
180 Journal of Digital Information Management Volume 5 Number 4 August 2007

Storage and Indexing of Relational OLAP Views with Mixed Categorical and Continuous
Dimensions

Oliver Baltzer, Andrew Rau-Chaplin, Norbert Zeh
Faculty of Computer Science
Dalhousie University
Halifax, NS, Canada
{obaltzer,arc,nzeh}@cs.dal.ca

 Journal of Digital
 Information Management

ABSTRACT: Due to the widespread adoption of location-
based services and other spatial applications, data
warehouses that store spatial information are becoming
increasingly prevalent. Consequently, it is becoming
important to extend the standard OLAP paradigm with
features that support spatial analysis and aggregation.
While traditional OLAP systems are limited to data
characterized by strictly categorical feature dimensions,
Spatial OLAP systems must provide support for both
categorical and spatial feature dimensions. Such spatial
feature dimensions are typically represented by
continuous data values. In this paper we propose a
technique for representing and indexing relational OLAP
views with mixed categorical and continuous data. Our
method builds on top of an established mechanism for
standard OLAP and exploits characteristic properties of
space-filling curves. It allows us to effectively represent
and index mixed categorical and continuous data, while
dynamically adapting to changes in dimension
cardinality during updates. We have implemented the
proposed storage and indexing methods and evaluated
their build, update, and query times using both
synthetic and real datasets. Our experiments show
that the proposed methods based on Hilbert curves of
dynamic resolutions offers significant performance
advantages especially for view updates.

Categories and Subject Descriptors
H.3.1[Content analysis and indexing]; E.1 [Data Structures]
General Terms
OLAP paradigm, Relational OLCP views, Data types
Keywords: Spatial OLAP, space-filling curves, view indexing,
continuous space
Received 24 December 2006; Revised 15 March and 01 May 2007;
Accepted 08 May 2007

1. Introduction
It is estimated that 80% of the data stored in data warehouses
has some spatial component [MapInfo Corporation, 2006].
We are currently witnessing an explosion in geo-spatial data
resulting from applications such as location-aware services
[Chen and Kotz, 2000] and RFID tagging [Hahnel et al., 2004].
As data warehouses fill with such data, it becomes important
to extend the standard OLAP analysis paradigm with new
features that support spatial analysis and aggregation.

Spatial OLAP systems, sometimes referred to as SOLAP
systems [Bédard et al., 2001], attempt to enhance the
analysis and decision making process by combining
features of OLAP with those of Geographic Information
Systems (GIS) into a single tool [Microsoft Corporation, 2004,
Cohen et al., 2004, KHEOPS Technologoies, 2005, Scotch
and Parmanto, 2005a].

A fundamental difference between a traditional OLAP system
and a SOLAP system is that in OLAP all feature dimensions
are categorical, i.e., have fixed cardinalities such as Color ∈
{red, blue, green}, while in SOLAP feature dimensions may
be either categorical or spatial, where spatial dimensions
are typically represented by continuous data values such as
latitude = 13.32861° N. The categorical nature of feature
dimensions in OLAP is typically exploited in several important
ways. Firstly, categorical data stored in a star scheme (See
Figure 1) can be normalized in each dimension, which leads
to the imposition of a fixed-cardinality grid on the categorical
dimensions. Secondly, dimension hierarchies can easily be
defined as ranges of values within these grids to support
roll-up and dril l-down operations. For continuous
dimensions, a different approach is necessary.

time_id
day
month
quarter
year

Time

time_id branch_id dollars_sold units_sold
1

1

3

2

3 5

3

1

3

2 6

6

4

1

2

120.00
200.00
300.00

50.00
75.00 3

1
2
4
2

product_id

normalized facts table

branch_id
name
address

product_id
name
category
brand

Branch

Product

Figure 1. Star schema of a typical data warehouse with facts table,
three feature dimensions and two measures. The feature dimensions
have been normalized within the facts table in that they are repre-
sented as keys into dimension tables.

In adding non-categorical dimensions to OLAP, two key
challenges must be addressed: (1) how to define and perform
aggregation on spatial/continuous values, and (2) how to
represent, index, update, and efficiently query mixed
categorical and continuous data. Techniques for the
aggregation of continuous spatial and temporal values have
been well studied. For a broad survey of these results see
[López et al., 2005]. The representation, indexing, and
querying of spatial data has also been well studied [Rigaux
et al., 2002, Güting, 1994]. However, data in a spatial data
warehouse is not exclusively spatial: it is a mix of spatial and
categorical attributes. The representation and indexing of
such mixed categorical and continuous data in an OLAP
setting has received less attention (see Section 2 for a
discussion of related work). While efficient multi-dimensional
indexing mechanisms for continuous data exist [Guttman,
1988], they are not specifically designed and optimized to
meet the requirements of typical OLAP applications such as
aggregate queries and hierarchy operations.

Journal of Digital Information Management Volume 5 Number 4 August 2007 181

An obvious approach to the representation and indexing of
mixed categorical and continuous data is to treat the
continuous values as if they were values of a categorical
space by simply enumerating them. This discretizes the
original continuous dimension, allowing the use of
established mechanisms for view indexing and query
evaluation. However, it also skews the original continuous
dimension in a data-dependent manner, and once
continuous dimensions have been transformed in this way,
view updates that preserve the relative order of records with
respect to their original space are not possible without
recomputation of the complete view.
In this paper we address the representation and indexing of
mixed categorical and continuous data in a Relational OLAP
setting. We first describe a general approach that has been
shown to be effective for representing and indexing relational
tables in a variety of settings (e.g., sequential [Jagadish,
1990, Moon et al., 2001], parallel [Dehne et al., 2003], and
P2P [Schmidt and Parashar, 2004]) and then show how this
method, based on the use of space-filling curves, can be
extended to the mixed categorical/continuous setting.
We have implemented the proposed storage and indexing
methods and evaluated their build, update, and query times
using both synthetic and real datasets. Our experiments
show that the proposed methods based on Hilbert curves of
dynamic resolution offers significant performance
advantages. In the build phase we observed a speed
improvement by a factor of approximately 20-25% over the
standard pre-discretization approach. For updates, which
can be performed without reordering the entire dataset when
using the dynamic-resolution approach, we observed
performance improvements of between a factor of 23 for an
update batch whose size is 2% of the current view and a
factor of 6 for an update batch whose size is 20% of the
current view.
As updates to data warehouses are commonly very small
(less than 1 or 2%) the performance benefits of our dynamic
adaptation approach over pre-discretization is quite
significant.
We also compared the query performance of our Hilbert-
curve-based index with a standard R-tree drawn from the
Spatial Index Library [Hadjieleftheriou, 2006]. Again we
observed a significant speed improvement. While the query
time on the Hilbert-curve-based index increased only
marginally with an increasing number of records and query
results were reported in less than 0.2 seconds even for 3M
records, the query time of the R-tree index quickly deteriorated
for larger numbers of records. Note that some caution is
required when interpreting this result. Since we are
comparing two independent codebases, it is harder to
determine how much of this improvement should be
attributed to the improved I/O and cache efficiency of our
algorithms and how much is simply due to better coding
practices.
The remainder of this paper is organized as follows. Section
2 gives an overview of work related to this paper. Section 3
introduces our basic approach, while Section 4 describes
our method for dynamically adapting the resolution of the
Hilbert curve and proposes new algorithms for indexing views
with both categorical and continuous space dimensions.
The construction of the index and its representation in
memory is described in Section 5. In Section 5.2 we discuss
updates to such views and introduce a merge algorithm that
is flexible with respect to dimension cardinality. In Section 6
we describe an initial implementation of our algorithms,
whose performance we analyze in Section 6.1. The paper is

concluded in Section 7 with a summary and discussion of
future work.

2. Related Work
The problem of indexing multi-dimensional points is not new.
A common and often effective approach to this problem is to
employ a multi-dimensional R-tree or one of its many
variants. The R-tree [Guttman, 1988] is a spatial indexing
structure that allows the indexing and efficient querying of
points and polygonal shapes. The queries that are supported
by the R-tree are rectilinear range queries. Its original design
was motivated by the B-tree, and it can be efficiently used as
an external-memory data structure. For the application in
spatial and spatio-temporal OLAP, a number of extensions
[Papadias et al., 2001, Papadias et al., 2002, Tao and
Papadias, 2001] of the R-tree have been proposed to
facilitate efficient evaluation of queries typical for these
domains. Most approaches based on R-trees, however, only
focus on continuous space dimensions and don’t specifically
address the properties of categorical dimensions. To support
categorical dimensions, these dimensions are typically
transformed into an equivalent representation in continuous
space, but this creates problems: The efficient aggregation
in OLAP queries over categorical dimensions often crucially
relies on these dimensions being integer-valued, and the
use of space-filling curves as a locality-preserving mapping
from higher-dimensional space into one dimension,
discussed next, relies on the existence of at least an implicit
integer grid.
Space-filling curves have been used to support the indexing
of purely categorical OLAP data [Dehne et al., 2003]. This
approach organizes multi-dimensional categorical OLAP
views by using the Hilbert space-filling curve to generate a
linear ordering of the records in multi-dimensional space
and then indexing this linear ordering with a data structure
similar to a B-tree. This method exploits that the Hilbert curve
strongly preserves spatial locality [Moon et al., 2001].
Previously, Hilbert curves were used by Kamel and Faloutsos
[Kamel and Faloutsos, 1994] as a mechanism to enhance
the performance of R-trees when used for indexing multi-
dimensional data. They used the Hilbert curve to obtain an
ordering of the records within each node of the R-tree. This
allows the exercise of new strategies for the distribution of
records when nodes split and merge during insertion and
deletion of records. Using these strategies, the query
performance of the R-tree does not deteriorate as drastically
as when arbitrarily distributing records between nodes during
node splitting and merging.
Later in 2001, Lawder and King proposed a multi-
dimensional index that uses a tree structure derived from
the construction rules of the Hilbert curve [Lawder and King,
2001]. Each level of this tree corresponds to a level of
resolution, or order, of the Hilbert curve and partitions the
covered subspace into quadrants. At the root of the tree the
entire space is covered. Records are stored at the leaf level
of the tree in the subspace quadrants that correspond to the
Hilbert values derived from their original coordinates.
None of the previous approaches to indexing multi-
dimensional data with the help of Hilbert curves addressed
the issue of continuous dimensions. All proposed
techniques operate on multi-dimensional grids whose
resolutions are known in advance, and records are mapped
into cells of these grids. Hence, they require that the cardinality
of each dimension is fixed and known in advance. This,
however, is not practical in a spatial OLAP environment where
multiple continuous dimensions may exists and their attribute

182 Journal of Digital Information Management Volume 5 Number 4 August 2007

values are not fixed and may change over any number of
updates.
A more application-oriented approach to the integration of
spatial and categorical data based on building composite
systems that integrate existing OLAP and GIS systems has
been pursued by both academic [Han et al., 1998, Rivest et
al., 2001, Shekhar et al., 2001, Fidalgo et al., 2004] and
industrial [KHEOPS Technologoies, 2005, Scotch and
Parmanto, 2005b, da Silva et al., 2005, Hernandez et al.,
2005] research groups. However, systems such as SOVAT
[Scotch and Parmanto, 2005b] or Kheops Technology’s JMap
[KHEOPS Technologoies, 2005, Rivest et al., 2005] address
the integration at a higher level, closer to the end-user, and
internal data representation and storage mechanisms
manage categorical and spatial data independently by means
of traditional categorical data warehouses and spatial
databases. While this approach speeds software
development, it does not lead to systems that scale well in
the face of massive datasets.

3. Our Approach
The central problem we address in this paper is the
representation and indexing of mixed categorical and
continuous data in a Relational OLAP setting. We first
describe a general approach that has been shown to be
effective for representing and indexing relational tables in a
variety of settings (e.g., sequential [Jagadish, 1990], parallel
[Dehne et al., 2003], and P2P [Schmidt and Parashar, 2004])
and then show how this method, based on the use of space-
filling curves, can be extended to the mixed categorical/
continuous setting.

The approach has three basic steps:
1. Map the multi-dimensional data into a linear ordering using
a locality-preserving space-filling curve, such as a Hilbert
curve [Hilbert, 1891].

b1

b2

b4

b3

a1 a2 a3 a4

2. Use the linear order to distribute the data over the available
storage. In the sequential setting this may be one or more
disks [Jagadish, 1990], in the parallel setting this may be
disks across a set of processors [Dehne et al., 2003], and in
the P2P setting it may be disks across a collection of peers
[Schmidt and Parashar, 2004].
3. Build an index structure on top of the ordered data for
efficient query processing. Typically, this is some variant of
the R-tree [Guttman, 1988].
The resulting indexing structure is basically an R-tree;
however, the use of space-filling curves to fold the multi-
dimensional space into a one-dimensional space is
particularly well-suited for the even distribution of records
over multiple disks, processors, or peers, and it facilitates
batch updates of views by allowing to merge record updates
into the original view with a single linear scan.
In an OLAP setting, this indexing structure presents a number
of advantages:
• The disk layout favours sequential block access and thus
reduces the amount of disk I/O and seeks.
• Multi-dimensional data is indexed in such a way that no
dimension is favoured over another and the disk layout
preserves the locality of the data.
• Extensions to the indexing structure can provide additional
support for OLAP-specific operations such as range
aggregate or roll-up queries [Papadias et al., 2001].
In this paper, we use the Hilbert curve as the space-filling
curve that underlies our method. The Hilbert curve is defined
on a d-dimensional grid with a side length of 2k, where d
denotes the dimension of the view, c is the largest cardinality
among all dimensions, and k = [log2 c] is the resolution or
order of the Hilbert curve. This grid covers the entire space of
the view so that each grid cell contains at most one record
(see Figure 2(a)).

b1

b2

b4

b3

a1 a2 a3 a4

5

2

3 4

1

6

Figure 3. Increasing the resolution of the Hilbert curve preserves the order of records

Figure 2. Hilbert curve (a) Grid for which each cell contains at most one record (b) Hilbert curve on grid. Points are numbered in order
along the curve

Journal of Digital Information Management Volume 5 Number 4 August 2007 183

The Hilbert curve on this grid passes through each record in
the view exactly once and thereby generates the Hilbert order
of the records (Figure 2(b)). The important property of the
Hilbert curve is that it provides a mapping from d-dimensional
space to 1-dimensional space that preserves much of the
locality of the higher-dimensional space [Moon et al., 2001].
In the following section we show how to index continuous
space dimensions without pre-discretization by proposing a
technique that dynamically adapts the resolution of the Hilbert
curve and determines the order of records locally. Unlike
previous approaches that exploit the clustering properties of
the Hilbert curve [Jagadish, 1990, Kamel and Faloutsos,
1994, Moon et al., 2001, Dehne et al. , 2003], this new
technique is flexible with respect to dimension cardinality in
the dataset, as it attempts to optimally utilize the grid space
for continuous dimensions; it achieves a significant reduction
of the cardinality of continuous dimensions when compared
to a pre-discretization approach; and it also allows for the
introduction of new records with previously unknown attribute
values without the need to recompute the entire view.
Introducing a batch of new records into an existing view has
a cost proportional to that of sorting the records to be inserted
in Hilbert order and linearly scanning the existing view to
merge the new records into it.

4. Dynamic Resolution of Hilbert Curves
In this section we describe a method for ordering multi-
dimensional records in Hilbert order when some of the
dimensions are continuous. The main strength of this
approach is that it is dynamic, allowing on-the-fly calculation
of the resolution of the Hilbert space for continuous
dimensions.
Generating a Hilbert ordering requires a discrete space in
which each record is mapped to an associated coordinate
and distinct records map to distinct coordinates. The naïve
approach to generating a Hilbert ordering over a space that
contains continuous dimensions would discretize those
dimensions in advance and then generate the Hilbert
ordering of the resulting entirely discrete space. This
approach, however, exhibits a number of disadvantages that
impact its effectiveness:

• The discretization of the continuous space requires
multiple expensive sort and scan operations on the
original dataset.

• Discretizing each continuous dimension individually
causes the resulting space to be skewed, as only
the relative order of records, but not the magnitude

 of their attributes, is preserved.
• The space resulting from the discretization is

sparse and not well utilized, as each continuous
value is assigned a distinct index, independent of
whether or not this is in fact necessary to place
each multi-dimensional record into its own grid cell.

• The entire space needs to be rediscretized when
an update introduces a new attribute value.

A second approach is to map the continuous space attributes
onto a multi-dimensional grid that defines the discrete space.
However, predetermining the resolution of this grid requires
the computation of pairwise Euclidean distances between
records, which is not practical when the number of records
is large.
The method proposed here takes a different approach. Based
on the recursive definition and the self-similarity of the Hilbert
curve, the Hilbert ordering of records can be efficiently
computed in continuous space by using an adaptive
resolution for the underlying discretization grid. We observe
that a Hilbert ordering of records has the property that the
relative order of records is preserved when the resolution of
the Hilbert curve is increased (see Figure 3). Increasing the
resolution of the Hilbert curve, in turn, increases the resolution
of the multi-dimensional grid, on which the curve is defined.
This property can be used to dynamically adjust the resolution
of the grid onto which the continuous space attributes are
mapped during the generation of the Hilbert ordering of the
records, in order to guarantee that distinct records map to
distinct grid cells and thus become comparable in Hilbert
order.
The idea behind this approach is to resolve any conflict
where two records that are compared map to the same grid
cell while sorting the records in Hilbert order. This is done by
increasing the resolution of the underlying grid until both
records map to distinct grid cells. Due to the self-similarity of
the Hilbert curve, changing the resolution of the Hilbert curve
does not have an impact on records that have been sorted
already. Thus, the resolution can be increased dynamically
during the comparison of pairs of records. Furthermore, this
technique achieves a better space utilization than a pre-
discretization approach because a grid cell is split into
smaller cells only if there is in fact a conflict between two
records in that cell. Finally, since the grid is dynamically
adjusted to the actual multi-dimensional data, the space is
not skewed and the relative differences between the
continuous values of records are preserved. Figure 3
illustrates how the increase of resolution resolves conflicts
between records that are mapped to the same grid cell.

Algorithm 1 Algorithm to sort records in Hilbert order using dynamic resolution adaptation.

Procedure: hilbert-sort
Input: set R of records in no particular order
Output: set R of records in Hilbert order

� compute initial resolution
1: k ← �log2 max{|Di| : ∀Di ∈ D}�

� call sorting algorithm with hilbert-compare as comparison function
2: sort(R,hilbert-comparek)

184 Journal of Digital Information Management Volume 5 Number 4 August 2007

Algorithm 1 outlines a method to produce a Hilbert ordering
of records that are defined in both continuous and discrete
space. It uses a standard comparison-based sorting
algorithm (e.g. Quicksort or Merge Sort) with a comparison
function (Algorithm 2) that determines the relative order of
two records on a Hilbert curve at a particular resolution. The
relative order is determined by finding the minimum
resolution of the Hilbert curve such that both records have a
distinct rank with respect to the curve.
The resolution that is found during a comparison is used as
the initial resolution for subsequent comparisons and may
be increased. That way, the resolution of the grid is either
maintained or increased for each comparison. After the
sorting process, all records are in Hilbert order, and the
resolution determined by the last comparison during the
sorting process is the minimal resolution for a grid such that
every record of the dataset maps to a distinct cell in that grid.

5. Exploiting Hilbert Order for I/O Efficient Indexing
Once the Hilbert ordering of the records has been
determined, the records are sequentially written to disk in a
block-wise manner. Each block on disk stores a constant
number, B, of records that are consecutive in Hilbert order.
Then an indexing structure is built on top of the ordered
records that provides features comparable to those of a
combination of a B-tree and an R-tree [Dehne et al., 2003].

Figure 4 illustrates the construction of such a tree structure
with a specific example. While each intermediate node of
the tree is very similar to a node in a conventional B-tree, it is
also annotated with the minimum bounding box of the records
in its subtree, similar to nodes in an R-tree. This allows for
an efficient evaluation of multi-dimensional range queries
while exhibiting most of the I/O efficient properties of B-trees.
Due to the self-similarity of the Hilbert curve and its property
to not favour any specific dimensions, the bounding boxes of
the records in the subtrees at each level of the indexing
structure are usually fat and usually overlap only very little, if
at all. This is crucial for increasing the performance of queries.
Figure 4 illustrates the evaluation of a two-dimensional range
query on this indexing structure. Note that to answer a query,
the tree is traversed in a breadth-first manner, thus limiting
the disk accesses to a combination of sequential reads and
forward-seek operations and reducing the amount of random
access [Eavis, 2003].

5.1 Answering Range Aggregate Queries
Range aggregate queries are a very common query type in
OLAP applications. In particular when spatial information is
processed, range-aggregate queries over millions of points
may be typical. The indexing structure described above can
be used to answer range aggregate queries; however, without
extensions it requires retrieval of each individual record within

Algorithm 2 Algorithm to determine the order of two records with respect to the Hilbert curve
by dynamically adapting the resolution of the Hilbert curve if necessary

Procedure: hilbert-compare
Input: pair of records (r1, r2), initial resolution k
Output: −1 if rankk(r1) < rankk(r2), 0 if r1 = r2 or 1 if rankk(r1) > rankk(r2)
1: if r1 = r2 then
2: return 0
3: else
4: while rankk(r1) = rankk(r2) do
5: k k + 1 � determine resolution suitable for comparison←
6: end while
7: if rankk(r1) < rankk(r2) then
8: return -1
9: else

10: return 1
11: end if
12: end if

2

3

4

5

6

1

1 2 3 4 5 6

Figure 4. Records in Hilbert order are stored in consecutive blocks on disk and form multidimensional regions in the original space. The
evaluation of a range query in breadth-first fashion only traverses part of the tree and results in a combination of sequential read and forward-
seek operations at the leaf level.

Journal of Digital Information Management Volume 5 Number 4 August 2007 185

the query range in order to compute a desired aggregate
value To retrieve the required records, the tree is traversed
by starting from the root and determining for each child node
of a non-leaf node if its bounding box intersects with the
query region. If so, all or some records in its subtree may
contribute to the final query result, so the traversal continues
in the subtree of this node. This traversal is performed in a
breadth-first manner such that records at the leaves of the
tree can be reported by a combination of sequential read
and seek-forward operations. The retrieval of all records
contained in a range to compute a single aggregate value is,
however, computationally expensive and is often overkill
because the records only contribute to the aggregate value
and are discarded after this computation.
As proposed in [Papadias et al., 2001], a more efficient
approach to answering aggregate range queries is the use
of pre-aggregated values. The idea is to annotate non-leaf
nodes in the tree with aggregate information derived from
the points that are stored in the node’s subtree. This supports
an improved evaluation of aggregate queries, since a full
traversal of the tree down to its leaf level may not be necessary
to answer an aggregation query: When the bounding box of a
non-leaf node is completely contained in the query region,
all records in its subtree contribute to the final query result,
and we can use the aggregate stored at the node instead of
inspecting all records in its subtree. Thus, the answer to a
query can potentially be assembled from a small set of partial
results instead of inspecting all points in the query region.

Algorithm 3 Merge algorithm to incorporate update dataset into target dataset.

Procedure: hilbert-merge
Input: stream U of update records in Hilbert order, stream T of existing target records in Hilbert

order, resolution k of the Hilbert curve used to order the existing records
Output: merged stream O of records in Hilbert order
1: let u be the first element in U or empty if no such element exists
2: let t be the first element in T or empty if no such element exists
3: while u and t are not empty do
4: if hilbert-compare(u, t, k) = 0 then
5: write u to O
6: let t be the next element in T or empty if no such element exists
7: let u be the next element in U or empty if no such element exists
8: else if hilbert-compare(u, t, k) < 0 then
9: write u to O

10: let u be the next element in U or empty if no such element exists
11: else
12: write t to O
13: let t be the next element in T or empty if no such element exists
14: end if
15: end while
16: if u is not empty then
17: write the remainder of U to O
18: else if t is not empty then
19: write the remainder of T to O
20: end if

n1 n2 n3 n4 n5 n6

n7

n9

n8

COUNT(n8) = 9

BOX
BOUNDING

SUM(n4) +
SUM(n5) +
SUM(n6)

SUM(n8) =

To help answer aggregate OLAP queries efficiently, the
aggregate information to be stored at each node is pre-
computed while iterating over the children of the node during
the bottom-up construction of the index tree. Note that this
pre-computation of aggregate information works well for
distributive (e.g., COUNT, SUM) and algebraic (e.g.,
AVERAGE) aggregation functions. Holistic aggregation
functions (e.g., MEDIAN), on the other hand, require the
retrieval of the actual records enclosed in the query region in
order to compute the aggregate value. This can be supported
by additionally annotating each non-leaf node with a direct
reference to the sequence of leaves in its subtree. When
evaluating a query, the records in a node’s subtree can be
reported immediately once the node has been reached,
without traversing the remaining subtree below this node
(see Figure 5).

5.2 Updating OLAP Views
A key advantage of using Hilbert curves of dynamic resolution
over pre-discretization is that an existing, possibly very large
view can be efficiently updated in a batch fashion in time
proportional to the cost of sorting the records in the update
batch and linearly scanning the existing view. To do so, all
records of the update view are sorted, using the same
comparison function as in Algorithm 2. The minimum
resolution that has been determined while sorting the original
records is used as the initial resolution when sorting the
update records. Once the update records are in Hilbert order,

Figure 5. Annotation of non-leaf nodes with aggregate information and references to records at the leaf level

186 Journal of Digital Information Management Volume 5 Number 4 August 2007

they are merged with the original dataset in a single scan
over both datasets. As update datasets in an OLAP
environment are often only a fraction of the size of the entire
data warehouse (typically 1%), the cost of sorting the update
view is relatively small compared to rebuilding the entire
view.
Algorithm 3 shows in detail how both sequences are merged.
It iterates through the records in both datasets in Hilbert
order and repeatedly compares the two current records from
both datasets. If both records share the same attribute values,
the record from the update dataset is considered an update
of the existing record and therefore moved into the output
dataset, while the original record is discarded. If the attribute
values of both records differ in at least one dimension, the
Hilbert ranks of both records at the initial resolution are
determined and compared. If one record has a lower Hilbert
rank than the other, it is moved to the output dataset and a
new current record is fetched from the respective input
dataset. In the case when the same Hilbert rank is computed
for both records, the resolution has to be increased until the
Hilbert ranks differ. Since the locality of records mapped into
Hilbert space is preserved when increasing the resolution
of the Hilbert curve, records that have been sorted already
are not affected by the increase of resolution (see Figure 6).
The merging process continues until all records from both
datasets have been processed. The output dataset is a set
of records in Hilbert order and will contain all records from
the update dataset as well as those from the original dataset
that have not been updated. Following the merging process,
the indexing data structure is rebuilt over the output dataset.

6. Implementation and Experiments
Based on the proposed approach, an initial prototype, called
geoCUBE, was implemented and extensively evaluated. The
focus of the implementation was on determining the Hilbert
order for records with attribute dimensions defined in
continuous and discrete space and on evaluating query
performance and the construction and batched update time
of the proposed indexing structure. The software was written
in C and includes implementations of Algorithms 1, 2 and 3
as well as variations of them to explore performance trade-
offs.
Computing a point’s mapping from n-dimensional discrete

Result View

Update View Target View

Figure 6. Merging the target view with the update view may result in a dynamic adaptation of the Hilbert curve
resolution

space to one-dimensional Hilbert space was implemented
based on a modified version of Doug Moore’s Hilbert
mapping library [Moore, 1998]. The data types that are
supported by the implementation are 64-bit integers and 32-
bit floating-point numbers. The implementation presented
here assumes that the attribute values of each continuous
space dimension are normalized to the interval [0.0,1.0)
and that the attribute values of each discrete space
dimension are natural numbers in the interval [0, c -1] , with
c being the cardinality of the dimension.

6.1 Performance Evaluation
The experimental platform was a workstation with one Intel
Xeon 1.8GHz processor and 1.5 GB RAM, running FreeBSD
6.2. The compiler used to translate the C programs was part
of the GNU Compiler Collection version 3.4.6.
The experiments we conducted evaluate the cost of sorting
records into Hilbert order, building the index, evaluating
queries, and performing view updates. The running times
were measured as wall-clock times in seconds. Both
synthetic and “real-world” datasets were used in the
evaluation. Synthetic datasets were generated with a uniform
distribution so that we could better understand the effects of
various dataset parameters on performance. The categorical
and continuous dimensions of the synthetic datasets were
generated with a cardinality of 64 and 1000 respectively. The
real-world datasets were drawn from the HYDRO1k dataset
published by the U.S. Geological Survey and, where
necessary, were reduced in dimensionality and size through
random sampling. The main test dataset was a 6-
dimensional dataset composed of two categorical
dimensions, with cardinalities 57 and 51, and four continuous
dimensions with cardinalities 956, 1000, 802 and 288. It
was used in each of the following experiments unless
explicitly stated otherwise.

Throughout the experiments, the impact of the sizes of the
datasets on the running times of the various algorithms was
investigated. Additionally the benefit of proposed optimizations
was determined, and the traditional method [Jagadish, 1990,
Moon et al., 2001, Dehne et al., 2003] of pre-discretizing
continuous space into discrete space was compared to the
new dynamic approach. Unless stated otherwise, all
experiments were performed with the most beneficial

Journal of Digital Information Management Volume 5 Number 4 August 2007 187

optimization enabled. In particular, each record was
annotated with its last computed Hilbert rank.
For completeness, the evaluation also contains a
performance comparison of the geoCUBE prototype to a
conventional R-tree implementation drawn from the Spatial
Index Library [Hadjieleftheriou, 2006].

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
 in

 s

Number of Records

Pre-Discretization vs. Dynamic Adaptation (Sort)

Pre-Discretization
Dynamic Adaptation

Figure 7. Overhead of pre-discretization compared to dynamic
resolution adaptation

6.1.1 Dynamic adaptation versus pre-discretization of con-
tinuous dimensions
Figure 7 shows a direct comparison of the dynamic
adaptation of the Hilbert curve resolution versus the traditional
method of pre-discretization. The top curve represents the
time required to pre-discretize and sort the synthetic dataset
into Hilbert order. The pre-discretization involves the sorting
of each continuous space dimension and the subsequent
enumeration of their unique values, resulting in only
categorical dimensions. The dataset is then sorted in Hilbert
order with a resolution derived from the cardinalities of the
dimensions. The bottom curve represents the time required
for sorting the same synthetic dataset into Hilbert order using
our dynamic resolution adaptation approach. As one can
see, dynamic adaptation of the Hilbert curve performs better
than the pre-discretization approach. In particular for 3 million
records, the pre-discretization approach requires
approximately 38 seconds to pre-discretize and sort the
dataset, while the dynamic approach takes only 28 seconds.
This corresponds to a speed improvement of about 26%,

 0

 100

 200

 300

 400

 500

 600

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
in

 s

Number of Records

Store vs. Recompute Rank (Sort)

Recompute Rank
Store Rank

which we also observed for most other datasets we tested.
We believe that this better performance is the result of
avoiding the expensive process of identifying distinct attribute
values.
Before computing the Hilbert order of records by using an
adaptive increment of the Hilbert curve resolution, the base
resolution, kbase, that is required to map all discrete space
dimensions into Hilbert space must be computed from their
cardinalities. In the following, this base resolution is initialized
to kbase = log2 c max with cmax = max Di if there exists at least
one discrete dimension, or kbase= 0 if only continuous space
dimensions are defined.
To compare two records based on their Hilbert ranks, the
ranks of both records have to be computed at the same
resolution. With O(n log n) comparisons to sort n records,
recomputing the Hilbert rank of a record for each comparison
it is involved in is computationally very expensive. To limit the
amount of recomputation, each record can be annotated with
its last computed rank and the resolution for which this rank
is valid. Even though the resolution may increase, causing
the Hilbert rank of the record to be recomputed, this will affect
only records that are not in their final position yet and those
for which the rank has not been computed yet. Also, instead
of globally increasing the resolution for all subsequent
comparisons, the resolution is only increased locally for each
comparison if necessary. This avoids the computation of
Hilbert ranks at an unnecessarily high resolution for other
records. In practice, storing the last computed Hilbert rank
reduces the number of rank calculations considerably and
improves the overall sort time. The main drawback of storing
the computed rank along with each record is a substantial
increase in the space requirements. In the best case, the
overhead, in bits, of storing the Hilbert rank at a given
resolution k for d dimensions is, i=1 min{k,[log2 Di]}

where Di is the cardinality of dimension Di . However, this

is only true when continuous dimensions are pre-discretized.
For the dynamic mapping of continuous dimension values
and the preservation of their spatial relationships, k may
become significantly larger than [log2 D] as the minimum
difference of normalized values of two records is the decimal
precision p of the continuous dimension (e.g. p =10-3). In
this case the overhead can be quantified as ,

 i=1 min { k, log2 Zi } + i=1 k

where z is the number of categorical dimensions Z, r the
number continuous dimensions and k < [log2 1/p].

Figure 8 shows the impact of annotating each record with its
last computed Hilbert rank compared to recomputing the
record’s Hilbert rank during each comparison. The dataset
used for this experiment was the HYDRO1k dataset. As can
be clearly seen, the optimization has a very significant effect
on the overall running time and results in an order of
magnitude performance gain. Specifically, for 3 million
records, the annotation approach takes 46 seconds, while
the recomputation approach takes 517 seconds; this
represents a performance improvement by a factor of 11.2.

Figure 8. Recomputing each record’s Hilbert rank for each compari-
son versus storing the last computed Hilbert rank of each record

d

z r

188 Journal of Digital Information Management Volume 5 Number 4 August 2007

 0

 5

 10

 15

 20

 25

 30

 35

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
 in

 s

Number of Records

Constant Time vs. Iterative Rank Computation (Sort)

Iterative
Constant Time

6.1.3 Optimization 2: Iterative versus constant time reso-
lution determination

 0

 5

 10

 15

 20

 25

 30

 35

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
 in

 s

Number of Records

Constant Time vs. Iterative Rank Computation (Sort)

Iterative
Constant Time

Figure 9. Iterative versus constant-time resolution determination

Another possible bottleneck in the proposed comparison
function is the iterative determination of the grid resolution
that guarantees that no two records share the same rank. In
the worst case, this requires many iterations, and
consequently recomputations of Hilbert ranks for the records
that are compared, if the two records are sufficiently close to
each other in continuous space. It would be desirable to
determine the necessary minimal resolution with a constant
amount of computation for any two records. The approach
presented here takes constant time to determine a resolution
at which both records do not share the same rank. This is
achieved by computing the Euclidean distance between both
records and determining the resolution at which the diagonal
of a grid cell is shorter than the distance between the records.
This guarantees that both records are mapped to distinct
cells, but the determined resolution may not be minimal, as
there may be a lower resolution that already maps both
records into different cells. The disadvantage of obtaining a
resolution that is not minimal is an additional space
requirement and a slight increase in computation required
to determine the Hilbert rank at this resolution.
Figure 9 illustrates the effects that the method of resolution
determination has on the overall running time of the algorithm.
For datasets with only continuous space dimensions, theon-
the-fly determination of the resolution is essential, since

no initial resolution can be computed. The curves presented
in Figure 9 were obtained by experiments with the HYDRO1k
dataset. The top curve represents the performance of the
iterative method. Note that this method always finds the
minimal resolution necessary to compute distinct Hilbert
ranks for all records. The bottom curve shows the
performance of the constant-time method. This method
performs approximately 10% better than the iterative method.
In some cases, however, the determined resolution of the
Hilbert curve may not be minimal, causing the computation
of each Hilbert rank to become more expensive. Also, as
records may be arbitrarily close to each other in the original
space, the constant-time approach may determine a
resolution that is significantly higher than the minimum
resolution determined by the iterative approach.
Consequently, there is a trade-off between the performance
gain of the constant-time approach and the likelihood that it
will exceed the available storage to represent Hilbert ranks.

 0

 10

 20

 30

 40

 50

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
 in

 s

Number of Records

Pre-discretization vs. Dynamic Adaptation (Update)

Pre-discretization 20% update
Pre-discretization 10% update

Pre-discretization 2% update
Dynamic Adaptation 20% update
Dynamic Adaptation 10% update

Dynamic Adaptation 2% update

Figure 10. Batch update time for different update sizes.

6.1.4 Update Time
The implementation of the update mechanism follows the
description in Algorithm 3. First the update dataset is sorted
into Hilbert order using, as a starting resolution, the mini-
mum resolution that was determined for the original dataset.
The next step then merges both, the original and the update
dataset, by sequentially scanning through them and repeat-
edly comparing the next records from both datasets. If both
records are equivalent, only the update record is written to
the output dataset; otherwise, the comparison function used
for sorting both datasets is used to determine the order in
which the records should be written to the output dataset. As
in the sorting step, if the order of two distinct records cannot
be determined at a given resolution, the resolution of the
Hilbert curve is dynamically increased until both records map
to distinct ranks on the Hilbert curve.
The main advantage of this approach is that only the up-
dates need to be sorted, while a linear scan of the updated
dataset is sufficient. In contrast, when applying updates that
introduce new attribute values, the pre-discretization ap-
proach requires to newly discretize the entire merged dataset.
Figure 10 shows the times required to obtain the Hilbert
order of the updated dataset for updates with 2%, 10% and
20% of the sizes of the original dataset. The graph compares
the update performance of both the pre-discretizationof the
entire updated dataset, its total update time is composed of
the time required to sort the update into Hilbert order and the
time required to sequentially merge the original dataset with
the update dataset. Hence, our dynamic approach and our

Figure 8. Recomputing each record’s Hilbert rank for each compari-
son versus storing the last computed Hilbert rank of each record

Journal of Digital Information Management Volume 5 Number 4 August 2007 189

dynamic adaptation approach. Since the dynamic adaptation
approach does not require the resorting adaptation approach
performs updates significantly faster in comparison with the
pre-discretization approach, which requires the sorting of
the entire updated dataset. In particular, we observe an
improvement between a factor of 23 for the 2% update and a
factor of 6 for the 20% update. As updates to data warehouses
are commonly very small (less than 1%) the performance
benefits of our dynamic adaptation approach over pre-
discretization, especially for small updates, is very significant.

6.1.5 Index Construction

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
 in

 s

Number of Records

geoCUBE Index Construction

Hilbert Sorting
Hilbert Sorting + Indexing

Figure 11. Time to construct the index including sorting of the dataset
for the geoCUBE index.

The construction of the indexing structure is implemented
as a bottom-up approach starting with the sorted data at the
leaf level of the tree. At each non-leaf level, nodes at this level
have a fan-out of f children, such that nodes from the level
immediately below are combined into groups of size f. For
each of these groups, the corresponding parent node in the
tree is annotated with the group’s minimum bounding box.
The nodes of each level of the tree are stored as consecutive
segments in memory to minimize the effect of fragmentation.
This method to construct the index turned out to be extremely
efficient, accounting for about 1% of the total time required to
build the geoCUBE for a given dataset, as shown in Figure
11.

6.1.6 Range Query Performance
Figure 12 shows the average range query time on the
HYDRO1k dataset over 1000 experiments using our
geoCUBE index and an R-tree index drawn from the Spatial
Index Library [Hadjieleftheriou, 2006]. The queries were
constructed as hypercuboids from pairs of records,
randomlysampled from the dataset and involving all
dimensions of the dataset. This graph clearly shows a
superior query performance of the geoCUBE index compared
to this R-tree implementation. The geoCUBE query time
increases only marginally with an increasing number of
records, and query results are reported in less than 0.2
seconds even for 3M records. The query time of the R-tree
index, on the other hand, quickly deteriorates for larger
numbers of records, resulting in query times of more than
1.5 seconds for a single query. Note that some caution is
required when interpreting these results. Since we are
comparing two independent codebases, it is harder to
determine how much of this improvement should be attributed
to the improved I/O and cache efficiency of our algorithms and
how much is due to improved coding practices.

 0

 0.5

 1

 1.5

 2

0.0 500.0k 1.0M 1.5M 2.0M 2.5M 3.0M

T
im

e
in

 s

Number of Records

geoCUBE vs. R-Tree (Query)

R-Tree
geoCUBE

Figure 12. Query performance of geoCUBE vs. R-tree for real world
data

7. Conclusion and Future Work
In this paper we have proposed a new technique for
representing and indexing relational OLAP views with mixed
categorical and continuous dimensions. Our approach is
flexible with respect to dimension cardinality and thus allows
for the indexing of continuous space dimensions while
building on top of established mechanisms for index
construction and querying. Our contribution is significant as
it integrates the representation of mixed categorical/
continuous data at the storage level, thereby forming the
basis for efficient Spatial OLAP systems that can handle
massive amounts of data. Such systems are gaining in
importance with the increasing amount of spatial data that is
collected. Our experimental evaluation shows the practical
benefits of the proposed approach.
We are currently exploring extensions of our approach to
support the indexing of spatial objects with extent as well as
the use of compressed Hilbert indices [Hamilton, 2006]. We
are also exploring how to efficiently support specific OLAP
operations such as roll-up and drill-down on spatial
dimensions.

References
[1] Bédard, Y., Merrett, T., Han, J (2001). Research
Monographs in GIS, chapter Fundamentals of Spatial Data
Warehousing for Geographic Knowledge Discovery In:
Geographic Data Mining and Knowledge Discovery, pages
53–73. Taylor & Francis.
[2] Chen, G., Kotz, D (2000). A survey of context-aware mobile
computing research. Technical report, Dartmouth College,
Hanover, NH, USA.
[3] Cohen, T. L., Baitty, J. R., Plamer, R. G., Adams, K. T., Weyl,
J. A (2004). Health Resources and Services Administration
Geospatial Data Warehouse. In: ESRI 2004 International
Users Conference.
[4] da Silva, J., Times, V. C., Fidalgo, R. N., Barros, R. S.
(2005). Web Technologies Research and Development -
APWeb 2005, chapter Providing Geographic-
Multidimensional Decision Support over the Web, pages
477–488. Springer Berlin.
[5] Dehne, F., Eavis, T., Rau-Chaplin, A (2003). Parallel multi-
dimensional ROLAP indexing. In: ccGRID: 3rd International
Symposium on Cluster Computing and the Grid, page 86.
[6] Eavis, T (2003). Parallel relational OLAP. PhD thesis,
Dalhousie University.
[7] Fidalgo, R. N., Times, V. C., Silva, J., Souza, F. F. (2004).
Data Warehousing and Knowledge Discovery, chapter
GeoDWFrame: A Framework for Guiding the Design of
Geographical Dimensional Schemas, p. 26–37. Springer
Berlin.

190 Journal of Digital Information Management Volume 5 Number 4 August 2007

[8] Güting, R. H. (1994). An introduction to spatial database
systems. The VLDB Journal 3 (4) 357–399.
[9] Guttman, A (1988). R-trees: a dynamic index structure for
spatial searching. Readings in database systems, pages
599–609.
[10] Hadjieleftheriou, M (2006). Spatial Index Library. http://u-
foria.org/marioh/spatialindex
[11] Hahnel, D., Burgard, W., Fox, D., Fishkin, K. P., Philipose,
M (2004). Mapping and localization with RFID technology. In:
International Conference on Robotics and Automation, 2004.
IEEE.
[12] Hamilton, C (2006). Compact Hilbert indices. Technical
Report CS-2006-07, Dalhousie University, Faculty of
Computer Science.
[13] Han, J., Stefanovic, N., Koperski, K (1998). Selective
Materialization: An Efficient Method for Spatial Data Cube
Construction. In: PAKDD ’98: Proceedings of the Second
Pacific-Asia Conference on Research and Development in
Knowledge Discovery and Data Mining, p. 144–158, London,
UK. Springer-Verlag.
[14] Hernandez, V., Voss A., Gohring, W (2005). Sustainable
Decision Support by the Use of Multi-Level and Multi-Criteria
Spatial Analysis on the Nicaragua Development Gateway,
From Pharaohs to Geoinformatics. In: Proceedings of the
F´ed´eration Internationale des G´eomètres Working Week
2005 and GSDI-8, p. 16–21.
[15] Hilbert, D (1891). Über die stetige Abbildung einer Linie
auf ein Flächenstück. Mathematische Annalen, 38:459–460.
[16] Jagadish, H. V (1990). Linear clustering of objects with
multiple attributes. In: SIGMOD ’90: ACM SIGMOD
International Conference on Management of Data, p. 332–
342, New York, NY, USA. ACM Press.
[17] Kamel, I., Faloutsos, C. (1994). Hilbert R-tree: An
improved R-tree using fractals. In: Proceedings ofthe
Twentieth International Conference on Very Large Databases,
p. 500–509, Santiago, Chile.
[18] KHEOPS Technologoies (2005). JMap Spatial OLAP –
Innovative technology to support intuitive and interactive
exploration and analysis of spatio-temporal
multidimensional data. White paper.
[19] Lawder, J. K., King, P. J. H. (2001). Querying multi-
dimensional data indexed using the Hilbert space-filling
curve. SIGMOD Record, 30 (1) 19–24.
[20] López, I. F. V., Snodgrass, R. T., Moon, B. (2005).
Spatiotemporal Aggregate Computation: A Survey, IEEE
Transactions on Knowledge and Data Engineering, 17 (2)
271–286.
[21] MapInfo Corporation (2006). Location Intelligence: The
New Geography of Business. whitepaper, Business Week
Research Services.

[22] Microsoft Corporation (2004). U.S. Government Agency
Stores Aerial Imagery in New 25-Terabyte Warehouse Growing
Warehouse. Case study.

[23] Moon, B., Jagadish, H., Faloutsos, C., Saltz, J. H. (2001).
Analysis of the clustering properties of the Hilbert space-
filling curve, Knowledge and Data Engineering, 13 (1) 124–
141.
[24] Moore, D (1998). C Hilbert mapping library. http://
computation.pa.msu.edu/O/F90/SFC/hilbert.c
[25] Papadias, D., Kalnis, P., Zhang, J., Tao, Y (2001). Efficient
OLAP Operations in Spatial Data Warehouses. In: SSTD ’01:
Proceedings of the 7th International Symposium on Advances
in Spatial and Temporal Databases, p. 443–459, London,
UK. Springer-Verlag.
[26] Papadias, D., Tao, Y., Kalnis, P., Zhang, J. (2002). Indexing
Spatio-Temporal Data Warehouses. In Proceedings 18th
International Conference on Data Engineering, pages 166–
175. IEEE.
[27] Rigaux, P., Scholl, M., Voisard, A (2002). Spatial Databases
with Application to GIS. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.
[28] Rivest, S., Bédard, Y., Marchand, P (2001). Toward Better
Support for Spatial Decision Making: Defining the
Characteristics of Spatial On-Line Analytical Processing
(SOLAP). Geomatica, 55 (4) 539 – 555.
[29] Rivest, S., Bédard, Y., Proulx, M.-J., Nadeau, M., Hubert,
F., Pastor, J (2005). SOLAP technology: Merging business
intelligence with geospatial technology for interactive spatio-
temporal exploration and analysis of data. ISPRS Journal of
Photogrammetry & Remote Sensing, 60:17–33.
[30] Schmidt, C., Parashar, M (2004). Enabling flexible queries
with guarantees in P2P systems. IEEE Internet Computing,
08 (3) 19–26.
[31] Scotch, M., Parmanto, B. (2005a). Development of SOVAT:
A numerical-spatial decision support system for community
health assessment research. International Journal of Medical
Informatics.
[32] Scotch, M., Parmanto, B. (2005b). Sovat: Spatial olap
visualization and analysis tool. In: HICSS ’05: Proceedings
of the Proceedings of the 38th Annual Hawaii International
Conference on System Sciences (HICSS’05) - Track 6, page
142.2, Washington, DC, USA. IEEE Computer Society.
[33] Shekhar, S., Lu, C., Tan, X., Chawla, S., Vatsavai, R. (2001).
Map Cube: A Visualization Tool for Spatial Data Warehouses.
In: Miller, H. and Han, J., editors, Geographic Data Mining
and Knowledge Discovery, p. 74–109. Taylor & Francis
London.
[34] Tao, Y., Papadias, D (2001). Mv3r-tree: A spatio-temporal
access method for timestamp and interval queries. In VLDB
’01: Proceedings of the 27th International Conference on Very
Large Data Bases, p. 431–440, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.Oliver Baltzer received his Dipl.-Ing.

in Computer Engineering from
Fachhochschule für Technik und
Wirtschaft Berlin and his M.Sc. in Net-
work Centred Computing from Read-
ing University in 2002. He is currently
a Ph.D. student at the Faculty of Com-
puter Science at Dalhousie University.
His research interests are location

Professor Rau-Chaplin received a
M.C.S. and Ph.D. from Carleton Univer-
sity in Ottawa Canada in 1990 and 1993,
respectively. From 1993 to 1994 he was
a Postdoctoral Fellow at DIMACS - a Na-
tional Science Foundation center run by
Princeton University, Rutgers, and AT&T
Bell labs. In 1994 he joined the Techni-

intelligence and spatial data warehousing with focus
on high-performance spatial OLAP.

cal University of Nova Scotia and is currently a Profes-
sor in the Faculty of Computer Science at Dalhousie
University. He is interested in the application of paral-
lel computing to a wide range of problem domains in-
cluding data warehousing & OLAP, bioinformatics, com-
putational biochemistry, geographic information sys-
tems, and computational geometry/CAD.

Norbert Zeh received his Dipl.-Inf. from
Friedrich-Schiller-Universität Jena in
1998 and his PhD in Computer Science
from Carleton University in 2002. After
a short postdoc at the Department of
Computer Science of Duke University in
2002, he joined the Faculty of Computer
Science at Dalhousie University in 2003,

where he currently holds Assistant Professor and Tier
II Canada Research Chair positions.

