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ABSTRACT: This paper presents an algorithm for
generating the design matrix that is usually used for
multivariate polynomial least square fitting.  The design
matrix is used in least squares fitting algorithm to
construct a set of linear equations whose solution is
the required polynomial coefficients.  The developed
algorithm was coded in MATLAB.  The coded function
named mv_polyfit(X,Y,ord) accepts as inputs two
matrices: the first argument is a 2D matrix of  the
independent variable X, the  second argument is the
dependent variable vector Y, and  the last argument is
the required degree of the fitting polynomial.   The
function returns the coefficient vector C and the design
matrix A.  Number of data points (k) needed for the
function should be large enough for the solution of the
set of linear equations to exist.

Categories and Subject Descriptors
G. 3 [Probability and statistics]; Multivariate statistics I.1.1
[Expressions and Their Representation]; Representations (general
and polynomial): F.2.1 [Numerical Algorithms and Problems]
Computations on polynomials
General Terms
Multivariate Polynomial Least Squares, 2 D Matrix
Keywords:  Multivariate Polynomial Fitting, Curve Fitting, Numerical
Algorithms, MATLAB
Received  17 December 2006; Revised  and  Accepted  12 February
2007

Figure 1. Best fitting polynomial
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1.  Introduction
Modeling is perhaps the first level of computer use in science
and engineering.  Starting from physical principles and
design ideas, the computer is used to mimic nature.  After
this, the results are examined and the modeling program is
modified then the program is tested again until a satisfactory
model is reached.  The next deeper level of computer use is
that the computer itself examines the results of modeling
and reruns the modeling job. This deeper level is variously
called “fitting” or “estimation” or “inversion” [1]

When Scientists try to find a model to describe a certain set
of data which might have been collected from experimental
work or from simulation programs such as SPICE; they
usually try to find a function that would describe the relation
of the dependant variable to the independent variable(s) as
close as possible.   The curve fitting problem is how to choose
from an infinite number of curves the one which fits best the
given data points, normally by finding a  mathematical
expression to create the curve.(see Figure. 1).

Commonly used procedures are least squares fitting
[2][3][4][5], linear regression, and nonlinear regression
[6][7][8][9][10]. One of the difficulties in curve fitting is to choose
the functional form of the data for parameter optimization.
Computers are normally used to perform curve fitting

procedures and they do this by solving a system of equations
to find the parameters of the function that minimize the
squared error. Frequently used methods are the gradient
descent algorithm [11][12], the Gauss-Newton algorithm [13],
and the Levenberg-Marquardt algorithm [14] .

In mathematics, polynomial functions, or polynomials, are
an important class of simple and smooth functions.
Polynomials are usually constructed using only multiplication
and addition. Polynomials are also infinitely differentiable
which gives them their smoothness nature.  Because of their
simple structure, polynomials are easy to evaluate, and are
used extensively in numerical analysis for polynomial
interpolation or to numerically integrate more complex
functions.
The Least squares fitting algorithm is a very popular
technique used for curve fitting [15][16].  This algorithm is
also used in various modeling purposes [17].
Least squares fitting algorithm is used in recent work on
developing graphical techniques for judging metamodels’
quality-of-fit [18][19]. In this work, MATLAB is our primary tool
in investigating and calculating different polynomial models
coefficients. A general MATLAB function for multi variable
polynomial fitting was needed to fit the simulated data of
some electronic circuits.   This was the actual motive behind
the development of this algorithm.
In this paper, we present an algorithm that can be used to
generate the design matrix A discussed in the next section.
The proposed algorithm is general for any number of
independent variables and for polynomials of any degree as
will be demonstrated.
To demonstrate the use of the algorithm in reality a simple
practical test example for surface curve fitting is used.  A
complete MATLAB implementation of the algorithm is also
listed in the appendix.
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2. The Least Squares Technique: Univariate Case
For a one independent variable with a set of data points (xi ,
yi), i =1,…,k.; least squares fitting consists of constructing a
polynomial qn(x) as in Equation. 1 below

                    qn (x) =         i = 0  ai x
i                                 (1)

Where qn(x) is an n-degree polynomial that provides the mini-
mum sum of squared errors (SSE); i.e. using qn(x) then

              (yi-qn (xi))
2 = min        Yi  - p   (xi))

2                        (2)

Where p(xi) belongs to the set of all polynomials with degree
n, typically n < k. see [3] for more details.  To find the
polynomial that would give the minimum SSE the term to the
right in Equation 2 is differentiated with respect to each
coefficient of the polynomial and equated to zero.  This
process leads to the solution of a system of linear equations
shown in Equation 3 below

(ATA) C = ATY               (3)

Where A is a k × (n+1) matrix defined as shown below for the
case of one independent variable x with k points and a
polynomial of n degree (Equation 4).

The C matrix is the coefficient matrix, while Y is the dependent
variable vector (see Equations 5&6).

C =   [c0         c1     ...  cn]T          (5)

            Y =    [y0         y1     ...  yk]T           (6)

The product ATA is a symmetric and non-singular matrix if xi ≠
xj for i ≠ j.  A is usually called the design matrix [20]. For 1D
problem; generating A for least squares fitt ing is
straightforward. However, for a more general multivariate
case it becomes non trivial.

2.  The Multivariate Case
When the number of independent variables in the problem
is two or more the generation of the design matrix A becomes
more elaborate.  For example, a second-order polynomial of
three independent variables may contain some or all of the
following terms: x1

2, x2
2, x3

2
, x1x2, x1x3, x2x3, x1, x2, x3, and

a constant term.  The maximum number of terms in a
polynomial of m variables and of order n is given by Eq. 7
below.

     Max_Num_terms = (n + m)! / n!m!                               (7)

For example, if the polynomial is of order two (i.e. n = 2) and
has three independent variables (i.e. m =3), then the

maximum possible number of terms in this polynomial will
be (2+3)!/2!3! = 10.
In general, a polynomial of degree n contains terms like
x1

ix2
j…xm

l, such that i+j...+l < n, where m is number of
independent variables. The proposed algorithm is used to
generate the design matrix A.  For example, for a second
order polynomial of three independent variables A is given
by Eq. 8 below.

A= [X1
2    X1X2    X1X3    X2

2    X2X3    X3
2  X1    X2     X3   1]   (8)

Where X1 is the column vector of all k values (k is the number
of measurement points for the first independent variable x1).
X1X2 is the dot product of column vector X1 with X2, and so on.
The last column has the value of one in all of its elements.

4.  The Algorithm
To generate all the terms that are needed to fill the design
matrix A, we start with four matrices: X, D, E, and A which are
initialized as shown below.

X = [X1   X2   X3] , 2D matrix of independent variables set of
points

D = [X1   X2   X3], 2D matrix of i’th order terms, initially filled with
first order terms of the independent variables.

E = [—-empty——], temporary 2D matrix that is filled in each
round with the results of dot product of  X• D

A = [1  X1   X2   X3] , Design matrix initially filled for first order
polynomial solution.

Note that the initial values of A represent the design matrix
for a first degree polynomial.  The algorithm proceeds on
rounds such that in each round all terms of the same degree
are generated by multiplying elements of the D matrix with
those of the X matrix as explained below.  The resultant terms
are filled in the E matrix. E is empty at the beginning of each
round. When a round is finished, the E matrix is copied into
the D matrix which is also concatenated with the A matrix as
shown in equation 9 below. E is then emptied to prepare it for
a new round of calculations where terms of the next higher
order terms are calculated.  X stays the same for all the time.

A = [A   D]              (9)

A is initially filled with columns adequate to solve for the
coefficients of a first-order polynomial. The algorithm starts
first by filling up the empty matrix E by the dot product of
columns of D with columns of X without repeating similar
terms. In the above example we do first X1·[X1 X2 X3] as shown
in Figure 2.

Figure 2. First round of dot products

k k

i= 0i= 0
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           P=
       (14)

P is then replaced by its transpose (Eq. 15)

         P = PT         (15)

If we compute the cumulative sums of all columns in the
new P and then add 1 to each element we get for the case
presented above Eq. 16

  P =                                  + 1 =          (16)

In the next step we multiply X2·[X1 X2 X3] but starting at column
2 as shown in Figure 3 below.  The result of the new
multiplications are concatenated with the E matrix to produce
the updated  E matrix: [X1

2   X1X2  X1X3    X2
2    X2X3].

For X3 we start from the third column and this produces X3
2

term which is again concatenated with E.  Now E contains
terms that are all of second-order, i.e. the sum of the powers
of all independent variables in each term found in the
columns of E is two.
A complete round has now finished.  If it is desired to find
terms for a third order polynomial, the algorithm continues
by replacing D matrix with E matrix, updating the design matrix
as in Equation 9 above, and emptying the E matrix for a new
round.
By looking at the pattern of each variable (in X) starting point
of multiplication in D, we notice that X1 always starts at column
1; however the remaining variables starting  points change
from round to round in a pattern that can be predicted.  To
illustrate, for the three variables example mentioned earlier,
if we put the number of columns(terms) generated by each
variable in each round in a matrix P, such that each row of P
represents the number of terms generated by each variable
in the different rounds, then for a second order polynomial, P
= [3 2 1] where 3 is number of columns generated by X1, 2
number of columns generated by X2, and 1 is the number of
columns generated by X3 (see Figure 2 above).  Note that
after the first round is finished the D matrix contains 6
columns.  If a second round is performed, (i.e. if we wanted
a polynomial of third order), then the second row of P should
contain [6 3 1].  For a fourth order, a new row with values [10
4 1] will be generated, and so on.
In the second round (i.e. when a third-order polynomial is
required), the starting point of multiplication in D for X2 is 4,
while the starting point for X3 is 6, …etc.
So for our example with three variables, we need to generate
a matrix (S) of starting points of.

1 1 1         x1 starting positions
       S= 2 4 7         x2 starting positions     (10)

3 6 10       x3 starting positions

Equation 11 below shows an instance of the values of each
row of P for our example.  Note that we always have row one
of P filled with ones for a reason that will be apparent soon.

1   1   1
      P = 3   2   1                          (11)

6   3   1

By observing the values of each row in P in Equation 11
above we notice that they are the cumulative sums of the
values of the preceding row but in a reversed order (i.e. from
tail to head).  For example, the first element in row 3 in matrix
P which has a value of 6 is obtained by summing all the
elements of row 2 (i.e. 1 + 2 + 3), while the second element
of row 3 which   has a value of 3 is the sum  of (1 + 2) (second
and third elements of row 2) , and so on.

In general, the cumulative sum of a row vector R = [ r1   r2    r3
….  rn ] for example is computed as shown in Equation 12.

CSR = [r1     (r1+r2)    (r1+ r2 + r3)…]           (12)

Our goal is to generate an array which contains the starting
points (in the D matrix) of multiplication for each variable (in
the X matrix) for each round of the calculations. These starting
positions are directly related to the number of terms generated
by each variable in each round.  To illustrate, X1 starting
positions are always 1’s in all rounds. However, X2 starts
with position 2 (see Fig. 3) in the first round, while the starting
point for X3 is 3, and so on. Note that the first round generates
the second-order terms, multiplications as in Equation 12
below where the first row in S represents the starting points
of multiplications for X1 for three rounds (i.e. up to a fourth
degree polynomial).  The second row is for X2, and the third
row for X3 …etc

Figure 3. Second step of dot products

In order to compute S we start P with one row filled with
ones, then we proceed by filling each next row by the cumu-
lative sum of the row immediately above, producing for ex-
ample the matrix in Equation 13 below.

            P =        (13)

Note that row 2 is the cumulative sum of row 1, and row 3 is
the cumulative sum of row 2.
Then we flip P horizontally giving Equation 14 below

   1    3  6

   2    5  9

   3    6  10

   2    4  7

   3    6  10

   4    7  11

   1    3  6

   1    2  3

   1    1  1

   1    1  1

   3    2  1

   6    3  1

   1    1  1

   1    2  3

   1    3  6
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By deleting the last row in the resultant matrix above, and
adding a row of ones to its top we get the required matrix S
for the starting points of multiplications as shown in Eq. 10
above.
The example of matrix S above provides us with the starting
points for three variables up to a fourth order polynomial
fitting.  However, higher-orders polynomials make S increase
in column size, while increasing the number of variables
makes S increase in row size.
Note that at the end of the calculations the resultant matrix A
is arranged in reversed order (i.e. flipped horizontally)
compared to the one shown in Eq. 4.  This is not a problem
since the solution for the polynomial coefficients filled in A
will just be in reversed order to that shown in equation 5.

4. Test Example
The example that will be presented here demonstrates the
ability of using the multivariate polynomial fitting algorithm
developed here for surface fitting.  The sample data was
generated using the peaks function from MATLAB.   256 data
points are stored in each of X1,X2, and Y. These data points
generated from the peaks MATLAB function are used to find
an interpolating function for this two variable problem.  The
original data are plotted in figure 4 below.
The following MATLAB script is used to generate a 3D shape
of size 16x16 points as shown in figure 4

[X1,X2,Y]= peaks(32);
X1=X1(8:23, 8:23);
X2=X2(8:23, 8:23);
Y=Y(8:23, 8:23);
colormap(‘gray’);
surfl(X1,X2,Y)

Figure 4.  3D surface test example

X1 and X2 are the independent variables where Y is the
dependent variable.
Two polynomials were tried: A third degree polynomial and a
fifth degree. The data in X1, X2, and Y are fed to our multivariate
polynomial fitting program mv_polyfit to calculate all the
coefficients for a3’rd degree polynomial.  The design matrix
A is used with C to evaluate this 3’rd degree polynomial over
the space of the problem.  The resulting data (Yhat) is used
to plot the curve shown in figure 5 below.  It is obvious that a

 3’rd degree polynomial is not good enough to fit the original
data.
The following script should follow the previous one used for
figure 4 above.

X=[X1(:)X2(:)];
Y=Y(:);
[C,A]=mv_polyfit(X,Y,3);

Yhat = (A*C)’;
Y2=[];
for i=1:16:256
  Y2 = [Y2; Yhat(i:i+15)];
end

figure(2);

colormap(‘gray’);
surfl(X1,X2,Y2);

Figure 5.  Surface fitting using a 3’rd degree polynomial

The above process was repeated to compute the coefficients
for a 5’Th degree polynomial.  Again, these new coefficients
are used to evaluate the polynomial producing Yhat that is
then plotted giving the new surface shown in figure 6 below.
Now it seems that a much better fit is produced.
The MATLAB script for using a 5’th degree polynomial to
do the surface fitting of the above example is shown below

[C,A]= mv_polyfit_3(X,Y,5);
Yhat = (A*C)’;
Y3=[];
for i=1:16:256
   Y3 = [Y3; Yhat(i:i+15)]
end

figure(2);
colormap(‘gray’);
surfl(X1,X2,Y3);

The 21 coefficients produced by mv_polyfit function for a fifth
degree polynomial are shown in table 1 below.  It is clear that
the new polynomial fits the data much better than the previous
3’rd degree one.
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Figure 6. Surface fitting using a 5’th degree polynomial

5. Discussion and Conclusion
The algorithm presented in this paper is implemented in
MATLAB and tested for several cases of model fitting.  The

C0 = 0.8227 C11 = -0.6921

C1 = -1.3563 C12 = -0.4916

C2 = -.2315 C13 = -0.3549

C3 =  0.4540 C14 = -0.2558

C4 = 2.2547 C15 = -1.2512

C5 = 0.9288 C16 0.5724

C6 = 4.3537 C17 -0.1558

C7 = -.0489 C18 -1.1612

C8 = -2.2834 C19 0.6620

C9 = 5.2130 C20 -.9854

C10 = 0.3556

algorithm proved successful in computing the design matrix
A for all the tested cases.   The algorithm generates a special
indexing matrix S that is used in the calculations of the dot
product of the variables which are filled in A later. The
developed algorithm is capable of producing the design
matrix needed for multivariate polynomial least squares fitting
for any order and any number of variables, provided that the
computers’ memory is adequate to hold the required matrices
needed for the algorithm, and the set of data is sufficient for
the solution to exist.
Statistical measures such as the sum of the squared error
between the original data and the polynomial approximations
for the model can be used to judge the quality of fit; however,
recent work on developing visual means for this purpose
has led to new techniques such as the circle plot, the ordinal
plot, and the marksman plot [18] [19].  By combining these
new visual techniques and the algorithm developed here it
will be possible to speedup the search process for better
fitting polynomials for modeling purposes.
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Appendix: MATLAB code for the multivariate polynomial
fitting algorithm.

function [C,A]= mv_polyfit(X,Y,ord)
%The arguments for this function that %the user should pass
are as follows:

%
% X = [X1   X1 ...Xm] matrix of
%independent variables data points
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% where X1 is the column for the data
% of the first variable, X2 data of
% the second variable…etc. m is
% Number of independent variables.

% Y is the observation or simulation
%data of the dependent variable
%
% ord  is the required order(degree)
%for the fitting polynomial
%
% The function will build the design
% matrix A and use least square curve
% fitting to find the coefficients
% matrix C of
% the multi-variable function, C =[C0 % C1 ...CL].

[N,NV]=size(X); % find the size of X %to get NV (number of
variables), and
% number of data points Nc1=ones(N,1); % generate a
column of %ones to be added (conctenated) with %X
A =[c1 X]; % A now contains the data
%for polynomial fitting of order one
%
%
if(ord==1)
   if(NV+1>N)
      error(‘number of points is not sufficient’);
    end;
   C=A\Y; % Use MATLAB backslash
%operator to solve for the
%Coefficients
   return;

elseif (ord==2)
   S=1:NV;
   S=S’;
   if(sum(S)+1+NV>N)
      error(‘number of points is not sufficient’);
    end;

else
   P=ones(1,NV);
   for j=2:ord
      B=cumsum(P(j-1,:));
      P=[P;B];
   end
   C=sum(sum(P))+1; %number of coef. in C

   if(C>N)
      error(‘number of points is not
sufficient’);
    end;
    P(end,:)=[];
    P=fliplr(P);% flip the P matrix
                %left-right
   for k=1:ord-1

P(k,:)=cumsum(P(k,:));
   end;

   S=P’;
   S=S+1;
   P=ones(1,ord-1);
   S=[P;S];%add a row of ones to top S
   S(end,:)=[];% delete last row

 end

% Now start the rounds of column dot
% multiplications
D=X; % initialize D the data of the
%variables

for k=1:ord-1
   [R L]=size(D); % find number of

%columns L of D at this stage
   E=[]; % start E with an empty matrix
   for i=1:NV % each variable in array
% D will have its turn to be multiplied
% by columns in X starting from a
% Column with the index extracted from
% rows belonging to this variable in S

      for j=S(i,k):L % j the number of
% the column in D to start
% multiplication with

           CI = X(:,i).*D(:,j);
% xi *. [D1 D2 ... Df]
            E = [E CI];
% each multiplication will generate a
%column CI that will be added to E
      end % end j loop
   end  % end i loop

   A = [A E]; % update A by adding E
   D=E; % Initialize D for a new round
 end % end for k loop

C=A\Y ; % compute the coefficients
% vector C
% END OF FUNCTION
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