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ABSTRACT: Many efforts have been made for com-
pression of web graphs. Most of these methods are
suitable for search engines and are centered around
encoding links and URLs efficiently. The purpose is to
handle a large set of web pages in the main memory
against any web based search. The authors of the
present paper are interested in studying web graph as
a social network and to develop a data model for it. So,
suitable compression techniques, which are space ef-
ficient for disk based storage, are required. This paper
has provided a two level compression technique. In
the first level, the structural properties of a graph are
studied and strongly connected components are fused
to reduce the original graph to a DAG. Paths on this
DAG are then stored efficiently using a Path Normal-
ization technique. Space complexity expressions indi-
cate the efficiency of the method. Relevant operators
required for accessing the original graph through the
compressed representations have also been discussed.
Important earlier works have been referred to indicate
the requirements of the present approach.
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1. Introduction

A Social Network is the graph representation of a social
community. Here each member of a social community (people
or other entities embedded in a social context) is considered
as a node and communication (collaboration, interaction etc.)
from one member of the community to another member is
represented by a directed edge, forming a directed graph or
digraph. A social network represents a network of
acquaintances between people like, a club and its members,
a city or village community, a research group communicating
over Internet, a group of people communicating with each
other through e-mail messages for a specific purpose etc.
Recently, Web has played a major role in the formation of
communities (cyber-communities) where the members are

people from different parts of the globe who join the
community for some common interest. The number of
communities in the Web is increasing dramatically with time.
This community formation is one of the most powerful
socializing aspects of the Web and hence Web is also a
social network. Out of the many social network models on
the Web, the most commonly used one is called a referral
system. In such a system, each node in the social network
provides a set of links to its acquaintances that in turn become
member nodes of the network. In the same way, these new
nodes bring their acquaintances to the network again. This
way the social network keeps on growing. So, the social
network on the Web gives rise to an evolutionary graph. At
any instant of time, when a query is raised on such an
evolutionary graph, a snapshot of the concerned network,
i.e. the node-edge structure at the instant of query, is
considered for the purpose of query processing. There are
many commercial products like, LinkedIn.com, Ryze.com,
Tribe.net [19][20][21] etc. that tend to generate a social
network. These Web sites invite people to introduce
themselves, and then add their colleagues, or business
partners. In this sense, these sites define a social network
similar to a referral system. Based on the input of the existing
users, new members are taken in the network provided they
meet its business requirements. For example, a site that
provides matrimonial services, would only consider accepting
a new member provided he/she is searching for a suitable
match. These commercial products provide different types
of services like, employment service, matrimonial service,
e-learning service etc. There are even academic and
research efforts [32][34] that analyze such referral systems
for understanding the social properties and behaviors of the
underlying social communities on the Web. A social network
on the Web may have thousands of nodes and edges.
Salient features of a web-graph used as a social network
are:
      • In a social network graph, representing a real social

community, an edge (i,j) signifies that node i contacts
node j. However, node j will contact node i, only if edge
(j,i) is also present in the graph. So, node i contacts
node j does not necessarily imply that node j also
contacts node i. A two way edge is usually called a
reciprocal connection.
• Edges between the nodes may be of different types.
While node n1, i.e. a member of a social community, is
contacting another node n2 for economic reason, node
n3 in the same network may contact node n4 for academic
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reason. An edge-type between two nodes in a social network
signifies the type of relationship that exists between two
real life entities present in the corresponding social network.

• Different node combinations in a social network may
form cycles. A reciprocal connection is the smallest size
cycle. There can also be nested cycles. In a cycle or in a
nested cycle structure, all edges may or may not be of same
type. There can also be strongly connected components
in a network, where each node is reachable from any other
node within that structure. Size and types of relationships
present in a cycle or a nested cycle or a strongly connected
component structure provide important information to the
social scientists regarding the properties of the concerned
social community.

Besides the cycles and nested cycle structures of a social
network, social scientists are also interested in other structural
properties of a network. For a given social network, a social
scientist usually makes query about average in-degree and out-
degree of nodes, maximum in-degree and out-degree of nodes,
reachability of one node from another, i.e. searching of paths,
finding all ancestors or descendents of a node, finding common
ancestors or descendents of two or more nodes, finding nearest
common ancestor or descendent of two or more nodes etc.
[14][15][23][24][28][29][34].
Other than the structural information, depending on the
application area, a social network will have node-based
information as well. For example, a social network on the Web
may offer employment services, where nodes provide
information like qualification, experience etc. Similarly, another
network may offer matrimonial services, where nodes provide
information like, age, marital-status, sex, monthly earning etc.

1.1 Motivation
Discussions made so far indicate that social scientists make
rigorous computation on the node-based and structural
information of a graph representing a social network. Each such
computation has to access the entire graph related (both node-
based and structural) data. Since a social network on the Web
may give rise to a graph of thousands of nodes and edges,
accessing the entire graph each time contributes significantly
to the overall computation time. Moreover, some applications
try to search for interesting patterns on the existing data, both
node-based and structural [10]. Such social network related
applications are quite common in web-based mining [9]. Overall
computation time can be reduced to a great extent if the
structure-based and node-based selection and searching can
be done efficiently. In order to make it effective, the relevant
information for both nodes and edges along with common built
in structures like cycles, nested cycles, paths etc. may be
computed and stored apriori. If any application needs a particular
type of computation quite often, such information can also be
pre-computed and stored. In short, instead of starting from raw
node and edge related data for each type of analysis, some
storage and selective retrieval facility should be provided for
social network applications involving large graphs. So, a data
model needs to be designed primarily for social network
applications.
An object-relational data model named SONSYS (Social
Network System) has already been proposed for this purpose
[25][4]. The SONSYS data model is based on two sub-systems,
Structure-based sub-system and Node-based sub-system.
Structure-based sub-system processes a Web graph where a
user can make queries on the social networkstructure. Node-
based sub-system, on the other hand, is used for querying on
node properties. So a composite query madeon a social network,
can be answered partly by its structure and partly by its nodes.

SONSYS data model supports the following types of queries on
a social network :

• Query on node based information only.
• Graph pattern matching on the communication structure

of the social network.
• Composite queries exploiting the above facilities.

The Structure-based sub-system discusses about different
structural components present in a Web-based social
network. Starting from a digraph representing a social
community, different steps of preprocessing compresses
the original digraph to a DAG. During the process of
compression, different hyper-structures are identified.
Structure-based sub-system of the generic data model used
for modeling a social network needs to consider the storage
and retrieval of these hyper-structures. The operators needed
for processing queries on these hyper-structures and the
compressed DAG, are also considered in designing this
sub-system.
The objective of the node-based sub-system is to design a
node-based schema depending on the application area under
consideration. Since SONSYS model has been developed
against an object-relational framework, node-based schema
provides a set of underlying relations that store the node and
edge properties of the Web graph used in the application
under consideration. Properties of Web pages like id or URL,
title, size, last date of modification, text, etc. can be stored as
node attributes.
Query processing in SONSYS data model considers both
structure-based and node-based schemas in answering a
query. Depending on a query, only one of the two schemas or
both may take part in query processing. Indexing strategies
for query processing have also been discussed in the data
model.
As mentioned earlier, a graph representing a social network
can have thousands of nodes and edges. Moreover it may
have cycles, nested cycles and strongly connected
components. The present paper has referred these
structures as hyper-structures and treated them separately.
For efficient storage and retrieval of the structure related
components and thus to improve the performance of query
processing, this paper proposes a two level compression
technique.
      • First level involves fusion of each hyper-structure to
generate a single node called hyper-node. This process may
give rise to another hyper-structure called hyper-edge. This
fusion process converts the original digraph ·representing a
social network to a directed acyclic graph (DAG). Section 2
discusses this fusion process in detail. Correctness and
justification of fusion process have also been established in
the same section.

• Second level involves efficient storage and retrieval of
path related information. After the fusion process, any query
on the original social network is done on the fused graph or
the DAG. As discussed earlier, queries on a social network
can be divided into two main groups. One that involves the
structure and size of different hyper-structures and the other
is basically on the node-edge connectivity or path-based
query.
For path based queries, any of the two approaches may be
taken:
        • creation of paths from the edges against query,

 • generation and storage of all paths apriori and selective
retrieval of paths against query.
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However even after pre-processing, a DAG representing a social
network on the Web may have thousands of nodes and edges.
So in the first approach, computation of paths against queries
will make query processing very slow. On the other hand, in the
second approach, storage of all pre-computed simple paths of
different lengths and  then to index them and access them
against queries may not make the query processing more
efficient. This would also need too much of space. So, a trade-
off is necessary, where a few paths and sub-paths will be pre-
computed and stored and all the simple paths of the DAG should
be computable from them. This process has been called as
Path Normalization. The present paper describes the
normalization process in detail and proves it to be minimal and
complete. In Section 3, normalization process has been
discussed in detail.
Main advantages that can be derived from the present work
are:

• Since the hyper-structures (hyper-nodes and hyper-
edges) generated during fusion process are separately
stored and indexed, any hyper-structure based query can be
processed directly without accessing the compressed DAG.

• After path normalization, depending on query and the
corresponding search, existing paths in the normalized path-
set may suffice to answer a query. So, no new path may need
to be generated for such a query.

• In case a query needs generation of new paths besides
the normalized path-set, only minimum number of paths
necessary over the existing normalized path-set are
generated. This paper furnishes the proof for minimality of
such path generation.
After providing the introduction and motivation in Section 1,
Hyper-node based compression method has been
discussed in Section 2. The compression converts a digraph
to a DAG. Section 3 applies the Path Normalization method
on the compressed DAG. Section 4 provides the relevant
operators needed for structural queries. Section 5 discusses
about the earlier research efforts to justify the utility of the
proposed approach. Section 6 ultimately draws the
conclusion indicating the future efforts needed.

2. Hyper-node based compression
Considering a Web graph representing a social network,
this section identifies the different hyper-structures present
in such graph. Any strongly-connected-component (SCC) is
fused to form a hyper-node. A similar fusion process has
been suggested in some cases, a set of edges can also be
fused to form a hyper-edge. This section defines all these
hyper-structures and then proposes a fusion algorithm to
modify the original graph. It has been shown that the fusion
process converts the original Web graph to a DAG. Lemma
1, given in this section, shows that the proposed fusion
process really generates a DAG. Then Lemma 2 shows that
as a result of the fusion process, the original Web graph
remains connectivity invariant even after the formation of DAG.
Fusion process definitely alters the paths present in the original
graph. Corresponding advantages and limitations on the pro-
cessing of path based queries have also been discussed in this
section.
In order to understand the methods of pre-processing and
compression, a sample social network has been consid-
ered. The network is shown in Figure 1.
Although a few nodes and edges have been considered here,
the explanation will soon show that even this small graph cov-
ers all the structural peculiarities of a social network on the Web.
As shown in Figure 1, the network initially had 4 nodes (1,2,3,4).
Node 5 is the acquaintance of node 4. So, node 5 joined the net.

Figure 1. Sample Social Network

the net. In turn node 5 brought nodes 6 and 7 and they again
brought node 8 in the network. This way the network keeps on
growing. It is assumed that at the time of query, Figure 1 shows
the current status of the network. This network consists of the
following structural components:

• Strongly-Connected-Component (SCC) : A strongly-
connected-component is a maximal subgraph of a directed
graph such that for every pair of nodes v1, v2 in the subgraph,
there is a directed path from v1 to v2 and also a directed path
from v2 to v1.
If there exists an operator R(v1, v2), such that R(v1, v2) = True
if node v2 is reachable from node v1 (i.e. there exists a path
from node v1 to node v2), then subgraph G’(V’,E’) of graph
G(V,E) is a SCC, if R(v1, v2) = True and also  R(v2, v1) = True,
where (v1, v2)    V’.
This definition indicates that a reachability operator R will be
required, in order to check the existence of paths between
any two nodes of a graph. Detail discussion in this regard
will be made later.
The sample social network in Figure 1 has two edge-types
shown by farm and chain lines.  Edge (4, 2), represented by
a chain line is of different edge-type, while all other edges
represented by farm lines are of same edge-type in Figure 1.
Node sequence (1-2-3) represents a strongly connected
component when same edge-types are considered, whereas
(1-2-3-4) is a SCC considering both the edge-types.

• Cycle: If the sequence of nodes defining a path of a graph,
starts and ends at the same node and includes other nodes at
most once, then that path is a cycle. If in a graph G(V,E), (v0,
v1,……… ,vn) be a node sequence defining a path P in G such
that (v0, v1,……… ,vn)    V and v0 = vn, then P is a cycle.

Figure 1 shows three cycles; (1-2-3-1), (2-3-4-2) and (2-3-2).
Here cycles have been considered irrespective of the variation
in edge-types. The cycles may even be nested. Cycle (2-3-2) is
nested within the other two cycles, (1-2-3-1) and (2-3-4-2).

      • Reciprocal Edge: A cycle having only two nodes is a
reciprocal edge. So, a reciprocal edge (í 1,  í2) ∈ V has
directed edge from í1 to í2 and also from í2 to í1. A reciprocal
edge is the smallest size cycle.

In Figure 1 (2-3-2) is a reciprocal edge.

· Hyper-node: In a nested-cycle structure, the largest or the
outermost cycle is defined as a hyper-node. For a graph
G(V,E), if there exists a nested cycle structure with a set of
cycles such that, {C1      C2    ….      Cn)} where Ci is a cycle in
G, then C1 is the hyper-node corresponding to the nested
cycle structure. So, a hyper-node represents a SCC.

⊇⊇⊇
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• Homogeneous Hyper-node: If in a hyper-node all the edge-
types are same, then it is a homogeneous hyper-node. Let,
{C1 ⊇ C2 ⊇ …. ⊇ Cn)} be a nested cycle structure in a graph
G(V,E) where, Ci is a cycle in G. Now C1 will be a
homogeneous hyper-node if for any pair of edges, (í i,  íj) ∈
C1 and (í r,  ís) ∈ C1, (í i,  íj).edge-type = (í r,  ís).edge-type.

In Figure 1 (1-2-3) is a homogeneous hyper-node.
         • Heterogeneous Hyper-node: In a heterogeneous hyper-

node all the edge-types need not be same. In Figure 1,
(1-2-3-4) is a heterogeneous hyper-node.

Though by definition, a hyper-node is the largest cycle in a
nested cycle structure, the hyper-nodes themselves can also
be nested. Since in a homogeneous hyper-node all the edges
must be of same type, this hyper-node may be nested within
another larger cycle formed by edges of different types
resulting a heterogeneous hyper-node. So, a homogeneous
hyper-node may be nested within a heterogeneous hyper-
node. In Figure 1, homogeneous hyper-node (1-2-3) is
nested within heterogeneous hyper-node (1-2-3-4).

2.1 Homogeneous hyper-node based compression

         Figure 2. Augmented Social Network

For compression, a hyper-node is fused to a single node
and its structural details are stored separately covering both
the nodes and edges within it. As a matter of fact, SONSYS
system defines a object-relational framework where these
hyper-structures are treated as different object types.
Following the above principle of compression the sample
social net in Figure 1 is augmented to Figure 2 considering
homogeneous hyper-nodes only.
Nodes within a hyper-node H may be connected to other
nodes and hyper-nodes outside H. After H is fused to a single
node as part of graph compression process, all these edges
external to H but connected to its different nodes will now be
connected directly to H.  In homogeneous hyper-node (1-2-
3) of Figure 1, nodes 1, 2 and 3 are connected to the external
node 4 by edges (1,4), (4,2) and (3,4). After fusion, in Figure
2, these three edges are (H-1,4), (4,H-1) and  (H-1,4). Now,
the edges (1,4) and (3,4) in the original graph are of same
edge-type and they are both mapped as edges (H-1,4) and
(H-1,4) in the augmented graph.  The compression process
will fuse these two identical edges of same type and direction
to a single edge He-1 defined as hyper-edge. So, the hyper-
edge He-1 covers the edge-set {(1,4), (3,4)} of the original
graph. Similar to hyper-node, hyper-edge is also treated as
a separate object data type in the object-relational schema
of SONSYS.

• Hyper-edge: If any node p outside a hyper-node H is
connected to more than one node belonging to H with
same edge-type and in the same direction, all such
edges will be fused to only one edge as a hyper-edge.

This hyper-edge will now connect p to H. A hyper-edge may
connect a hyper-node with a node or another hyper-node.

2.2 Heterogeneous hyper-node based compression

The compression process so far, has considered fusion of
homogeneous hyper-nodes only.  However in Figure 2, further
compression is possible if cycles formed by different edge-
types are also considered and such cycles are also fused to
form heterogeneous hyper-nodes. After such compression,
the final augmented form of the original graph is shown in
Figure 3.

As can be seen in Figure 2, homogeneous hyper-node H-1 and
node 4 formed a cycle with hyper-edge He-1 and another edge
(4, H-1) of different edge-type. So, fusion process creates het-
erogeneous hyper-node H-2 as shown in Figure 3.
It is found that after the final augmentation, the original graph
turns into a directed acyclic graph (DAG).

Lemma 1: Hyper-node and hyper-edge based compression
turns a digraph to a DAG.

Proof :

Since graph isomorphism is a well known NP-complete
problem, instead of showing the original graph (Figure 1)
and the augmented graph (Figure 3) to be isomorphic, an
effort has been made to prove the lemma by contradiction.

i. Since a graph representing a social network may
have nested cycles and by definition, a hyper-node
is generated by fusing the largest cycle in a nested
cycle structure, the cycle detection and fusion
algorithm recursively fuses the cycles from the
innermost (smallest) to the outermost (largest) one.
ii. If any stage of compression retains a cycle in the
graph, the next pass of the recursive process detects
it and fuses it. So, at the end of the fusion process,
the graph would not have any cycle.
iii. At each stage of cycle detection and fusion
algorithm, any edge coming from any node outside
a cycle structure and incident to any member node
of that cycle, will be incident to the fused node after
fusion. So, connections coming from outside a cycle
structure are retained in the augmented graph after
fusion.
iv. At each stage of cycle detection and fusion
algorithm, any edge leaving any member node of a
cycle structure connecting any node outside the
cycle, will also be leaving from the fused node after
fusion. So, outgoing connections from member

    Figure 3. Final Augumentation
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nodes of a cycle are retained after fusion.
v. Since hyper-node is the largest cycle in a nested
cycle structure, therefore, according to Step iii and
iv, the fused node retains all connections outside
its structure after fusion.
vi. Step v leads to a situation where a hyper-node
may be connected to a node or another hyper-node
by more than one edge of same type and direction.
From definition it follows that these edges are fused
to hyper-edge causing the original digraph to
become a DAG.

Lemma 2: Conversion to DAG from original digraph is
connectivity invariant.

Proof :

The compression process while fusing the hyper-nodes
apparently alters the node-edge connectivity structure present
in the original graph. More than one edge between two nodes/
hyper-nodes may fuse to a hyper-edge. An edge between
two nodes in the original graph may turn into an edge
between a node and a hyper-node or between two hyper-
nodes after compression. However, any structural query
though placed on  the compressed DAG should be able to
explore through the hyper-structures to dig out the original
connectivity and answer the query accordingly. So it is
necessary to show that the compression technique leaves
the graph connectivity invariant even after fusion and
generation of DAG.

i. Since, hyper-node and hyper-edge structures are
separately retained as structural object data type in
the object-relational schema, the nodes, edges and
their interconnections encapsulated within such
structures are retained in the individual object
instances.
ii. Step v of the proof of Lemma 1 establishes that
after fusion, a hyper-node retains its connections
(incoming and outgoing edges) with the rest of the
graph structure outside its own structure.
iii. Steps iii and iv of Lemma 1 also show that the
connectivity structure present in the original digraph
before fusion is retained through each stage of the
fusion process till the final augmentation to DAG,
making it connectivity invariant.

2.3 Effect of hyper-node based compression on paths

Salient features of hyper-node based compression process are:
• Compressed graph is a DAG and a path detection
algorithm will not encounter any cycle.

        •  Hyper-nodes and hyper-edges are stored as separate
object instances under proper object types in an object-
relational schema, and therefore, their internal structures
are not visible to the compressed graph.
• As a result of the compression process, a path in the
compressed graph will be formed by simple nodes and/
or hyper-nodes and simple edges and/or hyper-edges.
• Structure and length of paths will change when
transformed from original to compressed graph.
However, a path query should return the actual sequence
of nodes belonging to the original graph before
compression.

Now, this compression process offers some advantages as
well as some limitations in the enumeration of paths.

Advantage:

Figure 4.   External connection from Hyper-Node

As shown in Figure 4, let p be a node in a strongly-connected-
component (SCC) H having N nodes within it. Node p is
connected to a node q outside the SCC. It is the only connection
from any node within the SCC to q. Now, if a path detection
algorithm searches for paths between node q and any arbitrary
node t, within the same SCC, it may enumerate to a maximum
of  (N-1)! paths.  It happens just because of the SCC structure,
since all nodes within it are reachable from each other.
Now, at the time of compression, the SCC is fused to a single
node to form the hyper-node H. As a result, the edge (p,q) from
internal node p to external node q with respect to H maps to an
edge (H,q) in the compressed graph. So for any node t within H,
the system will enumerate only one path (H,q) from H to q instead
of a maximum of (N-1)! paths. In turn, if the system wishes to
pre-compute and store the paths, it will have to store only one
path instead of a maximum of (N-1)! paths. The detail of the
hyper-structure stored in the underlying object-relational system
will store the detail (node and edge components) of the hyper-
node H.  However, this advantage in storage may cause a
limitation in the enumeration of paths in the original graph against
a path query.
Limitation: A path detection algorithm, when executed on a graph,
returns paths that are either pre-computed or generated at run
time containing simple nodes and edges. However, when such
algorithm is executed on the compressed graph as proposed in
this paper, the paths may have hyper-nodes and hyper-edges
within it. So, the path detection algorithm needs additional steps
to break the encapsulation of those structures (hyper-nodes and
hyper-edges) to get the paths involving simple nodes and edges
belonging to the original graph. It is, therefore, apparent that
execution time is more for path detection in the compressed
graph. As shown in Figure 4, if a query needs to find all possible
paths from node t to node q, the system would first find the
edge (H,q) and then would enumerate within the hyper-node all
possible paths from node t to node p, which can be (N-1)!, where
N is the number of nodes in the hyper-node. If the path detection
algorithm is executed on the original graph, it can avoid the extra
step of enumerating the edge (H,q). So, if number of paths
between hyper-node H and any external node q is more than
one, there will be proportionate increase in the total cost for
path enumeration.

3. Path Normalization
Since a Web graph representing a social network may contain
thousands of nodes and edges, computation of paths against
queries may make the query processing very slow. Moreover,
Section 2.3 has shown that hyper-node based compression,
though space efficient, may take even higher time for path
enumeration.
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The alternative approach will be to pre-compute and store all
simple paths. However for a large graph, storage of all pre-
computed simple paths of different lengths and then to index
them and access them against queries may not make the query
processing efficient. This would also need too much of space.
So in order to alleviate such problem, a trade-off is necessary.
Here, a few paths and sub-paths will be pre-computed and
stored and all the simple paths of the DAG should be computable
from them. This process has been termed as Path
Normalization [6].
This section describes the path normalization process in
detail and proves it to be minimal and complete. A modified
DFS algorithm has been provided for this purpose. Time
and space complexity of the algorithm has also been
discussed. Minimality Constraint of the normalization process
ensures that an edge appears only once in the normalized
path set. Lemma 4 proves the minimality. Completeness
Constraint, on the other hand proves that all simple paths
present in the original graph can be generated from the
normalized path set and no extra path gets generated either.
A reconstruction algorithm to this effect has been provided in
this section.
DAG generated as the outcome of the compression process,
is stored as adjacency lists. The paths are computed from
the adjacency lists. As discussed earlier, queries on a social
network are mainly of two types; hyper-structure based query
or path-based query. A path based query will be either of the
type:

“Find all paths passing through nodes na and nb”
or of the type:

“Is there a path between nodes na and nb”

While the first query returns all possible paths between nodes
na and nb, second one returns a boolean result True or False.
One simple way for path enumeration is to generate the DFS
(Depth First Search) tree from each node of the network.
Each branch of each such tree will provide a path. Here, a
path is defined as a node sequence. Once again, since the
DAG is the outcome of a compression process, a node may
be either a simple node or a hyper-node. However, this
phenomenon is transparent to the path normalization
process. Now the paths obtained from DFS trees may be
stored with proper ids. They may be indexed and then
retrieved directly against appropriate queries. However, many
of these paths will have redundant node sequences used
for storage. If any two such paths are considered,

• they may either be isolated (i.e. two paths may have
mutually exclusive node sequences) or

• one may be totally covered by the other (i.e. one node
sequence is the subset of the other) or

• two paths may have a common sub-path that can be
obtained by the intersection of the corresponding node
sequences.
The word normalization has been borrowed from relational
database design theory. In relational normalization, total
attribute set, called universal relation, is decomposed into
smaller subsets of attributes generating separate relations
and thereby arriving at a relational schema for the problem
under consideration. The main purpose of such normalization
process is to avoid redundancy of data satisfying the inter-
attribute dependencies. Besides preservation of inter-
attribute dependencies, normalization process reduces
repetition of data to a great extent. However, since

lossless. In other words, the decomposition process should
be such that the original universal relation can be
reconstructed by using all the decomposed relations. Since
all queries in a database can be answered using a universal
relation, main advantage of normalization is the saving of
space by avoiding data redundancy.
Path normalization process also tries to achieve same type
of advantages for a DAG. If all paths from all nodes are
generated and stored, many redundant node sequences will
be stored. Normalization process should ensure that only
non-redundant paths and sub-paths are generated and stored.
So, redundancy is avoided in the storage of edges. As a result
of path normalization, an edge should appear only once in
the normalized path-set. However, similar to relational
normalization, path normalization process should also ensure
lossless decomposition. In other words, all the simple paths
of the original DAG should be computable from the normalized
path-set. So, the path normalization process should maintain
two essential properties:
Redundancy Avoidance: Path Normalization process should
ensure that no edge appears more than once in the
decomposition process and subsequent storage. So
redundancy avoidance in path normalization process is
complete. It is the Minimality Constraint of the normalization
process. With the help of a simple heuristic rule for the
decomposition process, this constraint can be satisfied.
Lossless Decomposition: Since the normalization process
stores only a subset of all the possible simple paths and
subpaths, it becomes essential to prove that all the simple
paths of the DAG under consideration are computable and
no extra path can be generated. It is the Completeness
Constraint of the normalization process. With the help of a
reconstruction procedure on the normalized path set,
completeness of the decomposition can be proved. For this
purpose, some additional information are also stored during
the decomposition process.
As mentioned earlier, generation of all simple paths for a DAG
can be done by generating DFS trees from each node. A
modified DFS algorithm can be used for the generation of
normalized path-set. As the first step to achieve this end, all
nodes need not be considered for generation of DFS tree.
Lemma 3: In a digraph, for each edge (na, nb), DFS tree
generated from node na, totally covers the DFS tree generated
from node nb.
So, in a DFS tree, if nb is a descendent of na, then dfs(nb) Í
dfs(na), where, dfs(ni) is the DFS tree drawn with node ni  as
the root.
Proof of this lemma has been omitted, since it is directly
derivable from the well-known Parenthesis Theorem of depth-
first search and proof of the theorem is available in all
standard texts on graph algorithms [5][12].

So, for any edge (na, nb), DFS tree from node nb is a sub-tree
of the DFS tree from node na. Hence, any path from node nb
will be a sub-path of some path from node na. In other words,
to avoid redundancy, if the paths from node na are stored,
paths from node nb need not be stored. So, the first step of
normalization is to choose only those nodes of the graph
where from the DFS trees and thus the paths will be generated
and stored. Naturally, any such node should not have an
ancestor. Since the compressed graph is a DAG, the path
generation process will not encounter any cycle. The different
types of nodes present in a DAG are:
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Definition 1.  Source
If for a node ni, ind(ni) = 0, then ni  is a Source, where ind(ni)
represents the in-degree of the node ni.
So, DFS tree generated from node ni will not be covered by
any DFS tree generated from any other node.

Definition 2.  Sink
If for a node ni, outd(ni) = 0, then ni  is a Sink, where outd(ni)
represents the out-degree of the node ni.
So, any path reaching node ni cannot extend any further and
ni is a sink.
Definition 3. Anchor Node
Anchor Nodes are mainly of two types,
1. if for a node ni, outd(ni) > 1, and ni is not a Source, then ni
is an Anchor Node,
2. if for a node ni, ind(ni) > 1, and ni is not a Sink, then ni is
an Anchor Node,
So, for a node ni, if both ind(ni) > 1 and outd(ni) > 1, then also
ni is an Anchor Node.
Anchor nodes play a very important role in the normalization
process. The anchor nodes and their corresponding in-
degrees or out-degrees determine the cardinality of the set
of non-redundant paths and sub-paths that need to be
generated during path normalization.
Using the above definitions of nodes, a Simple path is defined
as:
Definition 4.  SimplePath
A  Simple  Path is  a  path  from  a  Source to  a  Sink. So, if  na
is  a  Source and  nb  is  a  Sink, then the node sequence
(na, ……., nb) represents a Simple Path.
In the normalization process, DFS trees are drawn only from
sources. According to Lemma 3, DFS tree from any other
node will be the sub-tree of a DFS tree drawn from some
source. So, paths generated from other nodes will be sub-
paths of the paths generated from sources. DFS trees from
all the sources, will provide all possible simple paths
present in the graph. Any path from any node other than the
sources will be a sub-path of a simple path already
considered. So, it is sufficient to generate, store and index
only the simple paths to cover the total set of paths present
in the graph.
Though the simple paths provide a unique set of paths for a
graph, storage of such paths is not free from repetition. Two
simple paths may have considerable overlap. If both the
paths are fully stored, the edges belonging to the overlapping
portion will be stored more than once. Since the graphs under
consideration have hundreds of nodes, storage of all simple
paths may give rise to too many redundant sub-paths. Path
Normalization process intends to store only non-redundant
paths and sub-paths, so that an edge in the graph is stored
only once. Now, if a graph has n simple paths, normalization
process can make n2 order comparisons among the paths
to find the overlapping sub-paths between any two simple
paths and store them only once. However, that process would
be computationally prohibitive for a real-life application
involving hundreds of nodes and edges. So, a better method
for normalization is required.

3.1   Generation of Normalized Set of Paths
If any three nodes of a DAG are considered, they can be
connected in only three ways; Chain, Cap and Cup.
The Chain structure, as shown in Figure 5, is a sequence of
three nodes where two consecutive nodes are directly con-
nected. So in this structure, the DFS tree generated from node

 -

n2 in the graph is inevitably a part of the DFS tree generated
from n1.  Similarly, the DFS tree generated from node n3 in the
graph is a part of the DFS tree generated from n2 and hence of
n1 as well.
So, the DFS tree from node n1 will generate all possible
paths from n1 and will cover all paths starting from n2 and n3.
The Cap structure, of Figure 6, shows two nodes n2 and n3,
linked to a root node n1 giving it a cap-like structure. Hence, the
DFS tree generated from n1 will totally cover the DFS trees
generated from both n2 and n3. So, the paths generated from n2
and n3 are all contained in the paths generated from n1.
So in Figure 5 or in Figure 6, if node n1 is considered to be a
Source, DFS trees and consequently the paths from nodes
n2 and n3 need not be considered for storage. The paths
generated from n1 will cover them.
The Cup structure, as shown in Figure 7, exhibits two nodes
n1 and n3 linked to a node n2 giving it a cup-like appearance.
Here, the DFS tree under n2, is a part of the DFS tree starting
from either n1 or n3 because both covers node n2. So if the
paths are generated from both n1 and n3, paths from n2 will
appear twice. So, in order to avoid such redundancy, if paths
from n1 are generated, then from n3 only the sub-paths
between n3 and n2 need to be generated.
Once again in Figure 7, if both node n1 and node n3 are
Sources, all the simple paths from both n1 and n3 will be
generated and stored. However, all the paths from node n2
will be sub-paths for both sets of simple paths. Path
normalization process should stop this redundant storage
of sub-paths. So, if the path generation starts from node n1,
all the simple paths from n1 are generated and stored. In
case of node n3, only the edge (n3, n2) is stored, since the
paths from n2 have already been considered as sub-paths of
the simple paths generated from node n1. Similarly, if the
path generation starts from node n3, all the simple paths
from n3 are generated and stored. In case of node n1, only
the edge (n1, n2) is stored, since the paths from n2 have already
been considered as sub-paths of the simple paths generated
from node n3.
So depending on the starting node, the normalized sets of
paths in the above two cases are different. Informally
speaking, normalization process generates and stores non-
redundant set of paths only, and the resultant set of paths
obtained out of the normalization process is not unique. In
order to avoid this problem, a standardized node encoding
scheme needs to be used. Agrawal, Borgida and Jagadish
[3] proposed a node encoding scheme in 1989, which
subsequently has become popular and is widely used for
numbering the nodes in a graph. The present paper has
also followed the same nomenclature. As a result, node 1 in
the DAG always refers to a Source node and the path
normalization process also starts from this node making
the normalized path set unique.

Figure 5. Chain Structure

Figure 6. Cap Structure Figure 7. Cup Structure
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3.1.1   Modified DFS Algorithm

    DFS (G)
     begin

for each vertex u C V (G) do
begin
   color[u]    WHITE

                    (u)   NIL
end;
for each vertex v C V(G)
if ind(v)=0 then DFS_VISIT (v)

              end;
    DFS_VISIT (v)
    begin

if Adj[v] =    and color[v] = BLACK then
begin
    color[v] = GRAY
    for each vertex x C Adj[v] do
    if color[x] = WHITE or GRAY then
    begin
           color[x] = GRAY
          path = path U (v,x)
         DFS_VISIT(x)
    end
   else
    begin
        path = path U (v,x)
        store path with new-id

                        path =
    end
end
else

                begin
    color[v] = BLACK
   store path with new-id
   path =
end
color[v] = BLACK

      end;
 Figure 8.   Modified DFS Algorithm

The modified DFS tree generation algorithm proposed in
this paper basically follows the nomenclature of the original
DFS algorithm as given in [12]. In order to describe the tree
generation process, the nodes of a graph are assigned with
different colors depending on the state of execution of the
corresponding algorithm. The assigned colors are:
WHITE: A node that has not been visited yet. Initially all nodes
are WHITE.
GRAY: A node that has been traversed at least once but all
paths out of it have not been traversed.
BLACK: A node is made black when all paths out of it are
traversed.
In the algorithm,
V(G) : Set of all nodes of a DAG (G) for which the algorithm is
executed.
     (u) : Predecessor of a node u.
Adj(u) :  Set of all adjacent nodes of a node u.
     : Represents a set to be null.
DFS : Function to generate the DFS tree. It takes the Graph
under study as input.

The modified algorithm of Figure 8, recursively generates
the normalized set of paths from each Source. The salient
features of the algorithm are:

• In the normalized set of paths generated from this
algorithm, the starting node of any member path (simple
path or a sub-path) is either a Source or an Anchor node, that
is already a member of another path but still has successors.

• Any member path in the normalized set of paths either
terminates at a Sink or at a node which has already been
colored BLACK (i.e. all its successor nodes have already
been visited).
If path generation is done only for Source nodes, standard
DFS algorithm will generate all the simple paths. As a result
the overlapping sub-paths among these simple paths will
be repeated. The modified algorithm will consider an edge
only once in the normalized set of paths.

3.1.2    Redundancy Avoidance

  Figures 9. Sample DAGs

Salient features of path normalization algorithm can be explained
from the sample DAGs shown in Figure 9. All the DAGs have a
single Source node. DAG shown in Figure 9(a) has no Anchor
node and so both standard DFS and the modified DFS should
generate same path-set {(1,2), (1,3), (1,4)}. Figure 9(b) has only
one Anchor node. Here, standard DFS will provide all simple
paths as {(1,2,3), (1,2,4,5)}, whereas the modified algorithm will
generate the normalized path-set as {(1,2,3), (2,4,5)}. Similarly,
DAG in Figure 9(c) has the simple paths as obtained from
standard DFS are, {(1,2,3), (1,2,5,6), (1,2,5,7), (1,4,5,6),
(1,4,5,7), (1,4,8)}. On the other hand, normalized path-set as
obtained from the modified algorithm is, {(1,2,3), (2,5,6), (5,7),
(1,4,8), (4,5)}. These sample DAGs show that an edge is never
repeated in the normalized path-set (e.g. edge (1,2) in Figure
9(b) is not repeated in normalized path-set). Moreover, even
the number of paths in normalized path-set may be less than
the total number of simple paths present in a DAG (e.g. in DAG
of Figure 9(c), normalized path-set has 5 members against 6
simple paths present in the DAG).
Lemma 4: Path normalization process avoids redundancy
completely.
Proof:
Redundancy avoidance will be considered complete only if
no edge is repeated in the normalized set of paths. The path
normalization process or the modified DFS algorithm
executes a recursive function DFS_VISIT that terminates
either on a Sink node or if the visited node has the color
BLACK. Once again, as soon as all the descendents of a
node are visited or if a node does not have any descendent,
its color is made BLACK. So, the recursive function DFS_VISIT

DFS_VISIT: Function that takes a node as input and traverses
its outgoing directed edges to reach its adjacent nodes. It is
done recursively to generate the paths.

Hence path normalization results in a set of paths for the DAG
that contains simple paths as well as sub-paths shared by two
or more simple paths considered only once. Using the
normalized set of paths, all the simple paths of the graph can
be generated. The reconstruction process developed for this
purpose, has been discussed in Section 3.2.
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never accesses any node beyond a BLACK node. So, a node
once made BLACK (i.e. its descendents are already visited),
edges beyond it will never be visited twice. Recursively, the
DFS_VISIT function turns the color of the nodes from a Sink
to a Source as BLACK eeping no scope of visiting the same
edge more than once and subsequently to add them to a
path and to store them. Hence the redundancy avoidance is
complete and the path normalization process satisfies
Minimality Constraint.

3.1.3    Time and Space complexity of Path Normalization
The time complexity of the standard DFS algorithm is O(V+E)
[12]. Since path normalization uses a modified DFS algorithm,
its time complexity is also O(V+E). However, since
normalization process does not visit an edge more than once,
in actual application the execution time for modified DFS
algorithm in path normalization process will be less than
that is required in a standard DFS for the same DAG. This
saving of time will increase with the increase of  number of
anchor nodes in a DAG.
The number of simple paths generated by the standard DFS
algorithm:

   NSP     NS + NS.    u      NA | Adj[u] |

The number of paths (simple paths and sub-paths) generated
in the normalization process:

    NNP    NS +     u     INA | Adj[u] - 1|
where, NSP = number of simple paths,

NS = number of source nodes,
NA = number of anchor nodes,
NNP = number of normalized paths.

    = Product function. (It is different from      (u) used
in the modified DFS algorithm of Figure 8, where     (u)
represents the predecessor of a node u).

    = Function for Summation.
From the expressions of NSP and NNP it is apparent that for a
real life network, the cardinality of the normalized path set is
much less than the number of simple paths present in the
graph. Moreover the normalized set of paths contains many
sub-paths that are much smaller than any simple path
present in the graph. Similar to time complexity analysis,
saving of space will increase with the increase of number of
anchor nodes in a DAG.

3.2    Reconstruction process

As discussed earlier, all simple paths of a DAG should be
computable from the normalized path-set. Moreover, a path
query on a DAG may need to construct one or more simple
paths from the normalized path-set. So, a proper reconstruct
process is necessary. However, Completeness Constraint,
as mentioned earlier should be satisfied. In other words,
reconstruction process should not only generate all the
simple paths present in original DAG from its normalized
path-set, but it should also ensure that no additional path
gets generated.
As discussed earlier in Section 3.1, the popular node
encoding scheme described in [3] is used for the DAG
generated after fusion and as a consequence, node 1 always
refers to a Source node. So, the normalized path set
generation algorithm always starts with a simple path starting
from node 1.
During normalization, some data structures are built to store
data related to normalized path-set. These data structures and
other normalized path related information are used at

the time of reconstruction. Each normalized path is stored
with an id, a path type and the corresponding node sequence.
Normalization process generates 4 types of paths.

• Path type [1,1] : A simple path i.e. a path that starts from
a Source node and ends in a Sink.

• Path type [1,0] : A sub-path that starts from a Source
node but ends in an Anchor node.

• Path type [0,1] : A sub-path that starts from an Anchor
node but ends in a Source node.

• Path type [0,0] : A sub-path that starts from an Anchor
node and also ends in an Anchor node.
Normalized path-set obtained from DAG in Figure 9(c) is,
{(1,2,3), (2,5,6), (5,7), (1,4,8), (4,5)}. Table 1 shows how these
paths are stored.

Path-id    Path-visit    Path-type      Node-sequence
     P1 0             [1,1]                1,2,3
     P2 0             [0,1]                2,5,6
     P3 0             [0,1]                5,7
     P4 0             [1,1]                1,4,8
     P5 0             [0,0]                4, 5

• For each path, normalized path-set provides the node
sequence against its path–id. So, a search from a path to its
nodes can be made using this structure by proper indexing
against path-id. Since the normalization algorithm always
starts from node 1 as generated by the node encoding
scheme of [3], the first member of the normalized path set is
always a simple path (path type [1,1]) that starts from node 1.
A boolean flag Path-visit is associated with each path. Initially
it is set to 0 for all paths. For each path it is set to 1 as soon
as the path is visited for the first time. However, a node may
appear in more than one path. So, to find all paths that
contain a certain node, the same structure is not suitable. It
needs a reverse mapping facility, i.e. a list, where against
each node, the ids of normalized paths are provided where
the concerned node is a member. A structure called Node
Bucket has been made for this purpose. Against each node
of a DAG following information are maintained:
Node-id, [in-degree, out-degree], Node-visit, Path-id1 (start-
node, end-node) ….... Path-idn (start-node, end-node)
Node-visit for each node is initially set to 0. It is set to 1 when
the node is visited for the first time.
Node buckets for DAG in Figure 9(c) is shown in Table 2.

1  [0,1]  0   P1 (1,3)    P4 (1,8)
2  [1,2]  0   P1 (1,3)    P2 (2,6)
3  [1,0]  0   P1 (1,3)
4  [1,2]  0   P4 (1,8)    P5 (4,5)
5  [2,2]  0   P2 (2,6)    P3 (5,7)   P5 (4,5)
6  [1,0]  0   P2 (2,6)
7  [1,0]  0   P3 (5,7)
8  [1,0]  0   P4(1,8)

Table 2.  Node Buckets

Reconstruction algorithm for a DAG generates all simple
paths using its normalized path-set and node buckets. It is a
stack-based algorithm. The algorithm is given below :

Table 1. Normalized Path-set’
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Reconstruction Algorithm
procedure MAIN
begin
       Load files: Normalized Path Sets and Node Buckets // Refer Table 1 and 2

 P-Stack = empty; // primary stack used in reconstruction process
       S-Stack = empty; // secondary stack for exception cases in reconstruction
       leaf(v) = false;     // a Boolean variable assigned to each node v.

    // Initially leaf(v) = false for all nodes;
                                 // leaf (v) = true,  if a node is a leaf.
       int out-count(v);  // stores the current value of out-degree for each node v (outd(v) )

 set pointer bp to the first element of the node bucket referring to node 1;
   // bp  is a pointer that points to the rows of the node bucket

                                //algorithm starts from first element of the first node bucket
                               // always refers to Node 1 and a path type [1,1]

for each node n in node buckets
begin

out-count(n) = outd(n);
  if outd(n) = 0 then leaf(v) = true;

RECONSTRUCT(v);
      end;

DELETE(p)
end;

procedure RECONSTRUCT(v)
begin

repeat
take an element from node bucket for node v;
refer to corresponding path p in Normalized Path-set;
begin
do while Path-visit (p) =1 AND node bucket for node v not empty
       go to next element of node bucket for node v;

Path-visit (p) =1;
for each node n in p
begin

PUSH (n, P-Stack); //Uses the standard PUSH operator for a stack
If out-count(n) <> 0 then out-count(n) = out-count(n)-1;
Node-visit(n) = 1;

end;
 if Path-type(p) <> [1,1] then

begin
if last node x pushed in P-Stack has leaf(x)=true then

begin
save stack content as a new path with new path-id,
Path-type = [1,1] and Path-visit = 0 in Normalized Path-set;
Node buckets of involved nodes updated with new path-id;

end
else EXCEPTION(x);

        end;
 repeat

 POP (w, P-Stack); // standard POP operator to pop the last node in stack
if out-count(w) <> 0 then
begin

              set pointer bp to node w in node bucket;
RECONSTRUCT(w);

       end;
until P-Stack = empty;

end;
set pointer bp to next node n in node buckets;
if Node-visit(n) = 0 then RECONSTRUCT(n);

until all nodes in node buckets are visited;
end;
procedure EXCEPTION(x)
begin

set pointer bp to node x in node buckets;
out-count(x) = outd(x);

          repeat
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begin
take an element from node bucket for node x;

refer to corresponding path p in Normalized Path-set;
out-count(x) = out-count(x) – 1;
do while Path-visit (p) =1 AND node bucket for node x not empty

go to next element of node bucket for node x;
Path-visit (p) =1;
for each node n in p
begin

repeat while n <> x
PUSH (n, S-Stack); //Secondary stack is used for Exception cases only

for rest of the path p, PUSH (n, P-Stack);
end;
if last node t pushed in P-Stack has leaf(x)=true then

begin
save stack content as a new path with new path-id,
Path-type = [1,1] and Path-visit = 0 in Normalized Path-set;
Node buckets of involved nodes updated with new path-id;

end
else EXCEPTION(t);
repeat

POP (n, P-Stack);
  until n = x;

     end;
     until out-count(x) = 0;
end;

Procedure DELETE(p)
begin
    for each path p in Normalized Path-set

if Path-type(p) <> [1,1] then
delete p from Normalized Path-set;
resultant Path-set is the reconstructed set of paths;

end;

A walk through the algorithm for DAG in Figure 9(c) augments
the Normalized Path-set to generate the simple paths (1,2,3),
(1,4,8), (1,2,5,6), (1,2,5,7), (1,4,5,6) and (1,4,5,7). The sub-
paths generated during path normalization are removed by
the process DELETE(p) leaving only the simple paths.
Reconstruction algorithm automatically proves the following
Lemmas.
Lemma 5: Reconstruction process is complete.
Proof:

• Completeness of the algorithm ensures that from
normalized path-set all simple paths can be generated. At
the same time, algorithm does not generate any extra path
not present in the original graph.

• Since, the stack-based algorithm traverses the
normalized path-set and corresponding node buckets
controlled by the specified out-degree of each node, it cannot
generate any extra path.

• Most of the simple paths are generated by natural
concatenation of normalized paths (as in case of P1, P2 and
P3 to generate simple paths 1-2-3, 1-2-5-6 and 1-2-5-7).
Even the exception cases are handled by Step 8. So, the
algorithm automatically generates all simple paths of the
original graph.
Lemma 6: Path generation against query is minimal in the
reconstruction process.
Proof:
A path query is of two types :

Find all simple paths through node na.
Find all paths between node na and node nb.

For the first case, if na is a Source node, simple paths are
obtained by considering only the normalized paths in the
node bucket of na and following the algorithm. Node buckets
not involving na are not considered and so simple paths not
involving na are also not generated.
If na is an intermediate node, back tracking the node bucket
provides all simple paths involving na only (e.g. node 5 tracks
P2 to P1 and also P5 to P4).
In the second case, paths for na and nb are separately
computed and intersection of two sets provides the required
result.
Algorithm will not traverse all the paths in the normalized
path-set or all the node buckets for the above queries. Hence,
the path generation process is minimal.

4. Relevant Operators
Since a web-graph used as a social network usually involves
hundreds of nodes and edges, it has been pre-processed to
convert it to a DAG. Hyper-node based compression,
described in Section 2, makes this conversion. Now, by path
normalization process, described in Section 3, a limited
number of paths and sub-paths of the compressed DAG are
generated and stored apriori in order to avoid generation of
all paths at query time. So, any query on the original graph
representing a social network will access the structural
components evolved during compression and/or the paths
of the compressed DAG through the normalized path-set
and node buckets. Now in order to process such queries,
appropriate operators need to be defined to navigate over
the compressed graph structure and the normalized paths.
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Though this section does not cover the exact algorithms
against each operator, it tries to justify the requirements of
the operators defined.

       Figure 10.  Structural Component Hierarchy

Figure 10 shows the structural component hierarchy as obtained
from the hyper-node based compression process of Section 2.
So any structural navigation would search through this ancestor
and descendent hierarchy and appropriate operators are required
for this process.

4.1    Hierarchical Navigation Operators
Ancestor: Ancestor or Containment (⊂ ⊂ ⊂ ⊂ ⊂ ) operator finds all the
structures that are ancestor to a referenced structure as defined
in structural component hierarchy of Figure 10. Similar to the
method of referencing a node and to navigate a DAG structure
described in [3] and [11], a propagate-upward operator or ⇑  (Si)
has been defined that recursively propagates upwards following
the complex structural component hierarchy of Figure 10. It
returns all the ancestors of a referenced structure Si till the
original digraph. So by definition,
 ⊂ ⊂ ⊂ ⊂ ⊂ (Si) = {c-id | c-id   ⊂  ⊂  ⊂  ⊂  ⊂ (Si)   ⇑ (Si)} where, c-id = Structural
Component id.
For example, from the sample social network of Figure 1, 2 and
3, ancestor operation on the homogeneous hyper-node H-1 (1-
2-3) will return the heterogeneous hyper-node H-2 and the
original di-graph.
   ⊂ ⊂ ⊂ ⊂ ⊂ (H-1) = {H-2, G}
Descendent: Descendent ( ⊃  ⊃  ⊃  ⊃  ⊃ ) operator finds all the structures
that are descendent to a referenced structure as defined in
complex structural component hierarchy of Figure 10. Once
again, similar to the method described in [3] and [11], a
propagate-downward operator or ⇑ (Si) has been defined that
recursively propagates downwards following the complex
structural component hierarchy of Figure 10, and returns all the
descendents of referenced structure Si till the leaves (nodes of
original digraph). So by definition,
  ⊂ ⊂ ⊂ ⊂ ⊂  (Si) = {c-id | c-id    ⊂  ⊂  ⊂  ⊂  ⊂  (Si)    ⇑ (Si)}
For example, from the sample social network of Figure 1, 2 and
3, descendent operation on the homogeneous hyper-node H-1
(1-2-3) will return all the nodes and edges within it.
    ⊂⊂⊂⊂⊂  (H-1) = {(1,2), (2,3), (3,2), (3,1), 1, 2, 3}

Ancestor and Descendent operators are two fundamental
operators to navigate through the structural component hierarchy
generated by the hyper-node based compression process.
Since this paper is mainly concerned with the graph structure
of a web-graph, it is not concerned with any data that may be
stored in each node of such graph. In real life application, the
nodes will have data relevant to the application domain. So the

fundamental operators ancestor and descendent will have to
be modified to accept any node–based predicate and hence to
make restricted retrieval of ancestors or descendents.

4.2    Path related Operators
Besides hierarchical navigation, a social network will also
involve operators for path searching. Such operators primarily
provide three types of information,
1. whether node m is reachable from node n, asking for a
boolean output,
2. find all paths through node n, returning a set of paths,
3. find all paths between node m and node n. This operator
will also verify using the first operator, whether node m is at
all reachable from node n, before enumerating paths
between them.

Reachability: Reachability operator (R ) is a boolean operator
that returns true if a node is reachable from a specified node. In
the definition of strongly connected component in Section 2,
justification for a reachability operator has already been
discussed. So, in order to find whether a node y is reachable
from another node x, the system should verify whether there
exists any path that passes through both x and y where x
appears before y in the node sequence. However,
enumeration of paths between x and y is not necessary to
ensure reachability. [3] has defined a node encoding scheme
where each node i is associated with a node number in,
where in indicates the number of the node i. Each node is
also associated with an interval of node numbers [sn,

 tn]. The
interval indicates that node number range for nodes s to t
(both sn

 and tn included) are reachable from i.
If sn covers [pn, qn], then the condition that the node t is
reachable from node s is,

           { true,   if  p
n     

t
n     

q
n

                R  (s,t) =  { false,  otherwise

For example, in Figure 1, R(4,8) will return true but R(8,4) will
return false.

Path: Path (ρ ρ ρ ρ ρ ) operator returns all possible paths from a source
node, where a source is a node with in-degree zero. Enumeration
of a path needs a recursion process that navigates from one
edge to the other, recursively adding them in a sequence to
form a path. [2] and [22] have proposed a recursion operator a
over a relation R containing the edges of a graph and D is an
attribute of a(R) contains a set of edges forming a path.
Exploiting this process, the present effort also defines a similar
operator over any digraph G for enumerating paths from any
source node s as,

        ρ ρ ρ ρ ρ (s) = {p | p               ( from = S (   (G)))}

where, p indicates any path and    represents the standard
selection operator used in relational algebra.

For example,
for sample network (G) in Figure 3,    from = H-2 (G) will return two
edge sets {(H-2, 5), (5,6), (6,8)} and {(H-2, 5), (5,7), (7,8)}.
Now to apply   operator, for each path p,      considers the
corresponding edge set and    (G) concatenates them to form
a path. Thus two paths (H-2, 5)-(5,6)-(6,8) and (H-2, 5)-(5,6)-
(6,8) are formed at the end of ρρρρρ (H-2) operation. The detail syntax
and semantics of     and     are given in [2] and [22].
Enumeration: Enumeration operator (E) returns all possible
sub-paths between any two nodes. If the concerned nodes are
source and sink, then as per the definition of path, all
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simple paths will be obtained. The process of enumeration is
similar to the enumeration of path as discussed earlier.
An enumeration operator over any digraph G for enumerating
paths from any source node s to any target node t is defined as,

  E (s,t) = {p|p                (    from = s, to = t (    (G)))} where, p indicates any
path.

Connotation of    and     are same as in path operator. For
example, in Figure 1, E (5,8) would return 2 sub-paths, {(5,6),
(6,8)} and {(5,7), (7,8)}.
Operators in this section cover only those, which are specially
designed and considered for searching and navigation on a
compressed web-graph used as a social network. An exhaustive
list of operators required for executing queries on web
repositories has been discussed in [27]. Authors of the present
paper have used some of those operators for the implementation
of their system but only the operators relevant to the
compression and path normalization have been discussed in
this paper.

5. Related Work
Sue1 and Yuan [33] have shown different sources of
compressibility of web graphs and of the associated set of URLs
in order to obtain good compression performance. Here the
structure of the graph has been defined by considering a node
for each page and a directed edge for each hyperlink between
pages. The purpose of the study is to construct highly
compressed representations of web graphs that can be stored
and analyzed in machines with moderate amounts of main
memory. Main operations considered are:
(1) getIndex(URL): Given a URL, return the index of the
corresponding node in the structure.
(2) getUrl(index): Given the index of a node in the data structure,
return its URL.
(3) getNeighbors(index): Given the index of a node in the data
structure, return a list of the indices of all its directed neighbors.
The authors have discussed some methods of compressing
link structures and URL related texts. They have also discussed
the possibility of fusing cluster of nodes to a single node but
have not tried to implement it. Methods described in this paper
are particularly suitable for search engines.
Exploiting random graph models for describing the web, Adler
and Mitzenmacher [1] have developed algorithms that are based
on reducing the compression problem to the problem of finding
a minimum spanning tree in a directed graph related to the original
link graph of the web. The salient features are:
      · A compression algorithm specifically designed for graph
structures with many shared links. Under appropriate
assumptions, the running time of the algorithm is O(n log n),
where n is the number of nodes in the graph. The algorithm
requires finding a directed minimum spanning tree on a graph
associated with the original graph.
      ·Authors have provided results demonstrating that several
natural extensions of their algorithm are NP-Hard.
      ·Authors have also demonstrated the effectiveness of their
approach on a test bed of random graphs derived from the
random graph models that have motivated their work.
Boldi and Vigna [7] have considered the web as a graph where
each node represents a URL and hyperlinks between them are
the edges of the graph. The basic approach is a coding scheme
for the links and URLs and the compression is done to such an
extent that each link is represented by 3.08 bits. The study has
been conducted considering a web graph having 118 Mega
nodes and 1 Giga links.

Raghavan and Garcia-Molina [26] have proposed an S-Node
representation of web graph for efficient query processing on
the web. This paper proposes a two-level representation of web
graphs, called an S-Node representation. In this scheme, a web
graph is represented in terms of a set of smaller directed graphs,
each of which encodes the interconnections within a small
subset of pages. A top-level directed graph, consisting of
“supernodes” and “superedges”, contains pointers to these
lower level graphs. By exploiting empirically observed properties
of web graphs to guide the grouping of pages into supernodes,
and using compressed encodings for the lower level directed
graphs, S-Node representations provide the following two key
advantages:
       · First, S-Node representations are highly space-efficient.

S-Node representations required little over 5 bits/hyperlink
to encode the web graph structure, compared to over 15
bits/hyperlink for a straightforward Huffman-encoded
implementation.

     · Second, by representation the Web graph in terms of
smaller directed graphs, this scheme has provided a natural
way to isolate and locally explore portions of the Web graph
that are relevant to a particular query. The top-level graph serves
the role of an index, allowing the relevant lower-level graphs to
be quickly located.

6. Conclusion
The present paper has discussed some compression
techniques for a web graph used as a social network. Authors
of the present paper have actually studied the possibility of
developing a data model for a social network. Since many
academic as well as commercial use of the web prefer to see a
web graph as a social community, data model developed by the
authors are also applicable to web communities. Web can be
seen as sets of communities, connected to or isolated from
each other. Each community consists of nodes representing
the members of the concerned community with edges connecting
them. Moreover within the same community all members may
not have connection to all other members giving rise to the
formation of a set of isolated sub-graphs. This entire paper has
discussed about handling one such sub-graph. This can easily
be extended to all the sub-graphs present in a community.
A web graph usually involves a large number of nodes and links.
So, in order to handle any such graph in a data model, suitable
compression techniques need to be developed for efficient use
of disk space. The earlier works have shown that besides the
effort of Raghavan and Garcia-Molina, none of them has
considered compression on the graph structure. The
approaches are centered around coding of links and URLs for
efficient handling of web graph in the main memory. These
approaches are particularly suitable for search engines and not
for developing a data model.
Present paper has considered a two level compression
technique. In the first level, the structural properties of a graph
are studied and strongly connected components are fused to
reduce the original graph to a DAG. Paths on this DAG are then
stored efficiently using a Path Normalization technique. Space
complexity expressions indicate the efficiency of the method.
Relevant operators required for accessing the original graph
through the compressed representations have also been
discussed.
Future efforts will have two approaches :
      ·To study the performance of proposed compression
techniques with different graph and DAG structures.
      · A social network involves evolving graph structure, i.e.
graph structure changing over time. Present study is restricted
to a snap shot of a social network. Temporal variation of social
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network and corresponding change in data model and
compression techniques need to be studied.
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