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ABSTRACT:.As a young discipline at the junction of computer science, artificial intelligence and cognitive sciences, knowl-
edge engineering aims at modelling knowledge of a specific domain to operationalise them in a computer system. To this end,
it offers theoretical tools, models and empirical methodologies to support Knowledge sharing between the user and the
system. The work developed here is related to knowledge engineering of a particular type of system: case-based reasoning
systems (CBR) The case-based reasoning (CBR) is to solve a problem by remembering and adapting past cases already
resolved. The CBR systems handle various kinds of knowledge: the case, the domain knowledge, knowledge of similarity and
adaptation. The cases are collected in a gradual manner when using the system and the case base is enriched incrementally,
while other types of knowledge are typically acquired when the system design. In particular the domain knowledge.

This paper presents an approach for acquiring domain knowledge-based adaptation system failures. This approach has been
implemented in a prototype, called FRAKAS, using the description logic.
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1. Introduction

A system of case-based reasoning (CBR) is a system that relies on knowledge. Among these knowledge, there are cases
sources, domain knowledge, and knowledge of similarity and adaptation.

This paper presents an approach to acquire domain knowledge of a CBR system. Specifically, this acquisition is done in
sessions of case-based reasoning: when the target problem is solved by adapting the retrieved case, it is presented to the user
who can demonstrate the fact that the solution is unsatisfactory and why it is, and it is the failure situations of interest here, the
solution may be inconsistent with the knowledge of the expert or may be only partial (missing the user information in order to
exploit this solution completely).

This new knowledge is used to repair and adaptations failed to prevent similar failures in future arguments. Therefore, this work
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concerns the adaptation stage of CBR in [1], [2].

After having, in Section 2, presented a brief review of the case-based reasoning, we introduce and discuss the issues and
objectives of our research in Section 3. In Section 4, these objectives were implemented in a prototype called FRAKAS. Finally,
Section 5 concludes this paper.

2. Case Based Reasoning

In Case based reasoning, cases are generally represented by couples problem-solution, if a source will be denoted by srce -case
= (srce; Sol (srce)) is the part where srce problem and Sol (srce) his party solution. The target case, where only the target problem
is known if target = (target?), The adaptation consists in determining a solution Sol (tgt) from target srce-case for target-case
=completed (target; Sol (tgt)).

This representation is based on the assumption that the representation of a source case in some problem and some solution can
be uniquely independent of the target case.

Case based reasoning (CBR) is a paradigm of problem-solving which uses past experiences to solve new problems.  Reuse of
experience constitutes the main specificity and strength of CBR: reasoning bases itself on remembering and reusing past
situations rather than on the exclusive use of formal knowledge of the domain. The exploitation of past situations is often
profitable, particularly when knowledge of the domain is incomplete: experience still offers a “basis” for the solution. Of course
CBR does not always give the ideal solution to the problem but, if it has the experience of this problem, it always offers a
solution.

This solution, although imperfect, is nearly always satisfactory in real cases. The basic CBR principle, “to solve a  target
problem, retrieve a source case and adapt it ”, can be summarized as in figure 1.

Figure 1.  CBR classical paradigm

2.1 Cycle of reasoning in CBR
A cycle of case-based reasoning is to take as input a new problem target (pbcible) and to be able to infer a solution (solcible)
from the other cases the base, known source case, and noted “cassource”. The first to give an explicit description of characteristics
of the CBR and a methodology for developing a CBR system are Agnar Aamodt and Enric Plaza [1]. For authors, the CBR is
performed in a cycle four steps organized around a case base and knowledge: remembering (“retrieve”), adaptation (“reuse”),
revision (“revised ”) and memory (“retain”). the cycle Agnar Aamodt and proposed by Enric Plaza was a basis for reflection on
the CBR for ensuing years. Variations of this cycle have been proposed, or adding some clarifying steps. We can identify such
a preliminary stage that is developing, thus constituting the cycle shown in Figure 2.

We note SDK domain knowledge: SDK expresses knowledge believed to be correct but not necessarily complete. In particular,
SDK gives necessary conditions for a case to be lawful. [3], [4].

3. Problematic and objectives

Between the domain knowledge (SDK) available to the CBR system, and knowledge of the expert, there is a big difference from
[5], since the domain knowledge are available but are not sufficient, it is therefore necessary to acquire new ones. This problem
is impossible to solve completely for most applications, but we can still learn new domain knowledge thanks to the expert.

Srce
retrieval tgt

Sol(Srce) Sol(tgt)adaptation
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The general principle here is to do reasoning and learning takes place when using the system and aims to acquire domain
knowledge. When the solution is evaluated it may be unable to solve the problem: it is then a failure of reasoning that is the
subject of a process of learning from failure. The expert comes to identify parts of solution inconsistent.

Figure 2.  A CBR cycle ( Cordier et al. - 2006.)

Two types of failures were identified in this paper and lead to acquisition of knowledge:

- Failed due to an inconsistency of the solution with the knowledge of the expert. The expert said that, given what he knows of
domain knowledge, the affirmation of the solution of the target problem is inconsistent. This may mean that the solution itself
is incoherent.

- Failure to have a solution that is only partial. If the solution proposed by the adaptation target is partial, and therefore not fully
satisfactory, the interaction with the expert can help clarify it.

In this paper we used system FRAKAS, so enhancing the use of this system in a real situation and to reduce complexity and
facilitate the work of the expert, it will be necessary to install a new version of  FRAKAS, using the description logic. Thus, we
proposed an algorithm for knowledge base revision in description logics. We chose the formalism of Description logic because
of its ability to dual representation and reasoning about knowledge.

4. FRAKAS (Failure Analysis for domain Knowledge AcquiSition)

FRAKAS is an illustration of the FIKA principles. It defines strategies to interactively learn domain knowledge on-line, by
exploiting reasoning failures and their correction. The learning process occurs during a CBR session. The target problem is
automatically solved by adaptation of a retrieved case and then, the proposition is presented to the “user” who, depending on
his expertise level, is supposed to highlight the part, in the proposition, that is not satisfactory.

FRAKAS offers an interactive mechanism that aims at incorporating new pieces of domain knowledge. The new knowledge is
then added to the system to prevent similar failures occurring in future reasonings and, especially, to perform a new adaptation
with a more complete knowledge. As a result, the system progressively learns new pieces of knowledge and becomes more and
more effective.[6]
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FRAKAS uses a technique of guided retrieval adaptability. When a source case is remembered, it uses conservative adaptation
to infer Sol (tgt) from the target problem and source case. The conservative adaptation is to modify the source case in a minimal
way to be both consistent with the knowledge base and the target problem. The result of the adaptation is presented to the
expert who can then detect an inconsistency of the proposed solution with personal knowledge.

Algorithm of  FRAKAS.
Input: tgt, SDK, CB
 (srce; Sol(srce))   Retr ieval(SDK; tgt; CB)
Sol(tgt)   Adaptation(SDK; (srce; Sol(srce)); tgt)
{Taking into account type 1 failures}
while  Sol(tgt) is inconsistent  do
     The expert points out Inc {Inc: the inconsistency}
     The expert gives a textual explanation of the failure (stored
     for later use)
     ’Inc is false’ is integrated to SDK
     Sol(tgt)   Adaptation(SDK; (srce; Sol(srce)); tgt)
end while
{Taking into account type 2 failures}
 if Sol(tgt) is fully specified then
      Exit
end if
 while There is an inconsistent interpretation of Sol(tgt) do
     {Justification of this loop:}
     {The modification of the knowledge base can generate new
      inconsistent adaptations}
      for all inconsistent interpretation do
            The expert points out Inc
            The expert gives a textual explanation of the failure
            (stored for later use)
           ’Inc is false’ is integrated to SDK
      end for
      Sol(tgt)   Adaptation(SDK; (srce; Sol(srce)); tgt)
end while

4.1 Formalism used: the ALC Description Logic
Description Logics (DL) were first developed to provide a formal meaning, declarative semantic networks and frames, and to
show how such structured representations can be provided with effective tools of reasoning. They form a family of knowledge
representation formalisms that can be used to represent and reason about the knowledge of an application domain in a structured
and formally well understood. They are increasingly important in knowledge representation. [7]

4.1.1 Syntax
The elements of the representation language ALC are the concepts, roles, bodies and forms. Intuitively, a concept represents a
subset of the domain of interpretation. A concept is either an atomic concept (ie,d. A concept name), or a conceptual expression
of one of the following form:

T, ⊥, C    D, ¬ C, C    D,∀ r .C, ∃ r .C where C and D are concepts (atomic or not) and r is a role. In a concept can be associated with
a first-order formula with one free variable x.

For BC ‘Ψ’ in LAC is a finite set of formulas ALC. The terminological part (TBox or terminology to box) of  Ψ is the set of its

_
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formulas terminology. The assertionnelle party (or for ABox assertional box) of  Ψ is the set of its formulas assertionnelles.

An interpretation is a pair I = (∆I , 
·I )  where  ∆I is a nonempty set (the domain of interpretation) and where ·I associated with a

concept C a subset CI of ∆I , a role r in a relationship binary rI on  ∆I  (for x, y  C ∆I , x is related to y is denoted by rI , (x, y) C rI)
and, to an instance has an element  aI of rI. [8]

Given an interpretation I, the different types of conceptual expressions are interpreted by:

TI = ∆I     (C Π D)I =CI ∩ DI             (¬C)I = ∆I \CI

⊥I = Φ     (C    D)I = CI ∪ DI

( ∃r.C)I = { x C ∆I  / there exists y such that (x, y) C rI  and y C CI }

(∀r.C)I = { x C ∆I  / for all y, if (x, y) C rI  then y C CI }

a) Inferences:

DL system does’nt store only terminologies and assertions, but also offers the services of inference. Mainly dependent on the
reasoning in a DL is to discover implicit knowledge from explicit knowledge by inference. The services are also inference made
on all the TBox and as well as the ABox.

b) Basic inferences about the TBox:

Given a TBox T, C and D two concepts, then the typical tasks of reasoning on T consist of:

- Checking satisfiability of a concept: A concept C is satisfiable (or consistent) with respect to a TBox T if there exists a model
I of the TBox T such that CI ≠ Ø; (I is a model C), we write I | = C.

- Checking subsumption relation between two concepts: C subsumes D (D is considered the concept more general than C),
written C     D, with respect to TBox T iff CI      DI for all models I of the TBox T In this case, we write C     T D or T | = C    D. For
example, PARENT    PERSON. The subsumption relation presents the service more complex classification: given a concept C and
a TBox T, for all concepts D of T determine whether D subsumes C or D is subsumed by C. Intuitively, this determination research
relationships implicit in the terminology. In particular, the classification, a basic task in building up a new terminology that
expresses the concept in the appropriate place in the taxonomic hierarchy of concepts, can be accomplished by checking the
subsumption relation between each concept defined in the hierarchy and expression of the new concept.

- Verification of equivalence between two concepts: Two concepts C and D are equivalent, written C ≡ D, with respect to T iff CI

≡ DI for all models I of TBox T. In this case, we write C ≡T D or T | = C ≡ D

- Verification of disjunction between two concepts: Two concepts C and D are disjoint, written C ≠ D, compared to a TBox T iff
CI ∩ DI = Ø, for all models I of  TBox T.

In fact, checking the satisfiability of concept is a main inference. other inferences for concepts can be reduced to (in) satisfiability
and vice versa.

c) Basic inferences about the ABox:

ABox reasoning about a focus on testing the correctness of a domain model. Must perform two tasks:

- Checking instance: whether an individual has an ABox A is an instance of a given concept description C (a C CI), written A | =
C (a).

- The consistency check: An ABox A is consistent with respect to a TBox T, if there is an interpretation that is a model of both
A and T.

Satisfiability of an ABox is to test whether, given a TBox T, ABox A has a model. Important inferences can be reduced to this
inference, p. ex. T | = C   D iff A = {(C    ¬ D)(a)}  is not satisfiable modulo T, where a is a new instance (can’t be found in (C    ¬
D),  or in T). [9]

_ _

_ _ _

___

_
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4.1 Conservative Adaptation
Adaptation is a step of some case-based reasoning (CBR) systems that consists in modifying a source case in order to suit a new
situation, the target case. An approach to adaptation consists in using a belief revision operator, i.e., an operator that modifies
minimally a set of beliefs in order to be consistent with some actual knowledge .

The idea is to consider the belief  “The source case solves the target case” and then to revise it with the constraints given by the
target case and the domain knowledge.

The adaptation performed by FRAKAS is conservative adaptation (CA) (see [10] for details). In this adaptation, the  approach
is to make changes “minimum” of the source case to be consistent with both the target problem and the domain knowledge. It
is formalized through the notion of revision operator [11], [12], [13]: a revision operator ‘ο’ combines two knowledge bases Ψ and
ì knowledge base Ψ ο µ which, intuitively , is obtained by minimal change on Ψ to be consistent with µ.[16]

In a description logic, revision of a knowledge base is through a revision algorithm on ABox (modulo a TBox).

4.2 Revision algorithm on ABox (modulo a TBox)
Be a revision algorithm between two knowledge bases ALC which TBox are identical, Ψ = T ∪AΨ and M = T ∪ Aµ which Aµ and
AΨ are ABox and T is a TBox. Assertions are the same in both BC, they are not revised (see [14], [15] for details)

4.2.1 Parameters and results of the algorithm
The algorithm takes both ABox and AΨ  Aµ and TBox T = {T    K} input. A cost function associated with a literal ‘n’ a numeric
value cost (n) > 0, where a literal is either an atomic concept (positive literal) or a concept of the form ¬ A where A is atomic
(negative literal). Intuitively, more cost (n), the more difficult it is to renounce the truth of an assertion n (a). The result of the
algorithm is a disjunction of ABox D  , representing the result of the revision of AΨ by Aµ modulo T, that is to say the revision
of  Ψ by M. Indeed, when two alternatives for the revision of AΨ by Aµ can’t be separated by cost, the result can’t always be
expressed as a single ABox.

4.2.2 Outline of the algorithm by reviewing AΨΨΨΨΨ by Aµµµµµ modulo T
The algorithm tables (for details see [14]) is applied to AΨ ∪ Aµ, it can test its satisfiability modulo T. If AΨ ∪ Aµ is satisfiable,
that is to say consistent, (T ∪AΨ) + (T ∪ Aµ) is equivalent to T ∪ (AΨ∪Aµ), there is no need to change AΨ. However, if T ∪AΨ
∪Aµ is not satisfiable, we must modify AΨ to make it consistent with Aµ modulo T. For this, we will “fix” the conflicts generated
by the application of rules from AΨ ∪ Aµ, Aµ without change. For this “ repair ” it is not enough to remove conflict, these
conflicts derive formulas which must also be deleted. for a more detailed review, AΨ and Aµ are complemented by the method
tables before being combined.

5. Conclusions

A system of case-based reasoning (CBR) is based on domain knowledge, in addition to the base case. The acquisition of new
domain knowledge should improve the accuracy of such a system.

This paper presents an approach to acquire domain knowledge based on failures of a CBR system. This approach has been
implemented in FRAKAS.

FRAKAS proposed a new way to perform knowledge acquisition in CBR systems producing solutions that are consistent with
the domain knowledge. This prototype is based on a description logic representation, conservative adaptation is based on the
principle of minimal change to a knowledge base that makes this change by revising the bases case in our work we propose an
algorithm to use for revision on ABox (modulo a TBox) for revising a knowledge base.

In future work we plan to work on our Implementable choosing a scope and make it generic.
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