbal forms in Odia by using a DFA.

 International Journal of Computational Linguistics Research Volume 7 Number 1 March 2016 33

Figure 2. The DFA for multi-verb verbal forms in Odia

The automaton is represented as a directed graph: a finite set of vertices (nodes), together with a set of directed links between
pairs of vertices called arcs. Each node corresponds to a state. States are represented as circles with name tags in them. Arcs are
represented by arrows going from one state to another state. The final states are represented by rectangles. The machine starts
at the initial state, runs through a sequence of states by computing a morpheme in each transition, and ends in the final state.
The path moves from the initial point on the left to the final point on the right, proceeding in the direction of arrows. Once the
arrow moves one step, there is no backward movement (Of course, recursion of an item can be shown by using closed loops).
Each state through which the speaker passes represents the grammatical restrictions that limit the choice of the next morpheme.
The resulting DFA is deterministic in the sense that given an input symbol and a current state, a unique next state is determined.

It starts at the initial state (Q0), checks the next morpheme of the input. If it matches the symbol on an arc leaving the current
state, then it crosses that arc, and moves to the next state, and thus, advances one symbol in the input. Such a process gets
iterated until the machine reaches the final state, successfully recognizing all the morphemes in the input string. But if the
machine gets some input that does not match an arc, then it gets stuck there and never gets to the final state. This is considered
as the DFA/machine rejecting or failing to accept an input.

For multi-verb constructions (cf. Figure 2), the DFA starts at the initial state (Q0). From the initial state it can choose the MV
state directly. From the MV state, it has various options to move to the next state: it can move to the CAUS state, or directly
to the CM1, ASP, Tense, AGR or IMP state, out of which IMP and AGR are final states. From the CAUS state it moves to the
CM1 state. From CM1 state it can move either to LV state or to the Modal state. Note that the CM1 state is the only anchor for
distinguishing main verb from the light verb, the CM1 always immediately precedes the LV, while it follows the MV. From the
LV state, it has 4 choices to move forward: CM2, PASS, Tense or IMP, which is a final state. From the CM2 state, it moves in
a string to → Modal → ASP → AUX →Tense → AGR. From the AUX state also, it can move to AGR. From the PASS state,
it goes to the ‘go’ verb state, which is constant for passivization, and from there, it can move to the Tense state and from there
to AGR, which is a final state. Likewise, the DFA processes the verbal forms until it reaches the final state.

For implementation, we can test how a multi-verbal form in the language be processed by this machine. Take an example like
(26)2:

(26) khaa-i-de-l-aa
eat-CM-give-PAST-3SG
‘ate (it) up’

2 Please note that in the example (26), the morpheme -l- is the elided form of the PAST tense morpheme –il. So in the V-
v sequence although the input morphemes are khaa-i-de-il-aa , the sequence is pronounced as khaa-i-de-l-aa.

 34 International Journal of Computational Linguistics Research Volume 7 Number 1 March 2016

Table 4. The state transition table for the DFA for khaa-i-de-il-aa

In the transition table 4, state5 is marked with a colon to indicate that it is a final state. Ø indicates an illegal or missing
transition. It can be read as follows: “if we are in state 0 and we see the input khaa, we must go to the state 1. If we are in
state 0 and we see the input i, de, il or aa we fail.”

Similarly, the DFA computes the verbal forms in a multi-verb construction. As figure 2 shows, the machine starts at the initial
state and proceeds in the direction indicated by the arrows, computing the verbal forms successfully.

5. Evaluation

5.1 Corpus Data Analysis
To estimate the performance of the parser, we carry out a direct evaluation of it. The EMILLE/CIIL Corpus (ELRA-W0037)
is consulted for the data. No annotation of this corpora is available as such. We used the morphological parser for the
analysis of 11079 V-v sequences. We manually measured the accuracy of the morphological parser by counting the number
of correctly analyzed sequences out of the total number of sequences. In the cases, where multiple analyses of any sequence
were available, we accepted it only when all the correct analyses were present. For an appropriate evaluation of the parser, for
the experiment, we added most of the roots used in the corpus to the lexicon, and implemented the rules accordingly.

Out of the 11079 V-v sequences, 10567 (95.378%) were found to be correctly analyzed. Of the remaining 512 words, 205
words could not be recognized by the parser and 307 words were assigned the incorrect or insufficient analyses. By taking a
closer look at these unparsed 512 words, we could come up with the causes of recognition failure as listed in table 5, and the
causes of insufficient analyses as listed in table 6.

This verbal form can be processed in a deterministic finite state automaton (DFA) as in (27). The verbal form khaa-i-de-l-aa
has 5 states: state 0 is the initial state and state 5 is the final state. It also has 5 transitions.

(27) Q = {q0, q1, q2, q3, q4, q5}

∑ = {khaa, i, de,il, aa}

Q0= the initial state (IS)

F = {q5}

δ (q, i) can be defined by the transition table as follows:

 International Journal of Computational Linguistics Research Volume 7 Number 1 March 2016 35

Table 6. Causes of insufficient analyses (307 sequences)

Cause Number of sequences

Choice of pattern matching light verbs 34 (11.07%)

Alternating verbs 62 (20.19%)

Ambitransitive verbal forms 31 (10.09%)

Fusion (sandhi) 29 (9.44%)

Over-generation of identical V-v pairs 66 (21.49%)

Written vs spoken form 42 (13.68%)

Others (multiple analyses, 3 verb sequences, etc.) 43 (14.00%)

5.2 Conclusion

We specify the co-occurrence restrictions of both the verbs (Main verb and the light verb) in a verbal form and use the DFA
to solve the problem of morphological recognition; determining whether an input string of morphemes makes up an acceptable
Odia word or not. Such a morphological parser will help us to build a computational lexicon structured as a list of stems and
affixes with a representation of the morphotactics and also can be used for designing a morpho-syntactic analysis for each
word in unrestricted Odia texts. The design of the DFA we propose is new for Odia, as far as we know. We think that this
design could be interesting for the parsing of V-v sequences in Odia as well as in other languages having similar multi-verb
constructions.

Acknowledgement

Part of this work is carried out during a research stay (sabbatical) at the Center for Grammar, Cognition and Typology,
University of Antwerp, which is hereby gratefully acknowledged. I am indebted to the 3S Infosolutions, Bhubaneswar for
funding for this work. I would also like to express my sincere thanks to the participants of CLIN25 conference and the
anonymous reviewers of this article for their valuable comments and suggestions.

References

[1] Butt, M., Lahiri, A. (1998). The status of light verbs in historical change. Ms. Universität Konstanz.

Table 5. Causes of recognition failure (205 sequences)

Cause Number of sequences

Inadequate rules 34 (16.58%)

Not available in the lexicon 46 (22.44%)

Passivized single V constructions
resulting in 2 verb sequences 56 (27.31%)

Fusion (sandhi)3 37 (18.04%)

Irregular forms needing further investigation 32 (15.60%)

3 The phonological processes that occur at morpheme or word boundaries.

 36 International Journal of Computational Linguistics Research Volume 7 Number 1 March 2016

[2] Hanneforth, T. (2011). ‘A Practical Algorithm for Intersecting Weighted Context-free Grammars with Finite-State Automata’.
Proceedings of the 9th International Workshop on Finite State Methods and Natural Language Processing, pages 57–64,
Blois (France), July 12-15, 2011. Association for Computational Linguistics.

[3] Jurafsky, D., Martin, J.H. (2000). Speech and Language Processing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition. New Jersey: Prentice Hall.

[4] Lemmens, M., Sahoo, K. (to appear). ‘Something’s gotta go, something’s gotta give: Completion, mirativity and transitivity
in Odia light verb constructions’, The Studia Linguistica: A Journal of General Linguistics.

[5] Moore, C. (2014). Automata, languages, and grammars. Lecture Notes. July 23.

[6] Nayak, R. (1987). Non-finite clauses in Oriya. Doctoral dissertation, CIEFL, Hyderabad. India.

[7] Ritchie, G., Pulman, S.G., Black, A.W., Russel, G. J. (1992). Computational Morphology: Practical Mechanisms for the
English Lexicon. ACL-MIT Series on Natural Language Processing, MIT Press.

[8] Roche, E., Schabes, Y. (eds.). (1997). Finite State Language Processing. The MIT Press.

[9] Sahoo, K. (2001). Oriya Verb Morphology and Complex Verb Constructions. Ph.D dissertation. Norwegian University
of Science and Technology, Trondheim, Norway.

[10] Sahoo, K. (2012). Telicity vs. Perfectivity: A Case Study of Odia Complex Predicates, The SKY journal of Linguistics 25, 2012.
The Linguistic Association of Finland.

Biography

Kalyanamalini Sahoo, currently working as a Researcher at the University of Antwerp, is Assistant Professor of General and
English Linguistics at the English and Foreign Languages University, Hyderabad, India. She mostly works on Computational
Morphology and Syntax.

