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1. Introduction
From a traditional point of view, knowledge exploration can
be categorized into supervised learning and unsupervised
learning (Jordan and Jacobs 1994). In the last decade, there
have been research activities on supervised learning
approaches and techniques, whereby class information is
available before any knowledge exploration takes place. The
most utilized approach is to achieve a predetermined
independent measurement in order to preferentially target
classes. Then a classification algorithm is applied in the
data pre-processing stage (Liu and Motoda 1998, Liu and Yu
2005). However, this approach is not robust to be effectively
applied on features with irregular sizes or nonrecurring, high-
dimensional variables.
Unsupervised learning is a recent approach in knowledge
exploration. It is widely used on/with unlabeled data, such
as extracting relevance that exists in  records. Unsupervised
learning is an important supplementary method to category
data since it could increase the precision of clustering results.
Unlike supervised learning, unsupervised learning attempts

In this paper, we propose to combine two models to achieve
unsupervised learning. K-Means Clustering Analysis (K-
Means) is used to partition the original combine two models
to achieve unsupervised learning. K-Means Clustering
Analysis (K-Means) is used to partition the original data
according to a certain criterion. As a robust model, K-Means
semiautomatically generates clusters and assigns data into
different clusters. The data within these clusters will be
labelled prior to when we collect observational sets.
Local-Global Hierarchical Analysis (LGHA) attempts to
discover accurate and relevant correlations from
observational data (Lin and Orgun 2000, Lin and Orgun
2004, Lin et al 2000, Zhang et al 2006). There are three
steps in LGHA. The first step involves a structural approach
to find qualitative patterns from the given variables. Then, the
second step applies a quantitative-based algorithm to find
quantitative patterns from those variables. The third step
generates global hybrid patterns by combining the local
patterns obtained from the first two steps based on a certain
criterion. LGHA enhances unsupervised learning by making
the error of knowledge exploration as small as possible,
especially when we are dealing with time series data or
irregular data. LGHA also benefits from a visualization
interface for the knowledg e explorers that could incorporate
domain knowledge in the process.
In our framework, K-Means is applied to the dataset prior to
the application of LGHA. K-Means efficiently clusters data so
that valuable variables can be generalized into a worthwhile
observational dataset. This will help improve the performance
of LGHA which may otherwise be wasting a lot of time seeking
latent variables and structural patterns constructed from the
huge amount of original data.
The rest of the paper is organized as follows. Section 2 is a
general review of unsupervised learning. Then we address
the theories of K-Means and LGHA respectively, in sections 3
and 4. In section 5, we apply the two models in experiments
with real-world datasets, Australian Medicare Data records.
Also, the combination of K-Means and LGHA is shown to be
feasible. Last section discusses related work and concludes
the paper with a brief summary.

2. Unsupervised Learning
Traditional supervised learning attempts to define a

ABSTRACT: Unsupervised learning plays an important
role in the knowlede exploration discovery. The basic
task of unsupervised learning is to find latent
variablesor relationships in a given dataset wihout any
assumed regularities or patterns. In this paper we apply
two advanced models, clustering analysis and
hierarchial analysis to accomplish unsupervised
learning. K-Means clustering presents its strength in
large scale clustering. The original data can be pre-
processed and the potential variables are targeted.
Correlations among these variables are explored in the
subsequent sets by Local Global Hierarchial Analysis
(LGHA) assisted by three main steps. In the first step,
we use a structural approach to find qualititative
patterns from the given variables. Then, the second
step applies a quantitative based algorithm to find
quantitative patterns from those variables. The and
last step generated global hybrid patterns by combining
the local patterns obtained from the first two steps
based on a certain criterion.  Both of the K-Means and
Local Global Hierarchial Analysis (LGHA) models are
applied in experiments with  real world longitutional
medical datasets.

Categories and Subject Descriptors
I 2.4 [Knowledge representation formalism and methods];  I.2.6
[Learning]: I.5.3 [Clustering]
General Terms
Knowlege representation, Learning classification

to find the most reasonable patterns by uncovering
relationships best instead of using preferential classification
labels (Dy and Brodley 2000, 2004). Because the idea behind
unsupervised learning is to run an unsupervised algorithm
on raw data (Kohavi and John 1997), most researchers
consider the applications of data clustering and data
reduction (including dimension reduction, size reduction, etc.)
as two key issues in the framework of knowledge exploration.
The use of an unsupervised learning method could save
time in data processing by removing the matching and
ranking process used for specified classes, and avoiding
redundant analysis.
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Due to the fact that no supervised targets are expected in the
stage of producing the output, finding new patterns from the
original data is the main task of an unsupervised learner. Its
distinguished learning and grouping features can avoid the
case that useful information is treated as unstructured noise
signal. In addition, new patterns provide more convenience
of further analysis, i.e., in the subsequent knowledge
exploration.
According to the literature (Engelbrecht 2002, Shawe-Taylor
and Cristianini 2004, Shanahan 2000, Alpaydin 2004), most
unsupervised learning approaches utilize statistical models.
For example, a collection of original data x1, x2…,xn is
received as input to an unsupervised system. We observe a
data set D={ x1,…,xN } firstly. Then, we assume that there
exists a model set    , where    ={ 1, …, M } (learner normally
starts processing with some prior models m, where m      ;
thus,       m=1 P(m )  =1 (Ghahramani =1 m 2004).
Given that all the models are based on the probability
distribution over data points, that is:

                   P(m)P(D m)
P(m D) =                                                         (1)

Hence, the relationship between prior models and posterior
models is given as:

P(m D) =      ∝ P (m ) ∏ P  (xn  m)     (2)

Based on the theory of parametric estimation, all models
can be formed by parametric probability distribution, i.e., each
model m has its corresponding unknown variable parameter
    . The best estimated value of     over model m, P( | m) will
be defined through the perspective of unsupervised learning.
Moreover, the satisfied parameter   is obtained via the
following equation (Vapnik 2000):

P (x  m)  =  P (x  q, m) P (q  m)dq                  (3)

Then, we map the model from the single data into the entire
data set,

            P (x D, m)  =  P (x  θ ) P (θ  D, m)dθ ,              (4)

It is an arduous task to define a unique model being
appropriate for all kinds of data, especially when the collection
of observations is of high dimensionality. However, the
dramatic increase of electronic information actually creates
lots of high dimensional data. Thus, unsupervised learning
offers two general approaches to deal with these high
dimensional data, that is, dimensionality reduction and
clustering.
In the next two sections, we discuss two models, the well-
known K-Means Clustering Analysis (K-Means) and Local-
Global Hierarchical Analysis (LGHA) (Lin and Orgun 2000,

Ν

 n=1

3. K-Means Clustering Analysis
3.1 Clustering Analysis
The basic idea of Clustering Analysis (CA) is to classify
observations around different clusters in terms of their
similarity measurement or distance measurement. Both of
those measurements are implemented to compare relevancy
between every two points of data, which are randomly chosen
from a given data set. Thus, CA is suitable to accomplish two
particular tasks. It on the one hand discovers
homogeneousness among observations through calculating
their internal cohesion. On the other hand, external separation
of observations is also recognized
The model of CA can be divided into two distinct types based
on the criterion of the choice of the number of clusters.
Uncertain Cluster Analysis (UCA) performs exhaustive
search to make clusters as precise as possible. It does not
impose any limitations on the quantity, position or size of
clusters. UCA describes clusters in more details than any
other types. However, it may result in worthless or noisy
clusters especially when the data set is huge and dynamic.
Certain Cluster Analysis (CCA) achieves to group data by a
predetermined condition of clusters. For example, given that
a collection of data set D={d1…dn} and cluster number k or
cluster size q, we follow the above chosen criterion to group
the given data into k clusters or design clusters of size q.
CCA is considered to be an iterative algorithm in which the
chosen data is moved among various cluster sets until the
desired set is obtained (Jain and Dubes 1988, Han and
Kamber 2001, Dunham 2003). Furthermore, the convergence
of clusters directly influences the variety of the cluster’s
number. Less important data outside of known clusters are
regarded as noisy or irrelevant data that can be removed.
Both of UCA and CCA contain three main steps to finalize the
modelling of CA.
Step One: Data Normalization
Due to the difference in value, vector or dimension, the original
data set is always considered as dirty data or unorganized
data.
Thus, the importance of data normalization is significant.
Three methods are commonly employed in this step, which
are based on Sum, Standard Deviation and Maximum
approaches.
To explain these three approaches, we assume a data matrix
that contains m rows and m columns given below:

 P(m)P(D m)

P (D)

P (D)

    x11         x12     . . .     x1j    . . .   x1n

    x21         x22    . . .     x2j    . . .   x2n

      .   .         .       .        .       .
      .   .         .       .        .       .
      .   .         .       .        .       .
    xi1         x12     . . .     x1j    . . .   x1n                                 (5)
         .   .        .        .       .       .
      .   .        .        .       .       .
      .   .        .        .        .      .
    xm1         xm2   . . .    xmj     . . .  xmn

 x’ij    =                (i= 1,2, . . . m; j= 1, 2, . . .m     (6)
xij

xij

m

functional mapping between the given input and output. In a
supervised system, the corresponding output vectors or
patterns are reserved when the learner is provided with input
patterns or vectors. In contrast to supervised learning,
unsupervised learning presents a collection of unsupervised
observations. The learner can neither recognize general
regularity or explanation for these observations, nor generate
any expected output. In fact, the purpose of
unsupervisedlearning is to extract some understanding from
these observations first, and then attempt to discover the
latent variables.

Lin and Orgun 2004, Lin et al 2000, Zhang et al 2006) that
will be employed in unsupervised learning.

M

      i=1

          Sum Approach.

θ θ

θ
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Step Two: Distance Calculation
Distance measure is a metric or quasi-metric on the data
space used to quantify the similarity of patterns (Jain et al
1999). Hence, we calculate all possible distances between
any two given data points xi and xj from the given data set X
= {x1 … xn }, i, j    n in this step.
Commonly, two approaches, Euclidean distance and
Mahalanobis distance are introduced to perform this task.

       Euclidean distance
       It  is concerned with the distance between  two  data
        points,  xis  and  xjs. And  the distance will be defined  as

                  the sum of the component-wise differences squared.

      dij=d (xi,xj) = (xi1,xj1)
2 =(xi2,xj2)

2 + . . .+(xis,xjs)
2

Mahalanobis distance
It  is  a  measure  of  distance  between  two random
feature subset points xi and xj.

      dij =    (mi,mj)
T    -1 (mi1,mj1)                         (10)

     where mi=E(xi), mj=E(xj).    i=E{(xi-mi)(xi-mi)T} and    j=E{(xj-
    mj)(xj-mj)T} are the covariance matrices. Thus,   =p  i+(1-
    p)   j, where p is the Minkowsky’s coefficient (it is generally
    nominated as the value of 1 or 2).

Step Three: Choose an Algorithm
A clustering algorithm is understood as a computational
procedure such that, given a data set, it organizes similar
data inside the range closer to the cluster point and dissimilar
outside. K-Means is one of the most efficient and well-known
algorithms for finding and constructing the cluster structure
according to a formal definition or function. The following
section discusses the way in which K-Means Clustering
Analysis efficiently works for the CA model.

3.2 K-Means Clustering Analysis
The essential idea behind clustering analysis is to organize
similar data into various groups (clusters) according to
certain criteria. As a result, the distance between each pair of
data points within a cluster has less distance than those
between a pair of data points belonging to various clusters
or any data outside of the cluster.
K-Means Clustering Analysis (which we will refer to as K-
Means) is a clustering model that produces a partition of the
data set into non-overlapping clusters along with within-
cluster centroids (Mirkin 2005). It is an easy, fast and memory-
efficient method to compute from a given data set a certain
fixed number of clusters K. And the means are the aggregate
representations of clusters and as such they are sometimes
referred to as standard centroids. Hence, K-Means is to
define k centroids distributed to each cluster.

Standard Deviation Approach
xij    -     xj

    sj

x’ij                 (i=1,2, . . . m; j=1,2, . . . m)          (7)

where x j  =          x’ij   and
   i =1

m
sij =

1
m

      i =1

m
(x’ij    -    xj )2

                Maximum Approach

x’ij
              =

xij

xij
                (i=1,2, . . . m; j=1,2, . . . m)   (8)

i

For example, in a given data set D={x1,…,xn}, an integer
value k and a set of centroids represented as C={c1…ck},
the main task of K-Means is to define a mapping d:D      {1,…,k}
where each xi is assigned to one cluster Kj,   1    j    k, where
Kj={ ti | d(xi ) = Ck,for 1   I     n, xi    D, ck    C}.

We initially locate k centroids and then assign data into the
closest centroid. We relocate the positions of k centroids to
make them more precise while all data are assigned around
the centroids. K-Means algorithm halts when no more
centroids need further adjustment:

                    k  =                  d (xi, cj)                  (11)
 i =1  j =1

n k

Here n is the scope of data, k is the number of centroids and
d(xi , cj) is the function to learn the distance between a data
point and its closest centroid. As a result, K-means needs to
timely upgrade both in the position of centroids and the
distance between data points and the centroids. As K-means
is a well-known algorithm, we omit further details.

4. Local-Global Hierarchical Analysis
4.1. Hierarchical Analysis
Hierarchical analysis (HA) is an advanced statistical model
based on the polynomial approach (Lin and Orgun 2000; Lin
and Orgun 2004). It is employed to investigate the latent
relationships between an individual data point and the entire
data set. Thus, a lot of computation and validation at the
inter-level and intra-level are required when the numbers of
variables at different levels are enormous.
In HA, the original data set is first restructured into the
hierarchical variable set. We first assume a dependent
variable. Subsequently, the rest of the variables are
measured as independent variables. The first level (the entry
level or the lowest level) measures the dependent variable
while other independent variables are estimated by the
following levels.
The HA model usually commences via a pure parameter
model (also called null variable model), and only an intercept
parameter is assumed in this initial model,

Yij =  00 + uoj + eij  (12)

where,   00 is the models intercept, uoj is the random higher
level effect with variance    2 u0 and eij   is the first level effect

where x’ij    =  1  (i,j   = 1, . .  . m).m

      i=1

max {     }

Figure 1. The Framework of K-Means Clustering Analysis

(9)
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with variance    2e. The subscripts i and j stand for variables
in the first level and the higher level, respectively.
Then we import each independent variable Xp (p is the
number of independent variable X) into the above base
model,

Yij =  00  +  p0 X pij +u0j + eij                 (13)

Due to the fact that the dependent variable is unchangeable,
the corresponding variance components of slopes are
established at zero value. We examine the difference of
deviance between this model and the pure parameter model
so that we can assess whether the improvement is enough
to yield an optimal model.
Now we can add the higher level independent variables into
the model, as in equation

Yij =   00  +   p0 X pij+    oq Z qj +u0j + eij       (14)

where Z is the other independent variable in the higher level,
and the subscript q is the number of Z. We can use one of
parameter estimation methods to relocate the parameters
in order to fit the complicated model optimally. In addition,
one more step of estimation (so called “cross-level
interaction”) is required to fit the following equation if the
number of p and q is huge.

   Yij =  00  +   p0 Xpij+    oq Z qj+    pq Z qjXpij+u0j + eij    (15)

4.2. Local-Global Hierarchical Analysis
The model of Local-Global Hierarchical Analysis (LGHA) is
built by three levels, namely, Local Structure-based Level
(LSL), Local Value-based Level (LVL) and Global Pattern
Level (GPL) (Lin and Orgun 2000, Lin and Orgun 2004, Zhang
et al 2006). In the first level, LSL, distance measures are
adopted by a structural search on the data set through
polynomial modelling in order to group qualitative patterns.
In the second level, LVL, statistical measures are employed
to extract conditional distributions from the data set to define
quantitative patterns. In the last level, GPL, patterns from the
previous two local levels are combined into global patterns
to accomplish unsupervised knowledge exploration of latent
relationships.
n terms of the theory of HA, we define data in three parts,
namely the quantitative part, the qualitative part and the
position part. Hence, every data set D has a triple value
defined for it:

D = {v, k, p}  (16)

Here v is the quantitative part, k is the qualitative part, and p
is the position part.
Then two assorted patterns are created to complete local
analysis. One is the quantitative pattern that corresponds to
every data both in v and p

V = {v, p}  (17)

And the second is the qualitative pattern that corresponds to
every subset both in k and p.

Q= {k, p}  (18)

Under the environment of LGHA, we assume that there exists
a finite data set D={d1…dm}, where ti is their position parameter.
So we can transfer the original data into a new observational
group.

D = (ti) = {di, ti}  (1     i     m)                        (19)

where D(ti) denotes the value of the corresponding data item
by its position parameter. For example, we randomly choose
1000 data items from the original set. In this example, m is
1000 and ti ranges from t1 to t1000 and is matched with each
chosen data item. Each new observational object is
expressed as D(ti )={di,ti } (1    i    1000).
Now we combine every two consecutive objects into another
new observational group S(ti )={D(ti ),D(ti+1)}. There exist three
states in the new group depending on whether values
increase, decrease or keep the same. We suppose that Ss
is the same value as the prior one; Su is the stronger value
compared with the prior one (the value has increased); and
Sd is the weaker value compared with the prior one (the
value has decreased). Hence, the new group can be
expressed as

S(ti )={D(ti ),D(ti-1 )} (1    i    m)           (20)

      S(ti )={S(tdi ) ti} (1     i     m) and S(tdi )     {Ss, Su, Sd}   (21)

As it has been mentioned above, given a finite amount of
data D = {d1, d2 … dm}, we can divide it into three parts: the
quantitative part, the qualitative part and the position part.
Then, the qualitative patterns and the quantitative patterns
are separately created by those three parts. The qualitative
one is a base distribution in probability space. And the
quantitative one is a coefficient distribution of the data.
Therefore, the task of unsupervised learning can be
formulated as follows:

   D = {V}     {Q}           (22)

The quantitative pattern of the data set is

          D (t1 )  D (t2 )      D(ti-1 )
           D (t2 )  D (t3 )     D(ti )           (23)

And the qualitative pattern of data set is

Q = { S (t1), S(t2) ,...S(ti)}             (24)

Therefore, data set under LGHA can be written in the form
shown below

V ={ ...

  Dm = {D(t1)      S (t1), D (t2)     S (t2)..., D (tm-1)      S(tm-1)}  (25)

Also we assume that for each successive pair of data, it has
a uniformly distributed function

fc = ti+1 - ti                                                      (26)

The main advantage of LGHA is to effectively increase the
accuracy of unsupervised learning because the final result
of knowledge exploration integrates the completed analysis
from three levels.



Journal of Digital Information Management  � Volume  5  Number  4 � August  2007 241

5. Hierarchical  Analysis in Unsupervised Learning
In this section, Local-Global Hierarchical Analysis (LGHA) is
utilized to assist unsupervised learning. In recent years, the
discovery of two types of data, named complete/partial
similarity data and periodicity data has become the focus of
attention, especially when there are high-dimensional
features or time-varying attributes in the data.
According to LGHA, we consider observed data as expressed
in two patterns. The first one is the qualitative pattern, also
called structural pattern, whose focus is on analysis of state
space S = {Ss , Su , Sd}. The second part is the quantitative
pattern, also called pure-value pattern, whose focus is on
the analysis of probability space P. Eventually, we combine
the results from the above two levels into a hybrid pattern to
obtain the final learning result.

5.1. Qualitative Patterns
The generation of the qualitative pattern is based on state S
processed in data. We first suppose that a qualitative
sequence on Q is a set of structural vector sequences,
Q={Q1,…,Qm}, where each Qti=(S(t1), S(t2),…, S(ttn )) (1    i
     m) denotes the m-dimensional attributes for each Qi that
is to be assigned to a specified distribution cluster.

Hence, we can consider {Qti: i   m} as a qualitative pattern.

     Qti = {(S(tf1),t1), . . . (S(tfm),tm)}  1    i    m   (27)

S(tf1) =     {Ss, Su, Sd}                      (28)

where Qt is an irreducible homogeneous qualitative set with
states of S.
Now we can define a probability set which is a correlated
measure of the relationship between two data sequences. It
is called a correlation ratio sequence for all qualitative states
and given as follows.

  wjk = P (                        ).                                (29)
   (Qt (S(tfi))
   (Qt (S(tfi))

Hence, we can find a unique, strictly positive statistical
distribution for each Qt.

5.2 Quantitative Patterns
We assume {Y(ti ): i    m} is the quantitative pattern, where

Yti = {di, h(di)}                                (30)

Due to quantitative-based search, the unknown regression
function h(di) is obtained by applying a Taylor expansion of
order p in a neighborhood of di-1 with its remainder np.

   h(di) =                        (di-di-1)m +n p =              m(di-di-1)m +n p
  h(m) (di-1)

   m= 0    m= 0

   p    p

                          m!

where np= wp     dp                                                      (32)

Also, least square estimation can make the value of
under the linear model

~ p(    ,    2 amm).                              (33)

where amm is the mth diagonal subsets in matrix N. In short,
we can transform the quantitative pattern problem into a local
linear model and formulate it as the data distribution
functional analysis.
We observe that quantitative pattern search has two benefits.
It helps remove non-relevant data by a near zero local linear
model and groups similar ones into various valuable
clusters. It also sheds light on whether observational data is
linearly separable; it will still be linearly separable even when
some data are marked as redundant and deleted out of
observational groups.

5.3 Hybrid Patterns
We combine the above two kinds of patterns to discover
hybrid patterns from a given data set. Firstly, we extract the
qualitative pattern {Qti:i   m} to apply the data functional
distribution sequence on the state space S. Secondly, we
suppose the quantitative pattern {Yti: i     m} is a nonnegative
random vector process. Thirdly, we apply the conditional
distribution of feature Ft. For example, if Qti = S(tfi), Yti has a
Poisson distribution with mean    i, let E(Yti/Qti), the conditional
mean of Yt can be calculated by the following function:

                  u (t)             i D(ti)                         (34)
    i=1

 m

where the random data D(ti) is the indicator of the event {Qti =
S(tfi)}. At the same time, the state development probabilities
are then given as shown below:

i =                                           (35)
    e-     i     i

   fi !

Now, according to the above deduction, the hybrid pattern is
defined as Poisson Hidden Models and the hybrid pattern
search becomes the problem of Poisson distribution.

6. Empirical Study
6.1. Background
This section presents an experimental study on real-world
datasets to test two analytical models, K-Means Clustering
Analysis (KMeans) and Local-Global Hierarchical Analysis
(LGHA). In our experiments, the chosen dataset is the diabetic
segment data from Australian Medicare Database that has
been collected in Australia domain-wide since the inception
of Medicare in 1975. Diabetes occurs when the glucose
enters bloodstream from food or drink, and cannot be
processed by human’s body itself. It causes a build-up of
sugar in the blood. Without treatment, it can cause many
other side effects. People with diabetes can neither produce
enough insulin to meet their requirements nor can their cells
respond properly to the insulin. As a result, the glucose builds
up to abnormal levels in their blood.
The diabetes data in Medicare transaction during period 1997
and 1998 will be utilized for our knowledge exploration
through unsupervised learning. The primary goal of this
application is to generally discover certain implied diabetes
patterns. Two tasks will be attempted. The first one is to
distinguish patterns hidden in longitudinal records of those
diabetes patients. The second one is to explore some
interrelated patterns of care between patients and doctors.
The data used in this case study is extracted from the
Medicare transactional database that consists of records of
10,000 diabetic patients using Medicare services paid by

(31)
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H.I.C. under the Medicare Benefits Schedule. The data
extracted from Medicare is raw transaction data, which is a
very large data set with millions of records and each record
has more than a hundred feature subsets.
For computing and storage purposes, the identification is
set by a particular item number of every service record in the
raw database. As a result, those kinds of item numbers are
information carriers of the patients’ medical service during
years 1997 to 1998. The fields in that medical information
includes Encrypted Provider Number, Encrypted PIN, Date of
Service, Benefit, Processing Indicator, Date of referral, Method
of Payment, Class Number, Reason Code of Rejection,
Referral Provider, Hospital. We list them in Table I.

Encrypted Provide Number Encrypted PIN Method of Payment Class Number

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

Date of Service Benefit  Reason Code of Rejection Referral Provider

~~~~~~~~~~~~~~  ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

Processing Indicator Date of referral Hospital ………….

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~  (………….)

Table 1. The Medical Record of Diabetic Patents

6.2. Empirical Study of K-Means Clustering Algorithm
As we mentioned above, K-Means assigns data into k
clusters according to a distance criterion. It implements the
distance comparison to every pair of data points to find their
relevance and distinguishes them between inter-cluster and
intra-cluster. Therefore, the results from K-Means are the
embodiment of cohesion of homogeneousness of data and
separation of disparate data.
In this experiment, six categories of data are chosen as
experimental data, and are represented by X1 (Various
Providers), X2 (Methods of Payments), X3 (Type of Items),
X4 (Days of Treatments), X5 (Benefits) and X6 (Various
Referral Providers). The data shown in Table II is some
sample records of patients.

X1  X1 X2  X1 X3  X1 X4  X1 X5  X1 X6  X1

X1  X2 X2  X2 X3  X2 X4  X2 X5  X2 X6  X2
X1  X3 X2  X3 X3  X3 X4  X3 X5  X3 X6  X3
X1  X4 X2  X4 X3  X4 X4  X4 X5  X4 X6  X3
X1  X5 X2  X5 X3  X5 X4  X5 X5  X5 X6  X4
X1  X6 X2  X6 X3  X6 X4  X6 X5  X6 X6  X6

Patient’s Various Methods of         Type of Items      Days of    Benefits Various
Number  Providers Payment           Treatments Referral

Providers
1    3    1   17 40       1197.1     1
2    3    1     9  7        220.5     1
3    6    2  12  5       345.75     4
4    3    1    6  7       202.55     1
5    4    3    7  9       375.85     1
6    6    2    8 11         410.1     2
………. ………. ……….                ……….                ……….              ……….           ……….

             Table 2. Sample records of Diabetic Patients

    X1     X2    X3    X4       X5      X6

-0.0736  -0.0196    0.0736   0.4576   0.06212244  -0.024

-0.0736  -0.0196  -0.0864  -0.2024  -0.13319756  -0.024

-0.0136  0.0004  -0.0264  -0.2424  -0.10814756    0.036

-0.0736 -0.0196  -0.1464  -0.2024  -0.13678756   -0.024

Table 3. Normalized Records

Distance     Matrix =
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In the beginning, the original record set of patients is
normalized as shown in Table III. After normalizing the
observational data, we calculate all possible distances
between two arbitrary data points and quantify similarity
patterns. The values of all distances are placed into a  matrix.

General Professional Diagnostic Approved Diagnostic Pathology
Patient Attendances Services Dental Imaging Services

GP PA D S AD DI PS

Item 1 Item 2  Item 3 Item 4  Item 5 Item 6

Table 4. Six Categoreis of Benefits Schedule

Patient Patient Date of Record from Item
Name Number Service Schedule Number

~~~~~~~  ********  ######## PA  2
~~~~~~~  ********  ######## GP 1
~~~~~~~  ********  ######## DI 5
~~~~~~~  ********  ######## DS 3

~~~~~~~  ********  ######## PS 6

Table 5. Medical Records of Sample  Patients

We transform the distance matrix into observational matrix,
as shown below.

    1      2     3      4      5      6
     7     8     9    10     11   12

  Observational Matrix     13   14   15   16     17   18

    19   20   21   22    23    24
    25   26   27   28    29    30

    31   32   33   34    35    36

Then the K-Means algorithm acquires a predetermined value
of k and starts to compute similar patterns in distance matrix
(details are not shown). The results (shown in Table VI) after
clustering are sent to the visualization stage so that we can
get an intuitive understanding of the results with the aid of
the visual user interface. (See Fig. 2)
Now some particular characteristics are discovered from
the application of the K-Means algorithm.
 We find that sub-matrix 16(X4X3), 17(X5X3), 21(X3X4 ) and
23(X4X5 ) appear in cluster two. It can be understood that
some moderate interrelationships exist among variables X3,
X4 and X5. In other words, types of items, days of treatment

and benefits can be influenced by each other. Furthermore,
there appears to be a stronger correlation among those three
variables while X1 is considered as an indexed observation.
Due to the fact that X1 has obvious relevance with X3, X4 and
X5, we may indicate the tendency of varying of X3 (type of
items), X4 (days of treatment) and X5 (benefits) through
tracking changes to X1 (various providers), and vice versa.
For instance, we could make a predictive statement to the
patients that they probably need to pre-arrange their scheme
of treatment with different medical providers based on their
historical records of types of items, days of treatment or
benefits.
Variable X2 shows a similar linear relationship with X1, X5
and X6. In other words, the method of payment is altered at
the same time with the changes of various providers, benefits
and various referral providers. Thus, we only need to trace
the distribution of methods of payment while we attempt to
indicate the regularity of the other three variables. The figure
2 provides intuitive evidence to the idea. There X1 and X6
show a stronger linear correlation with X2; it might therefore
imply that the medical provider (X1 Various Provider and X6
Various Referral Provider) is the most important factor to
influence the patients’ choice of their payment methods. In
addition, this correlation could be partly used in the predictive
model that indicates the financial status of patients.

6.3. Empirical Study of Local-Global Hierarchical Analysis
According to the knowledge we acquired from K-Means,
some specific variables are selected from the observational
data set.

Group around Cluster One
Sub-matrix    3    4  5 13 6          19

   27  28 30  31          35
Group around Cluster Two

Sub-matrix    9  10 12  14          20        32
Group around Cluster Three

Sub-matrix    1 17   8  15 16       18

  21 22  24  25 29       33

  34 36  23
Ungrouped

Sub-matrix   2  7  11 16

        Table 6. The Observations  Grouped into Three Clusters
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These data show the patients’ status of treatment, such as
the times of visiting consultants and so on. Those irregular
attributions in data make analysis difficult. Hence, we define
the date of a medical service as an index of hierarchical
patterns, and choose six general categories of medical
services. They are Professional Attendances (PA); Diagnostic
Services (DS); Approved Dental Practitioner Services (AD);
Diagnostic Imaging Services (DI); and Pathology Services
(PS). As shown in Table IV.
Also, we sample patient’s records and process them in LGHA.
Table V (given on the previous page) shows some sample
patient’s records.

Figure 2. The Relationship among X2 and X1, X2 and X5, X2 and X6

According to the theory of LGHA, we firstly investigate the
qualitative pattern on state-space Si={Su, Ss, Sd} because
only three states are designated for our analysis.
The algorithm of qualitative pattern search is shown in Table
VII.

  Input:  F % Original data (f1…fm)
S  % Sequence set of states
t % Position parameter
r % Ratio set of state transition
w % Probability set of state ratio

  Procedure Qualitative Pattern Search

  Begin
Define Q{S;t}
Define w {r;t}
Initial S0. Initial t
For Int i=2;i<=m;i++
S[t].t=i-1
If fi=fi-1 then S=S + Ss;
Else if fi<fi-1 then S= S + Sd
Else if fi>fi-1 then S= S + Su
Initial r, Initial t
For Int i=2;i<=m;i++
 w [t].t=i-1
r=r+(Q{S[i]}/Q{S[i-1]})
[t]=+P(r) % the value of transition probability

  Plot [t]
  End

Since each patient record length is different in those health
records, we can only use their statistical value as variables
in the linear regression model. The algorithm of quantitative
pattern search is shown in Table VIII.

    Input: F % Original data (f1…fm)
Y % Quantitative Pattern
Q % Set of frequency distribution
H % Set of quantitative data

 % An auto-regression model
     Procedure Quantitative Pattern Search

  Initial the value of Q {fi, h(fi)}, k= numbers of clusters
  Sort the item numbers into quantitative pattern

  Compute h (fi) =                  (fi-fi-1)m + np =            m(fi-fi-1)
m + np

 Output relationship among quantitative pattern

       Table 8. The Algorhithm of Quantitative Pattern Search

Lastly, we combine the two patterns from the qualitative and
quantitative parts into a hybrid model. Then some results of
our experiments can be explained as follows:

Items 4 and 5 are independent. We have found that there
exist some similarities of distribution between them.
However, non-related elements exist between their
clusters. This means that the patients have received a
number of treatments that are similar but in different
time periods.
Items 1 and 6 have moderate similarity. This means that
doctors probably have different levels of knowledge of
diabetes problems.

7. Conclusion and the future work
In recent years, various studies have been conducted in
knowledge exploration from massive real-world datasets for
searching different kinds of and/or different levels of patterns.
However, the techniques and methods developed in those
studies are not for general cases. For example, most
researchers use statistical techniques such as, Model-
based technique, or a combination of several techniques to
search different pattern problems such as in periodic pattern
searching, and in similarity pattern searching.
Agrawal and others (Agrawal et al 1995) present a “shape
definition language”, called SDL, for retrieving objects based
on shapes contained in the histories associated with these
objects. Das with others (Das et al 1997, 1998) describe
adaptive methods, which are based on similar methods for
finding rules and discovering local patterns. Williams and
others (Huang 1997, Williams et al 2001) have considered
three alternative feature vectors for representing variable-
length patient health records.
Our work is different from theirs. We have paid more attention
to knowledge exploration through unsupervised learning.
Unlike a supervised learning system that receives
predetermined input and produces desired output, an

 m=0

p

 m=0
  m!

h (m)(fi-1)

  Let Yt(i-1)=Q(fi)-Q(fi-1),
  Let Yti=Yt(i-1)+
  Compare Yti and Yt(i-1)
  If Yti is distinct then send to H
  Plot H

β

Table 7. The Algorithm of Qualitative Pattern Search

Output relationship among states

p
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unsupervised learning system emphasizes the process of
understanding current data and mining latent variables/
relationships from the learner system. Due to the fact that no
specific results are expected, an un unsupervised learner
can therefore deal with large scale data, high dimensional
data and dynamic data.
In this paper, we address two effective models, K-Means
Clustering Analysis (K-Means) and Local-Global Hierarchical
Analysis (LGHA) and combine them into a single framework
to assist unsupervised learning. Their comprehensive
algorithms effectively implement dimension reduction,
grouping observations and exploration of hidden knowledge.
We designed three steps to build a complete K-Means
model. In addition, we employ this K-Means model into the
real-world experiment. The result is satisfying because it
extracted some valuable underlying relationships by
partitioning the unorganized data into predetermined
clusters. The clustering patterns are also visualized for more
intuitive explanations.
We also build on a comprehensive structure and modeling
procedure of LGHA (Lin and Orgun 2000, Lin and Orgun
2004). Three levels are defined to build the LGHA model.
The transition probability is utilized in the first level to define
a conditional distribution. The quantitative patterns are
placed in the second level to extract pure value point data. In
the final level, we combine qualitative and quantitative
patterns to obtain a global hybrid pattern. Particularly, the
empirical study suggests that LGHA has stronger ability in
exploring quantitative correlations between observational
variables.
We have examined the prospect of a combined system that
can employ the model of K-Means and LGHA together. The
results from our empirical studies are encouraging. In
summary, structural learning (the recognition of latent
variables) within LGHA might be efficiently enhanced by
powerful clustering ability of the K-Means model.
In future work, we plan to apply our unsupervised learning
approach to other real-world data such as financial datasets
and taxation datasets. Furthermore, the combined system of
K-Means and LGHA will be studied in more detail.
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