
82 Journal of Digital Information Management Volume 5 Number 2 April 2007

An efficient Path Query Processing support for Parent-Child Relationship in Native XML
Databases

Su-Cheng Haw, G.S.V. Radha Krishna Rao
Faculty of Information Technology
Multimedia University
63100 Cyberjaya, Malaysia
{schaw, gsvradha}@mmu.edu.my

ABSTRACT: Due to its flexibility and efficiency in
transmission of data, XML has become the emerging
standard for data transfer and exchange across the
Internet. In native XML database, XML documents are
usually modeled as trees, and XML queries are typically
specified in path expression. The primitive structural
relationships are parent-child and ancestor-descendant
in the path expression. Thus, finding all occurrences of
these relationships is crucial. We adopt the
decomposition-matching-merging approach and
propose INLAB, a novel hybrid query processing
merging both indexing and labeling technologies.
Experimental results show that INLAB can process XML
path queries by up to an order of magnitude faster
than conventional top-down approach.

Categories and Subject Descriptors
H.2 [Database Management]; H 2.3 [Languages];Query
Languages:
General Terms
XML Database, XML Query
Keywords: XML, query processing, query pattern matching, query
evaluation, path query, path expression
Received 12 August 2006; Revised and accepted 22 Jan. 2007

1. Introduction
With the ever-increasing popularity of XML as data
representation and exchange across the Internet, querying
XML data has become an important issue to be addressed.
Being a semi-structured data, there are two main
approaches in XML query processing for native XML
databases (NXD). The first approach is to traverse the XML
tree sequentially to find the matching pattern. This approach
certainly poses a new challenge, because it may not meet
the processing requirements under heavy access requests
[1]. Besides, it requires a large search space since there is
no schema fixed in advance. As a result, some researchers
had utilized index-based approach in order to reduce the
portion to be scanned during query evaluation [2-6].
The second approach is executed through a series of
processes involving decomposition, matching and merging
[7-9, 18]. Firstly, a complex query pattern can be decomposed
into a set of basic binary structural relationship between pairs
of nodes. These relationships could be either of ancestor-
descendant or parent-child relationship. The query pattern
can then be matched by matching each of the binary structural
relationships against the XML tree. Next, these matches are
merged together to form the path solution. The disadvantage
of this approach is that it may produce large size of
intermediate results, which may not contribute to the final
results at the end of query evaluation. This certainly imposes
serious scalability and efficiency issues.
In this paper, we adopt the decomposition-matching-merging
approach and propose a novel hybrid query processing
technique, INLAB comprising both indexing and labeling

which support parent-child relationship efficiently. The index
structures of INLAB allow us to efficiently find all elements
that belongs to the same parent or ancestor, which is one of
the most common operations to evaluate path queries. The
proposed labeling scheme quickly determines the parent-
child relationship between elements in the XML tree.

Our contribution can be summarized as follows: -
• We propose a novel indexing and labeling scheme,

INLAB to enhance the query processing performance.
• The proposed INLAB labeling scheme can be used

for determining (i) ancestor-descendant and (ii)
parent-child relationships efficiently.

• The proposed INLAB query processing can process
path expression queries without traversing the whole
XML tree. We present and show the substantial
performance benefit of our approach on a range of
real and synthetic data.

The rest of the paper is organized as follows. Section 2
presents the background and related work. Section 3 gives
an overview of INLAB indexing, labeling and processing
technique. Section 4 presents the experimental setup,
findings and preliminary results. Lastly, section 5 concludes
the paper and suggests future work.

2. Background and Related Work
2.1 XML Document And Query Model
In this paper, Object Exchange Model (OEM) is used to
represent data in NXD [10]. It can be viewed as a rooted,
ordered, node-labeled tree where each node represents an
element or a value. Element-subelement or element-value
is represented by the labeled edge. For the sample XML
document of Figure 1(a), its OEM representation is shown in
Figure 1(b).
<publications>

<book ISBN = “0-7895-6514-5”>
<title category = “Multimedia”> Discovering Computer

2005 </title>
<author>Gary B. Shelly </author>
<author>Thomas J. Cashman </author>
<author>Misty E. Vermaat </author>
<publicationInfo>

<place>Boston</place>
<publisher>Thomson Learning</publisher>
<dateIssued>2002</dateIssued>
<dateRevised>2003</dateRevised>

</publicationInfo>
 <price>60.99</price>

</book>
<journal number = “J1” year=”2003">

<title category = “XML”> XML Query …</title>
<author>S.C. Haw </author>
<price>20.00</price>

</journal>
</publications>

Journal of Digital
Information Management

Figure 1. (a) A sample XML document

Journal of Digital Information Management Volume 5 Number 2 April 2007 83

In fact, XML query languages were a hot research topic. In
this context, several XML query languages have been
proposed such as Lorel [12], XPath [13], XQuery [14] and
YATL [15]. Although the query languages differ in detailed
grammars and representation, they share a common feature,
that is, queries usually make use of path expression as the
matching criteria to create a join between each binary
structural relationship [16]. Parent-child relationship is
denoted by “/” while ancestor-descendant relationship is
denoted by “//”. Table 1 summarized some representational
notations for path expressions.
There are two types of queries namely full-text queries and
structural queries. Nevertheless, this paper is mainly
concerned with structural queries. Structural relationship can
be categorized into two main classes, namely path query
and twig pattern query as depicted in Figures 2(a) and 2(b)
respectively [17-19]. Both path query and twig pattern query
can be decomposed into a set of basic binary structural
relationship between pairs of nodes. However, the focus of
this paper is only on path query. Hence, Figure 3 illustrates
the decomposition process of path query.

Symbol Description
 // Separator indicating ancestor-descendant relationship
 / Separator indicating parent-child relationship
 ? Zero or one occurrence of a node
 + One or more occurrences of a node
 * Zero or more occurrences of a node
 [] Encloses a predicate expression
 @ Representing attributes
 () Indicates precedence

Figure 1. (b) OEM representation [11].

Table 1. Notations for path expressions

Figure 2. (a) Path query (b) twig pattern query

Figure 3. Decomposition process on path query

2.2 XML Query Processing
Path traversal plays an important role in query processing.
McHugh and Widom propose three approaches that process
the path traversal: top-down, bottom-up and hybrid approach
[2]. Top-down approach starts the traversal from root of the
tree traversing down level by level to find the matching nodes
while bottom-up approach starts the traversal from the bottom
of the tree traversing up level by level to find the matching
nodes. The hybrid approach, however, combines both the
top-down and bottom-up approaches, and stops when a
convergence is found. In the worst cases, all these
approaches need to search the whole tree, hence are
inefficient.
Query pattern matching are typically decomposition-
matching-merging processes involving (1) decomposition
of query pattern into binary relationships between pairs of
nodes, (2) matching each binary component of the query
pattern against the XML database and (3) merge-join them
to obtain the final results.
MPMGJN [8], PathStack [9] and Stack-Tree [20] algorithms
focus on the second sub process: matching the binary
structural relationships. The difference between MPMGJN
and both PathStack and Stack-Tree is that MPMGJN requires
multiple scans on input lists for the matching process. The
PathStack and Stack-Tree algorithms are more efficient as
they use stack to maintain the ancestor or parent nodes and
therefore require only one time scan per input list. These
approaches use the labeling of (docno, begin: end, level) for
an element and (docno, wordno, level) for a text word as the
positional representation of XML elements and texts.
However, we use <self–level: parent> as the positional
representation instead. Details on this will be explained in
section 3. Some other XML query processing performed in a
streaming fashion include XMLTK [21], XSQ [22], EXPedite
[23], XSM [24] and YFilter [25].

84 Journal of Digital Information Management Volume 5 Number 2 April 2007

3. Overview of INLAB
3.1. INLAB labeling scheme
In INLAB labeling scheme, given an XML tree, any label
consists of <self-level:parent> representation, where (i) self
is obtained by doing a pre-order traversal of the tree nodes
(ii) level of a node is its distance from the root and (iii) parent
is the direct node which relates to the self node.
Now, we introduce how to assign the label using INLAB
labeling scheme. Basically, assignment on self, level and
parent attributes can be obtained easily as follows. The self
attribute is computed based on pre-order traversal the
beginning of the XML tree. For instance, in Figure 1(a),
publications is the root of the tree and therefore, it has 0 as
the self attribute. The first child of root, book will be assigned
with the self attribute as 1. Next, the first child of book (the
first child of root) will be assigned with self attribute as 2. So,
the leaf of the last child (node price) will be assigned with
highest self attribute (in this case, 15).
The level attribute of a node is the nesting depth of the node
form the root. Because the root has a zero distance from
itself, the root is at level 0. The children of the root are at level
1, their children are level 2 and so forth.
The parent attribute is obtained by tracing to which node the
outdegree edge connects to. For example, node
publicationInfo has an outdegree edge which links to node
book. Thus, the parent attribute for publicationInfo is 1.
Structural relationship between nodes can be efficiently
determined from the label <self-level:parent>:-

1. parent-child relationship
node1 is the parent of node2 if and only if node1.self =
node2.parent. For example, book (1-1:0) is the parent
of title (2-2:1) element because book has self attribute
1 that is equal to title parent’s attribute 1.

2. ancestor-descendant relationship
node1 is an ancestor of node2 if and only if leveldiff =
node2.level - node1.level > 1. Further explanation is
shown in section 3.2.

A set of encoded XML streams is generated to store each
node label, groups by their node name. Figure 4 shows the
fragment streams generated based on the sample XML data
in Figure 1(a). Consequently, instead of parsing regular XML
data, we parse the set of INLAB encoded XML to be evaluated.
There are several advantages to parsing INLAB encoded
XML data over parsing regular XML data:-

1. Integer processing is very efficient
2. The size of the label is 12 bytes, which is much

shorter than the previous labeling schemes.

Figure 4. Fragment of INLAB encoded XML

3.2.CheckAncestor Function

Function CheckAncestor() (Function 1) take two nodes (q
and n) for comparison and returns whether the two nodes is
of ancestor-descendant relationship. This function loops as
long as the level different (leveldiff) between the two nodes
is greater than zero (line 7-8). If it is not, it returns in line 16
and 18. In line 9, function hashPCTable() is being invoked.

During this process, the index table, PCTable (storing parent-
child relationship) is being hashed to retrieve each node’s
parent for comparison. Fragment of PCTable is depicted in
Figure 5. Function getSelf() and getLevel() returns the self
and level attributes of the node in the stream that are being
processed.

Function 1
function checkAncestor(q, n) {
1. input : two nodes
2. output : boolean true or false
3. int leveldiff=0, current = 0, cursorUp = 0
4. leveldiff = getLevel(n) – getLevel(q)
5. current = getSelf(n)
6. if (getSelf(n) != eof) {
7. if (leveldiff> 0) {
8. while (leveldiff > 0) {
9. cursorUp = hashPCTable(current)
10. current = cursorUp
11. leveldiff—
12. }
13. if (current = getSelf(q)) return true
14. else return false
15. }
16. return false
17. }
18. return false
19. } //end function

function hashPCTable (q) {
1. input : self label of current node
2. output : parent node of the current node

Figure 5. Fragment of PCTable index table

3.3 INLAB Processing
Each node in the path query is associated with a stream.
Each stream contains the positional representations of the
node appearance in the XML tree (as shown in Figure 4).
The nodes in the stream are sorted by their self attribute, and
thus, this will determine the order of the node to be process.
Associated with each stream is a stack. Stack is used to
store the possible intermediate results.
Using the path query defined in Figure 2(a) as an example,
there exist two structural binary relationships after the
decomposition process, namely, publications-journal and
journal-author. We first try to find the matches for the
publications-journal relationship against the XML tree. The
publications stream is being accessed to retrieve the first
node to be processed. There is only one occurrence, that is
node <0-0:-1>. Since publications is the root of the path
query, node <0-0:-1> is push directly into the publications
stack. Next, journal stream is being accessed. There is only
one occurrence, that is node <12-1:0>. The parent attribute
of this node is equal to the self attribute of publications node.
Thus, node <12-1:0> is pushed into journal stack.
Next, we need to find matches for the other binary relationship,
journal-author. The author stream will be accessed first

Journal of Digital Information Management Volume 5 Number 2 April 2007 85

because the self attribute of the first occurrence is less than
the self attribute of the first occurrence in journal stream.
However, node <3-2:1> parent attribute does not occurs as
any self attribute in journal stream. Therefore, this node is
ignored. The next node will be <4-2:1>, <5-2:1> and <14-
2:12> respectively. Only node <14-2:12> parent attribute
occurs as self attribute in the journal stream. Thus, node
<14-2:12> is pushed into author stack. After finding the
matches for each structural binary relationship, the
intermediate results are being merged to produce the final
solution. Figure 6 illustrates the stack operation on matching-
merging processes.

4. Experimental Evaluation
We have implemented INLAB using Java API for XML
Processing (JAXP). In this section, we describe experimental
setup and present the preliminary results.

4.1. Experimental Setup
We run experiments on four datasets, two synthetic and two
real datasets. The real datasets are obtained from the
International Protein Sequence Database [26] and Sigmod
database [27] where else the synthetic datasets, DBLP
Computer Science Bibliography and TreeBank are obtained
from the University of Washington XML repository [28]. All
our experiments were performed on 1.7GHz Pentium IV
processor with 1.024 GB SDRAM running on windows 2000
systems. We benchmark our results with the conventional
top-down traversal approach [2] by using the set of query
listed in Table 2 and Table 3 over the modified TreeBank
dataset. TreeBank dataset has been modified into smaller
scale (approximately 3MB file size) to cater for conventional
top-down approach. These queries are composed in such a
way that all edges in Q1 to Q4 are parent-child relationship
while in Q5 is ancestor-descendant relationship.
All numbers presented here are produced by running the
experiments multiple times and averaging the execution
times of several consecutive runs.

Figure 6. Stacks operation for INLAB processing

 Query Path expression
 Q1 S/NP
 Q2 NP/PP
 Q3 S/NP/NN
 Q4 S/VP/NP/NN
 Q5 S//NP

Table 2. Queries over Treebank dataset
Query Path expression Path length
Q1 FILE/EMPTY 2
Q2 FILE/EMPTY/S 3
Q3 FILE/EMPTY/S/VP 4
Q4 FILE/EMPTY/S/VP/NP 5
Q5 FILE/EMPTY/S/VP/NP/NN 6

Table 3. Queries with different path length

4.2. Performance Results
Figure 7(a) shows that INLAB encoding outperforms in terms
of reducing the XML file size. XML data is usually much
smaller, about 15%-60% than the original XML file. For a
larger XML file size (as shown by Protein dataset) by using
INLAB encoding, there is a major reduction in file size, about
63%. Thus, it is very suitable especially in reducing the size
for a large-scale dataset.
Figure 7(b) shows the performance of a conventional SAX
parser and the XML encoded parser, INLAB. From the result,
we see that the parsing time using INLAB is slightly higher
than SAX parser. This is because the parsing time using
INLAB comprises both parsing and encoding time. Although
it is slightly higher (around 1%-2%), the different is not
significant and thus, could be ignored.
Figure 8(a-b) show the execution time of queries defined in
Table 2 and Table 3 respectively for INLAB and conventional
top-down approach. As can be observed, conventional top-
down approach is much slower compared to INLAB (generally
over an order of magnitude). This is because conventional
top-down approach is too conservative when backtracking
and reads several times unnecessary nodes in the XML
document when comparing for matches. In Figure 8(b), we
see that the performance of conventional top-down approach
degrades drastically with the increasing size of the path
length. On the other hand, by using INLAB technique, the
execution time increase slightly with the increment of path
length. Thus, INLAB is much more efficient and scalable as
compared to the conventional top-down approach.

Figure 7 (a) File size on regular XML and INLAB encoded (b)
Parsing time for parsers on different datasets

86 Journal of Digital Information Management Volume 5 Number 2 April 2007

Figure 8 (a) Execution time over TreeBank query set (b) Execution time by varying path query length

5. Conclusions
In this paper, we have proposed a hybrid query processing
technique, INLAB comprising both indexing and labeling.
Using the INLAB labeling scheme, structural relationships
can be determined easily. The extensive experimental results
showed that INLAB labeling scheme is efficient and yet
simple. We complement INLAB with indexing technologies
to speed up the matching and merging processes among
each binary structural relationship. Performance results
show that our technique outperforms the conventional top-
down approach in terms of reducing the XML file sizes, faster
parsing and execution time and scalability in most cases.
We are currently exploring a number of optimization issues
in INLAB processing. The study can be further extended in
future. Some of the future approaches could includes 1):
utilizing the sibling and ordered query relationship to optimize
the decomposition-matching-merging processes, 2):
supports branching path query (twig pattern query), 3):
performance tuning on the matching sub-process especially
to determine the ancestor-descendant relationship.

References
[1] Li, Q., Moon, B. (2001). Indexing and Querying XML Data
for Regular Path Expressions, In: Proceedings of 27th VLDB
Conference. 361-370.
[2] McHugh, J., Widom, L (1999). Query Optimization for
XML. Proceeding 25th International Conference on Very Large
Databases. 315-326.
[3] Kaushik, R., Shenoy, D., Bohannon, P., Gudes, E. (2002).
Exploiting Local Similarity to Efficiently Index Paths in Graph-
Structured Data, In: Proceedings of International Conference
on Data Engineering. 129-140.
[4] Kim, J.,Kim, H-J. (2003). Efficient processing of regular
path joins using PID. Information and Software Technology
45. 241-251.
[5] Milo, T., Suciu, D. (1999). Index structures for path
expression, In: Proceedings of 7th International Conference
on Database Theory. 277-295.
[6] Chung, C.W., Min, J. K., Shim, K. (2002). APEX : An Adaptive
Path Index for XML data, In: Proceedings of ACM SIGMOD.
121-132.
[7] Yao, J.T., Zhang, M. (2004). A Fast Tree Pattern Matching
Algorithm for XML Query, In: Proceedings of the IEEE/WIC/
ACM International Conference on Web Intelligence. 235-241.

[8] Zhang, C., Naughton, J., DeWitty, D., Luo, Q., Lohman, G.
(2001). On Supporting Containment Queries in Relational
Database Management Systems, In: Proceedings of ACM
SIGMOD. 425-436.
[9] Bruno, N., Srivastava, D., Koudas, D. (2002). Holistic
twig joins: optimal XML pattern matching, In: Proceedings of
ACM SIGMOD. 310-321.
[10] Papakonstantinou, Y., Abiteboul, S., Garcia-Molina, H.
(1996). Object Fusion in Mediator Systems, In: Proceedings
of the 22nd International Conference on Very Large Data
Bases. 413-424.
[11] Haw, S.C and Rao, G.S.V.R.K. (2006). INLAB : A Hybrid
XML Query Optimization Technique, In: Proceedings of
International Conference on Computer and Communication
Engineering,ICCCE’06, Vol 1. 219-224.
[12] Abiteboul, S. et al. (1997). The Lorel Query Language for
Semistructed Data, Journal of Digital Libraries. 1(1). 68-88.
[13] W3C, XML Path Language (XPath). Available http://
www.w3.org/TR/xpath-datamodel/
[14] W3C, XML Query (XQuery). Available http://www.w3.org/
XML/XQuery
[15] Christophides, V., Cluet, S., Simeon, J. (2000). On
Wrapping Query Languages and Efficient XML Integration,
ACM SIGMOD International Conference on Management of
Data, ACM Press. 141-152.
[16] Haw, S.C and Rao, G.S.V.R.K. (2005). Query Optimization
Techniques for XML Databases. International Journal of
Information Technology, 2(1). 97-104.
[17] Aghili, S.A., Li, H-G., Agrawal, D., Abbai, A. E. TWIX:
Approximate and Exact Twig Structure and Content Matching
over XML Document Collections using Binary Labeling.
University of California, Santa Barbara.
[18] Kim, J., Lee, S.H., Kim, H-J. (2004). Efficient structural
joins with clustered extents. Information Processing Letters
91. Elsevier. 69-75
[19] Rao, P., Moon, B. (2004). PRIX: Indexing And Querying
XML Using Prüfer Sequences. Proceedings of International
Conference of Data Engineering. 288-300.
[20] Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M.,
Srivastava, D., Wu Y. (2002). Structural Joins: A Primitive for
Efficient XML Query Pattern Matching. Proceedings of
International Conference of Data Engineering. 141-152

Journal of Digital Information Management Volume 5 Number 2 April 2007 87

[21] Green, T.J., Miklau, G., Onizuka, M., Suciu, D. (2003).
Processing XML Streams with Deterministic Automata.
Proceedings of International Conference of Database Theory.
173-189.
[22] Peng, F. and Chawathe, S.S. (2003) XPath queries on
streaming data. Proceedings of ACM SIGMOD. 431-442.
[23] Chen, Y., Padmanabhan, S., Mihaila, G.A., Davidson, S.B.
(2004). Efficient Path Query Processing on Encoded XML.
Proceedings of High Performance XML Processing.
[24] Ludascher, B., Mukhopadhayn, P., Papakonstantinou, Y.
(2002). A Transducer-Based XML Query Processor.
Proceedings of VLDB. 227-238.
[25] Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.
(2003). Path Sharing and Predicate Evaluation for High-
Performance XML Filtering. ACM Transactions on Database
Systems, 28 (4). 467-516.
[26] Georgetown Protein Information Resource, Protein
Sequence Database. (2001).
 Available at http://pir.georgetown.edu/
[27] Sigmod Database, ACM. (2005) Available at http://
www.sigmod.org/record/xml/
[28] Treebank and DBLP dataset, University of Washington
XML Repository. (2002)
Available at http://www.cs.washington.edu/research/
xmldatasets/

Su-Cheng Haw is currently pursuing
her Ph.D (Information Technology) in
Multimedia University, Malaysia. Her
research interests include XML data-
base, query optimization, database tun-
ing, data warehousing, Entity-Relation-
ship Approach and web programming.

Radha Krishna Rao is currently asso-
ciated with the Faculty of Information
Technology at Multimedia University,
Malaysia. His research interests in-
clude Software Test Automation, Web
Services Security, Network Processors,
Hyperthreading Technology, Data-
bases, Operating Systems.

