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ABSTRACT: Collaborative processing among sensors to
fulfill given tasks is a promising solution to save significant
energy in resource-limited wireless sensor networks
(WSN). Quality-of-Service (QoS) such as lifetime and
latency is largely affected by how tasks are mapped to
sensors in network. Tasks allocation is a well-defined
problem in the area of high performance computing and
has been extensively studied in the past. Due to the
limitations of WSN, existing algorithms cannot be directly
used. In this paper, a novel nested optimization technique
based on genetic algorithm is proposed to assign tasks
onto sensors with minimal cost while meeting application’s
QoS requirements. Optimal solution can be achieved by
incorporating task mapping, routing path allocation,
communication scheduling, dynamic voltage scaling.
Performance is evaluated through experiments with
randomly generated Directed Acyclic Graphs (DAG) and
experiments results show better solution compared with
existing methods.
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1.  Introduction
Technology advances in embedded system and wireless
communications in recent years are making complex and
diverse applications of sensor network possible, such as
target tracking, infrastructure monitoring, habitat sensing,
and battlefield surveillance etc. WSNs usually consist of a
large number of tiny sensor nodes with the capability of
sensing, processing and communicating. Many emerging
applications consist of various kinds of computation or
communication tasks (e.g. sensing, filtering, image or
speech processing, storing intermediate data, etc) and
require various resources to collaboratively accomplish the
given tasks. For example, in a target tracking application[18],
sensor nodes are usually organized into clusters. Distributed
signal detection and collaborative data processing such as
LU factorization[13] or the Fast Fourier
Transformation(FFT)[14] are performed within each cluster
for detecting, identifying and tracking an object. However,
due to the un-replaceable property of battery, applications for
WSN will be imposed by energy consumption constraints to
guarantee network lifetime. Hence, energy consumption is a
key concern in WSN [1]. It is becoming a challenging
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research issue of how to assign tasks onto sensor nodes in
resource-restricted sensor network. Efficient scheduling of
tasks onto the available resources in sensor networks is
one of the key factors for achieving high performance.
Task allocation has been extensively studied in the area of
parallel and distributed system[2], the same allocation
problem onto sensor nodes can be transformed into a
traditional task allocation problem in distributed system.
However, in sensor networks, it is a challenging topic to
accommodate the communication aspect at the same time.
Traditional parallel processing systems generally assume
point-to-point connections between all nodes,
communications can occur simultaneously without
contention. However, communication scheduling is needed
to avoid contention in WSN due to the restricted resource.
Thus, task allocation algorithms in high performance
computing cannot be directly used in WSN.
Task allocation for WSN has been recently discussed in
literatures [9] [10] which solve the similar problem with this
paper. However, their communication model is only suitable
for single-hop cluster, we focus on the communication
scheduling in multi-hop cluster. It has been proven that short
distance multi-hop transmission can save much more energy
than long distance single-hop transmission. Single-hop
cluster is perfect in a small scale network, however, in a
large scale network, multi-hop cluster is much energy efficient
for the significant reduced communication cost. In a single-
hop cluster, there can be only one transmission on the
wireless channel at a given time. Hence, the wireless channel
is modeled as a virtual node C that executes one
communication task at any time instance. Thus, a cluster
can be modeled as a star-network where all sensors only
have connections with the virtual node C [10]. However, in a
multi-hop cluster, nodes transmit data to the other nodes by
means of more than one node’s relay. Routing path allocation
plays an important role in energy consumption of tasks
allocation. Communication model in single-hop cluster can
not be used in a multi-hop cluster because it dose not take
inference avoidance into consideration. Communication
scheduling in multi-hop sensor network is more complicated
because of routing consideration.
In this paper, we consider tasks allocation onto a multi-hop
cluster of heterogeneous sensor nodes connected by wire-
less channels. Heterogeneity in this paper embraces mul-
tiple meanings. First, multiple kinds of sensors may coexist,
e.g., sound sensors, video sensors and temperature sen-
sors etc. Different kind of sensors may have different pro-
cessing capabilities; consequently execution time of a task
on different nodes may various. Second, different nodes may
have distinct processor architectures and hence different
nodes in a system are suitable for different kinds of tasks.
Third, the bandwidth between different nodes pair may be
distinct. To the best of the authors’ knowledge, this is the first
work for tasks allocation in a multi-hop cluster-based WSN
that considers time and energy costs of both computation
and communication.
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Task allocation usually consists of two steps: mapping and
scheduling. The first step aims to find a proper sensor node
on which the task will be executed. The second step is used
to order the execution of tasks on each sensor node. In the
context of multi-hop clustered WSN, two additional steps:
routing and Dynamic Voltage Scaling (DVS) are needed to
further optimize the assignment. The cost function is used to
determine the better solution when choosing task allocation
from search space. The cost function should be defined
according to the application that the users are interested in.
Therefore, we present a general objective function that can
accommodate various tradeoffs.
Task allocation is a well-known NP-complete problem; proper
optimization technique is needed in order to achieve
suboptimal solution in polynomial time. Heuristic-based
techniques such as various list-scheduling heuristics, are
widely used due to the low complexity, however, optimal
solution can not always be found using these methods.
Guided random search techniques such as genetic algorithm
can generate good quality of output schedules. Task mapping
can affect the overall communication workload and delay
greatly because communications only occur among tasks
mapped onto different sensor nodes. Further, different routing
could lead to different energy consumption and
communication delay.  Thus, a novel nested optimization
technique based on genetic algorithm is proposed in this
paper with the aim to minimize the overall cost in network.
Paper Organization: We discuss the related work in Section
2. Task allocation problem and some preliminaries are
defined in Section 3. The detail of the task allocation algorithm
is described in section 4 including each step of the
optimization technique. Experiments results are
demonstrated in Section 5. We give conclusions and future
work in Section 6.

2. Related Work
Task mapping and scheduling problem has been well
studied in the area of distributed system, however it dose
not take into account communications which have a big
impact on energy and delay of network[2]. In [3], a novel
energy-aware communication and task scheduling algorithm
(EAS) statically schedule communication activities and
computations onto heterogeneous Network-On-Chip (Noc)
architectures under real time constraint. They focus on the
architectures interconnected by 2D mesh networks with XY
routing schemes. The communications in wireless sensor
network are much more costly and can be done in a multi-
hop fashion. In [5], an online task scheduling mechanism
(CoRAl) is proposed to allocate the network resources
between the tasks of periodic applications in WSNs. Upper
bound frequencies of applications are evaluated according
to bandwidth and communication requirements between
sensors. The frequencies of the tasks on each sensor are
optimized subject to the upper-bound execution frequencies.
However, CoRAl does not address mapping tasks to sensor
nodes, and energy consumption is not explicitly discussed.
Task mapping mechanisms in wireless networks have been
presented in [6],[7]. A TCP-oriented distributed task mapping
approach is introduced in [6] for mobile ad hoc networks. A
data fusion task mapping mechanism, DFuse, is presented
for WSNs in [7]. Both solutions assume an existing underlying
network communication mechanism. Communication
scheduling between nodes is not addressed explicitly, which
has a significant impact on communication efficiency and
energy consumption in WSNs. Task mapping and task
scheduling have been jointly considered for mobile

computing [8] and WSNs [9][10] recently. Task mapping and
scheduling heuristics are presented in [8] for heterogeneous
mobile ad hoc grid environments. However, the
communication model adopted in [8] is not well suited for
WSNs, which assumes individual channels for each node
and concurrent data transmission and reception capacity of
every node. In [9], communications over multiple single-hop
wireless channels are first modeled as additional linear
constraints of an Integer Linear Programming (ILP) problem.
Then a heuristic algorithm is presented to provide a practical
solution. Energy consumption optimization is addressed
through energy-balanced task allocation. However, the
energy-balanced solution in [9] does not take energy
consumption constraints into account and cannot provide
guarantee of application energy consumption constraints.
EcoMapS algorithm in [10] present a generic task mapping
and scheduling solution for single-hop clustered wireless
sensor networks with the similar objective as this paper.
Based on realistic energy models for computation and
communication, EcoMapS aims to provide energy
consumption guarantees with minimum schedule lengths.
 However, none of the above methods take into consideration
allocating tasks onto sensor nodes in multi-hop cluster. Multi-
hop is much preferred than single-hop for the sake of saving
much energy. In order to get optimal solution, a novel nested
optimization method is proposed to explore the whole search
space, including genetic-based task mapping, genetic-based
routing path allocation, task and communication scheduling
and dynamic voltage scaling.

3. Preliminaries
3.1. Network Model
In this paper, we assume that sensors are grouped into
multi-hop clusters, each cluster execute an application which
is either assigned during system setup time or distributed
by base stations during system run time. It is the cluster
heads’ responsibility to create schedules for appli-cation
communication and computation. The topology of a
communication network is modeled as a topology graph TG
=(P, L), where P is a finite set of vertexes and each represents
a sensor node equipped with discrete DVS.  L is a finite set
of links. Each link Lij  L represents a communication link
from sensor node Pi to Pj. Figure1(a) shows an example of
network topology graph. In the graph, some nodes are
connected directly by a link and some others are connected
indirectly by more than one links.  We assume that the
topology of sensor network is a prior knowledge and sensor
network is static, will not change during sensor lifetime. In
dynamic WSN, such topology knowledge will not be known
in advance; hence we will defer the discussion of distributed
tasks allocation in dynamic WSN to our future work.

3.2. Application Model
In this paper, we consider that a periodic real-time application
consists of a set of computation and communication tasks,
represented by a Directed Acyclic Graph (DAG) G = (V, E, w,
c). The nodes in V represent tasks to be executed without
preemption. Further, each task might inherit a specific hard
deadlineθ . These deadlines must be met to fulfill the
feasibility requirements of the specific application. In addition,
the task graph inherits a period p that specifies the maximum
allowed time between two successive executions of the initial
task. Each edge e   E in task graph, denotes precedence or
data dependencies among tasks. If two tasks,      and       , are
connected by an edge then the execution of   must be
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finished before  can be started. The positive weight w (   )
associated with node    V represents its computation cost
and the non-negative weight c(eij) associated with edge eij
    E represents its communication workload.
The set {     x   V:               E} of all direct predecessors of      is
denoted by pred (     ) and the Set{        V: e     E} of all direct
successors of     , is denoted by succ (     ). A task t   V without
predecessors, pred (    ) =    is named source task and task
without successors, succ (    ) =    , is named sink task. If task
     is scheduled on sensor other than sensors on which its
direct predecessor    be scheduled, then a communication
between these sensor nodes is required. However, if both of
tasks are scheduled on the same sensor, the result delivery
latency is considered to be zero and     can start to execute
just after     is finished. A feasible implementation of an appli-
cation must respect all timing constraints and precedence re-
quirements when executed on an underlying architecture. A DAG
may have multiple source tasks and one sink task. If there are
more than one sink tasks, they will be connected to a pseudo
sink task with computation cost equals zero. Fig. 1(b) shows an
example of a DAG, where   1 and    2 are source tasks,    6 is a
sink task, and   4 is the direct successor and direct predeces-
sor of   1 and   6, respectively. The weight c13 on edge e13
represent the communication cost from task   1 and   3. The
weight w1 = 5 represent the computation cost of task.

Figure 1 (a) Network Topology  Figure 1(b) Tasks Graph

3.3.Problem Formulation
For a given task graph, G = (V, E, w, c), an initial step maps
each task in G into one of the available sensors in TG = (P,
L).We use function               to represent this task mapping
step. Task mapping affects the total communication load
because only tasks assigned onto different sensors can
generate communication load. The routing path between
two sensors is then allocated and the0function                is
used to denote this routing path allocation step, where L is
the set of l ink sequences. The task scheduling and
communication step determine execution order of tasks
assigned onto the same sensor and communication time
between sensors. We need to know communication delay
when task scheduling, hence routing path allocation step is
executed first. Tasks voltage assignment step determines
the execution clock speed of each task to reduce energy
consumption by utilizing what would otherwise be slack time.
We use function              to represent the task voltage
assignment step, where C is the set of possible clock speeds
of tasks.
We can define power-efficient tasks allocation problem for
multi-hop WSN as follows:

Given task graph G = (V, E, w, c) and network topology graph TG
=(P, L)
Find   functions of              such that

 Subject to

c(t): computation cost of task t in DAG
w(e): communication cost of edge     in DAG
n: sensor node n
w1: weight for latency
w2:weight for maximum energy consumption
L (n):  the latency of sensor node n
E (n): the energy consumption of node n.
The total cost is the summation of the computation and
communication cost of all tasks, and the weighted
summation of maximum latency and maximum energy
consumption among all nodes. Usually, the lifetime of network
is the duration of alive time of the node dies first, so the
energy consumption of the node consumes the most needs
to be minimized. By adjusting w1 and w2, users can change
the cost function to satisfy the requirement of application.
Since the genetic selection operation usually chooses the
maximum result in the search space, we transform the above
minimum fitness function into maximum function:                .

4. Tasks Allocation Algorithm
4.1. Algorithm Framework
Tasks mapping and tasks scheduling problems could be
handled as separate independent problems or these could
be handled as one integrated problem. Optimal solution of
the integrated problem can provide the best results. However
since both mapping and scheduling are computationally hard
problems, solving them together is more difficult than solving
them one by one. On the other hand, task allocation problem
defined in the above involves several interacting steps; it is
unlikely that a good solution will be found by optimizing each
step independently. We use two nested genetic algorithms
to explore the solution space efficiently. There are a GA-based
task mapping algorithm (GA-Mapping) and a GA-based
routing path allocation algorithm (GA-Routing). Figure 2
shows the design steps of energy efficient task allocation in
this paper.
Genetic algorithms imitate the principles of natural evolution
to solve search and optimization problems, and are a
promising technique for system-level design which has a
large solution space. GA is especially suitable for multiple-
objective optimization. Starting with an initial population, a
genetic algorithm evolves a population using the crossover
and mutation operations. Since the performance of genetic
algorithm depends on encoding, crossover and mutation
schemes, we need to select these schemes carefully. The
detail of the algorithm steps will be introduced in the following
sections.

4.2. Genetic-based Task Mapping
The more tasks are assigned to a sensor, the more energy it
will consume for computations. Energy constraint can be
expressed as E   (Pi) d < Eresidual, where E    (Pi) means the
energy consumption of a sensor Pi under the task mapping
function    , Eresidual   is the residual energy of sensor. If there is
an edge e between two tasks assigned to the same sensor,
its value w (e) is changed to zero. This task mapping step
affects the total communication load. We will represent a
task mapping solution as an array of integers. For example,
in Figure3, task t1 is mapped to sensor p6 in the individual
p1. Our crossover operation is two-point crossover which is
widely used in GAs. Both parent individual p1 and p2 are
divided at the same two points and the child individual c1 is
generated from the first part of p1, the second part of p2 and
the third part of p1. Our mutation operation changes the values
of randomly selected genes into new values, which make up

xi

x xi
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a new individual. Our selection operation chooses the
population with the highest fitness computed through the
fitness function. The objective of mapping step is the same
with task allocation problem. For each individual, we perform
routing path allocation, task scheduling, communication
scheduling and task voltage scaling to evaluate the fitness
value.

4.3. Genetic-based Routing
Topology of WSN can be depicted by graph like figure 4, an
equivalent expression is tree model. Any node in graph can
be root of tree and each path from root to leaf node
corresponds to a valid routing path in network graph. In order
to simplify the genetic operations, in this paper, sensor
network is expressed by a tree network and the genes are
expressed by the tree junctions. By this coding method, the
length of each chromosome is the same and the genetic
operations are carried out in the tree junctions. To explain
this procedure, see the topology graph in Fig.4. Let node S
be the source and node D be destination. All routes are
expressed by the network tree model shown in Fig.5. In the
network tree model, each tree junction is considered as a
gene and the path is represented by the chromosome. By
using this gene coding method, the routing loops can be
avoided. Fig.6 shows the chromosome coding. The genes
in a chromosome have two states “active” and “inactive”. A
gene is called active if the junction is in the route; otherwise
the gene is in “inactive” state. Active state is represented by

Figure 2.  Algorithm Framework

Figure 3.  Two-point crossover in task mapping

Crossover operation must guarantee obtain legal routing
path. We use single point crossover because simple opera-
tions are needed to get fast responses.  We must be careful
to choose the crossover site because crossover operation
can only be executed among those paths which have meet-
ing point.  Meeting point is the common node in paths. For
instance, two parent paths S B H C D  and
S H G E D  can be crossed at node H to generate two

child path: S B H G E D and S H C D. Mutation
operation aims to keep the diversity of populations and avoid
getting into local optimal solution.  Similarly, mutation re-
quires guarantee legal path. First randomly select the popu-
lation to be mutated and randomly delete some edges in
this path. Find out the disjoint branches and make them
connected using the other edges in the network tree. A new
legal path can be formed by this way.

Figure 4. Network
topology of routing

Figure 5. Network tree model

Figure 6. Gene coding for routing
path allocation

Fitness function is used to evaluate the populations. In rout-
ing path allocation step, each population represents a path
from source node to destination node. There are two metrics
to evaluate a path’s performance. The first one is energy
cost. The less energy consumption, the good the path is.
The second one is communication delay.  In order to com-
plete the real-time application before deadline, path with
small delay is preferable.  Hence, we define the fitness func-
tion as the follows: f(P)=1/ (      l    p c (1) X DT) , here c(l) is
the cost of link    .DT is the actual delay time from source
node to destination node. The exact delay can be computed
only after task scheduling and communication scheduling,
so this algorithm will be evaluated after the scheduling.

4.4. Scheduling
For task scheduling, we adopted a list-scheduling algorithm
which uses the mobility of each task as its priority. The mobility
of a task is defined as the difference between the ASAP start
time and the ALAP end time. To get these times, we need to
know the communication delay of an edge. The
communication delay can be computed easily by
communication scheduling procedure.
List-scheduling [12] has been widely adopted in task
scheduling, in this paper, we assign tasks priority according
to the bottom level of each task. Bottom level is defined
recursively as the following:

bl(   ) =w(   ) + max    succ(     ) {c(eij) + bl(   )}   can

be computed by traveling the task graph from bottom to top.
To meet the application deadline, it is necessary to compute
the start time and the finish time of each task. If a task is
mapped onto a sensor node different to its preceding task,
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then a communication is needed between these two sensors.
A routing path can be attained through algorithm proposed
in section VI.C; however the communication links in this path
might be occupied by other communication at the same
moment, hence, communication scheduling is necessary to
avoid such conflict. The start time and the finish time of a
communication edge can be determined through the
following algorithm.
In pseudocode in Fig. 7, ts(eij, Lk) and tf(eij, Lk) denote the start
time and finish time of communication edge eij on link Lk
respectively. EAT Lk is the earliest available time of link,      (eij,
Lk) is the actual communication time. Line 8 update the ear-
liest available time of each link according to the finish time of
the communication so that other communication task can
reuse the link later. Line 10 shows that the finish time of a
communication on a path is the finish time of the communi-
cation on the last link in this path. The last line records the
total energy consumption of this path; D(R) is the distance
between source node and destination node. By far, we can
evaluate the routing path using the two metrics: energy cost
and communication delay.

Figure 7. Pseudocode of communication schedule

4.5. Dynamic Voltage Scaling
One promising low-power techniques for energy-limited
embedded system is to scale the voltage of tasks. For the
task voltage assignment, we take advantage of the voltage
and clock speed selection algorithm proposed by Schmitz
and Al-Hashimi[4]. This algorithm determines the operating
speed of each task assigned on the DVS-enabled PE. It first
estimates the slack time of each task considering the
deadline and precedence constraint. It then calculates
    E (     ) for a task      which has slack time.     E (     ) is the energy
gain when the time slot for    is increased by   t (with a lower
clock speed). After increasing the time slot for the task      with
the largest     E (      ), by a time increment    t, it repeats the
same sequence of steps until there is no task with slack
time.

5. Experiments Evaluations
The goals of our experiments are (1) to measure and
compare the energy consumption of our nested optimized

technique against the random-based approach; (2) to
evaluate the optimized schedule length of our method against
the list-scheduling heuristic approach.
The cost function defined in this paper is a general form;
therefore we can present general metric which can
accommodate various tradeoffs by adjusting parameter w1
and w2. Performance metrics include energy consumption
and schedule length.
Genetic algorithm used the following parameters throughout
the simulation: Population size = 20; Crossover probability=1;
Mutation probability = 0.01; Max number of iterations = 1000.
The nested genetic algorithm proposed in this paper can
guarantee to coverage to the global optimal solution for the
following three reasons: 1) the crossover possibility is 1; 2)
the mutation possibility is a number in (0,1); 3) selecting
population according to proportion and always keep the best
population. However, the high search complexity of genetic
algorithm usually baffle its application, therefore the
performance of our algorithm can be improved by limiting
the total iteration number.
We started by estimating the efficiency of each optimization
technique at the task mapping, routing path allocation and
task voltage scaling steps. For our experiments, we
generated random task graphs g1 to g16.
Figure 8 shows the energy consumptions of application tasks
under various optimization configurations. In this group of
experiments, parameter w1 and w2 are set to be zero.
Therefore, the objective is to minimize the total energy
consumption under the real time constraint. Experiments
results were normalized against the energy consumption
obtained by a task allocation technique which uses random
task mapping, shortest path routing and no task voltage
scaling.
The first bar for each tasks graph represents the result when
we applied only task DVS. The second bar represents the
result when we used the GA-Routing algorithm for routing
path allocation, as well as task voltage scaling technique
(DVS +R). The third bar shows the result when the GA-
Mapping algorithm for task mapping is also applied
(DVS+R+TM). The energy consumption is reduced by 16%,
26.5%, and 39.6% on average by the DVS, DVS +R, and DVS
+R+TM techniques respectively. These reduction ratios are
dependent on the characteristics of the task graph (e.g., slack
time and communication load) and the performance of the
random configurations. For example, the dynamic voltage
scaling (DVS) showed small energy reductions because
the random task mapping and shortest path routing generate
little slack time. From these results, we realize that all steps
have large effects on energy saving, and it is necessary to
optimize the energy consumption at all steps. We did not
compare the task scheduling step with other techniques
because the list scheduling is universally popular. Table 1
shows the execution time of our nest genetic algorithm.
We also compare the quality of the solution produced by this
paper with those produced by other heuristic algorithm. In
this set of experiments, parameter w1 is set to be one and
w2 is set to be zero. The objective is to obtain the minimal
schedule length while meeting application’s QoS require-
ments such as time and energy constraint. Table 1 com-
pared the schedule length of the nested genetic algorithm
and the listing algorithm along with the optimal schedule for
the random task graph. The solution obtained by the genetic
algorithm is better than the list scheduling algorithm and is
with 10% of the optimal solution.

∆

∆

∆
∆
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Figure 8. Effect of the nested genetic-based algorithm for task allocation(w1=0,w2=0)

We also compare the quality of the solution produced by this
paper with those produced by other heuristic algorithm. In
this set of experiments, parameter w1 is set to be one and
w2 is set to be zero. The objective is to obtain the minimal
schedule length while meeting application’s QoS
requirements such as time and energy constraint. Table 1
compared the schedule length of the nested genetic
algorithm and the listing algorithm along with the optimal
schedule for the random task graph. The solution obtained
by the genetic algorithm is better than the list scheduling
algorithm and is with 10% of the optimal solution.
Prolonging network lifetime as much as possible is the
common goal of resource-limited wireless sensor networks.
Lifetime has been defined in various ways. In the simplest
way, a network may be considered alive when any of the
sensors is alive. Making energy consumption balanced can
avoid the network dying too soon.  We achieve such object by
setting parameter w1 to zero, w2 to 1.  In figure9, we compare
the lifetime improvement of nested GA-based approach in
this paper with energy-balanced heuristic approach proposed
in [9]. We tested tasks graph with tasks number
15,20,25,30,35 and 40, in a real sensor network with 20
nodes deployed in a square field of 200X200 meters. The
communication radius is 20 meters. Each node can
communicate with the cluster head in a multi-hop way. From
figure9 we can see that our approach can get a lifetime
improvement of 3.5x, while the heuristic approach in [9] can
get a lifetime of 1.5x in average.
Performance of the nested genetic algorithm is shown in
Fig.10. This figure shows the generation number versus the
fitness values which is decided based on the fitness function
f.  The high fitness means that the task allocation solution
has low delay and energy consumption. From the figure we

Figure 9.   Performance of Nested Genetic Algorithm (w1=0,w2=1)

Figure 10.   Performance of Nested Genetic Algorithm

can see that our nested genetic algorithm always coverage
within a small number of generations.
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6. Conclusion
In this paper, we proposed an energy- and QoS-aware task
allocation algorithm to optimize the energy consumption of
applications submitted to a multi-hop cluster-based wireless
sensor network. The objective is to minimize the total energy
consumption of the system under real-time constraint. The
proposed algorithm saves energy at various steps, i.e. task
mapping, routing, and task voltage scaling. We use nested
genetic algorithm to explore the solution space efficiently.
Simulations on random generated tasks graphs show that
our algorithm reduced the energy consumption of the
wireless sensor network compared with the existing
algorithm which uses random task mapping and minimal
path routing. Our future work is to develop energy-efficient
and QoS-garanteed distributed task allocation algorithm for
dynamic sensor networks.
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