Home| Contact Us| New Journals| Browse Journals| Journal Prices| For Authors|

Print ISSN:
Online ISSN:


  About JDP
  DLINE Portal Home
Home
Aims & Scope
Editorial Board
Current Issue
Next Issue
Previous Issue
Sample Issue
Upcoming Conferences
Self-archiving policy
Alert Services
Be a Reviewer
Publisher
Paper Submission
Subscription
Contact us
 
  How To Order
  Order Online
Price Information
Request for Complimentary
Print Copy
 
  For Authors
  Guidelines for Contributors
Online Submission
Call for Papers
Author Rights
 
 
RELATED JOURNALS
Journal of Digital Information Management (JDIM)
Journal of Multimedia Processing and Technologies (JMPT)
International Journal of Web Application (IJWA)

 

 
Journal of Data Processing
 

A Study of the Multiple Objective Integer Problems
Vassil Guliashki, Leoneed Kirilov
Institute of Information and Communication Technologies – BAS, “Acad. G. Bonchev” Str. Bl. 2, 1113 Sofia & Bulgaria
Abstract: To solve multiple objective convex integer optimization problems, we proposed an interactive population based method in this paper. It is important to increase the speed of the search process for which we have used a heuristic procedure. It helped to detect the non-dominated solutions. We have documented the properties of this method.
Keywords: Exact Methods, Interactive Population-based Approach, Multiple-objective Optimization A Study of the Multiple Objective Integer Problems
DOI:https://doi.org/10.6025/jdp/2021/11/2/41-48
Full_Text   PDF 278 KB   Download:   639  times
References:

[1] Branke, J., Deb, K., Miettinen, K., SlowiDski, R. (2008). Multiobjective Optimization. Interactive and Evolutionary Approaches. (Berlin Heidelberg, Springer-Verlag).
[2] Coello, C. A. C., Lamont, G. B. (2004). Applications of Multi-Objective Evolutionary Algorithms, (World Scientific, Singapore).
[3] Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. Chichester, (John Wiley & Sons).
[4] Ecker, J. G., Hegner, N. S., Kouada, I. A. (1980). Generating All Maximal Efficient Faces for Multiple Objective Linear Programs, Journal of Optimization Theory and Applications, 30 (3) 353-381.
[5] Gal, T. (1977). A General Method for Determining the Set of All Efficient Solutions to a Linear Vector maximum Problem, European J.l of Operat. Res., 1 (5) 307–322.
[6] Garey, M. R., Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, San Francisco.
[7] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning, (Addison Wesley Reading, Mass).
[8] Guliashki, V., Toshev, H., Korsemov, C. (2009). Survey of Evolutionary Algorithms Used in Multiobjective Optimization, Problems of Engineering Cybernetics and Robotics, v. 60, 42-54.
[9] Guliashki, V., Kirilov, L. (2009). SPEA-Based Method for MCDM Convex Integer Problems, Cybernetics and Information Technologies – Journal of Bulgarian Academy of Sciences, 9 (4) 93-101.
[10] Guliashki, V., Kirilov, L., Genova, K. (2012). An evolutionary algorithm for integer multicriteria optimization (EVALIMCO), In: Proceedings of the 10-th International FLINS Conference, Uncertainty Modeling in Knowledge Engineering and Decision Making, 26-29.August, 2012, Istanbul, Turkey, p. 118-123.
[11] Guliashki, V., Genova, K., Kirilov, L. (2013). Hybrid Evolutionary Algorithm for Integer Multiple-Objective Optimization Problems, In: Proceedings of Papers of the XLVIII International Scientific Conference on Information, Communication and Energy Systems and Technologies ICEST2013, (Editor Prof. Dr. Mitrovski, C.), June 26 – 29, Ohrid, Macedonia, vol. I, p. 253-256.
[12] Jaszkiewicz, A., Slowinski, R. (1999). The Light Beam Search approach – an overview of methodology and applications, European J. of Operational Research, 113 (2) 300-314.
[13] Korhonen, P., Wallenius, J. (1989). VIG – A Visual and Dynamic Decision Support System for Multiple Objective Linear Programming, Multiple Criteria Decision Making and Risk Analysis Using Microcomputers, Edited by B. Karpak, S. Zionts, Springer-Verlag, Berlin Heidelberg, p. 251-281.
[14] Miettinen, K., Kirilov, L. (2005). Interactive Reference Direction Approach Using Implicit Parametrization for Nonlinear Multiobjective Optimization, Journal of Multi-Criteria Decision Analysis, vol.13, (2005) p. 115-123.
[15] Nakayama, H. (1995). Aspiration Level Approach to Interactive Multi-Objective Programming and Its Applications, Advances in Multicriteria Analysis, Kluwer Academic Publishers, Dordrecht, p. 147-174.
[16] Narula, S. C., Kirilov, L., Vassilev, V. (1994). Reference Direction Approach for Solving Multiple Objective Nonlinear Programming Problems, IEEE Transactions on Systems, Man, and Cybernetics, 24 (5) 804-806.
[17] Narula, S. C., Vassilev, V. (1994). An Interactive Algorithm for Solving Multiple Objective Integer Linear Programming Problems. European Journal of Operational Research, 79, p. 443-450.
[18] Praditwong, K., Yao, Xin. (2007). How well do multi-objective evolutionary algorithms scale to large problems”, In: Proceedings of IEEE Congress on Evolutionary Computation, CEC 2007. Singapore, 25-28 September, p. 3959 – 3966.
[19] Zitzler, E., Laumanns, M., Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm for multiple objective optimization, In: Proceedings of EUROGEN 2001 Evolutionary methods for design, optimization and control with applications to industrial problems, (2001), p. 95-100.


Home | Aim & Scope | Editorial Board | Author Guidelines | Publisher | Subscription | Previous Issue | Contact Us |Upcoming Conferences|Sample Issues|Library Recommendation Form|

 

Copyright 2011 dline.info