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ABSTRACT: In  this  paper  a  new  family  of  accumulate  repeat accumulate  codes  are  established  by  a  collection  of
interconnected  proto-graphs  in  a  spatially  coupled  manner.  A little  modification  in  the  repeater-combiner  stage  of  an
accumulate  repeat  accumulate  code  emphasizes  this development.  Spatially  coupled  low  density  parity  check  (SC-
LDPC) codes appear to approach the capacity universally across the  binary-input  memoryless  (BMS)  channels.  However,
the maximum  degree  distribution  is  unbounded  and  this  leads  to computational  complexity  problems  at  encoders  and
decoders. Accumulate  repeat  accumulate  (ARA)  codes  could  introduce bounded  complexity  ensembles  that  asymptotically
achieve capacity on the binary erasure channels (BEC).

So,  we  provide  a  density  evolution  (DE)  analysis  for systematic  SC-ARA  proto-graphs  over  the  binary  erasure channels
(BEC). We also discuss the stability conditions for them. Simulation results show that over the BEC spatially coupling of
ensembles  of  ARA  codes  drives  the  message-passing  belief propagation  decoding  threshold  (BP)  to  be  closed  to  the
maximum a posterior (MAP) threshold of the underlying codes.
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1. Introduction

The capacity achieving error correcting codes attract much attention  by  the  past  ten  years  of  research  as  they represent  an
optimal  utilization  of  the  channel  coding reliability.  Luby  et  al.  [1]  and  Shokrollahi  [2]  introduced capacity  achieving  low
density  parity  check  (LDPC)  codes whose complexities are linear in their block lengths on BEC.
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Later, Jin et al. [3] initiated irregular repeat-accumulate (IRA) codes  with  lower  encoding  and  decoding  complexities  over BEC.
These  codes  still  have  unbounded  complexity  (per information bit) as the gap to capacity vanishes.

In [4], [5], Khandekar and McEliece discussed the decoding complexity of capacity approaching ensembles of irregular LDPC
and  IRA codes for the BEC. In [6], the authors conjecture capacity achieving ARA codes on BEC with bounded  density and
complexity per information bit. This result is achieved  by  puncturing bits and thereby retaining state nodes to represent the
code.

The concept of spatially coupling was introduced in [7] for convergence-threshold  improvement. The detailed convergence
analysis of spatially  coupled  LDPC  codes  over BEC  has  been  carried  out  in  [8].  Further  investigation  and generalization
can be shown  in  [9-10],  [11]. Recently,  those ideas  are  analytically  investigated  by Kudekar  et  al. In  [12] where  the  authors
couple together  copies  of  a  standard individual  LDPC  ensemble  to  construct  a  new  chain-like ensemble. The chain has been
terminated efficiently in [13].

In this paper we provide closed form DE equations for systematic SC-ARA codes from their proto-graphs. In general, ARA
codes exhibit an outstanding performance over BEC  at moderate  block  lengths. The  spatially coupling  approach is extended
to these codes and threshold results are derived using DE equations. Then, we demonstrate the superiority of the performance
for this construction emphasizing that theencoding  and  decoding  density and complexity per information bit remains  bounded
as the gap to capacity vanishes.

The structure of the paper is as follows: Section II provides a preliminary on proto-graph ARA codes and their DE analysis for
the  BEC.  Section  III introduces the SC-ARA  codes and their DE  analysis  via message  passing  algorithm.  Section  IV presents
an explicit construction of capacity achieving SC-ARA codes with bounded density and complexity. Computer simulations
exemplify our results in section V. Then, in section VI we conclude the paper.

2.  Preliminaries

2.1 Construction  of ARA Codes
ARA codes can be considered as interleaved serially concatenated codes. An example of a proto-graph model of an ARA code
is shown in figure 1. In  this  model there is one message bit node,  a punctured bit node, at the top, a check node bit in the  middle,
a parity bit node at the bottom. A coupled chain of 2L + 1 proto-graphs can be formed from the main proto-graph by connecting
each punctured bit to l protograghs to the left and another l proto-graghs to the right. It is essential to add extra 2l parity check
nodes to avoid degree-1 check nodes.

ARA codes have a low complexity encoding process. This process is achieved by the serial concatenation  of  an accumulator,
a repetition code, an interleaver, a combiner and another accumulator.

For  the  coupled  structure,  the  parity  bit  node  at  the  ith location  can be made  to  connect only message  bits  in  the  ith
and previous locations.

2.2 Density Evolution of Systematic ARA Codes and Stability Conditions

Figure 1. A proto-graph model of an ARA code and the chain connection
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(1)

As previously considered by Henry D. Pfister et al [6], the density evolution of a systematic ARA code on BEC with the fixed
point  analysis  under  iterative message-passing  decoder could be obtained as follows:

Let L
i
, R

i
, λ

i 
, ρ

i
 be the fraction of “punctured bit” nodes with  degree-i,  the fraction of “parity check B” nodes with degree-i,  the

fraction  of  edges  connected  to  degree-i “punctured bit” nodes and the fraction of edges connected to degree-i  “parity check
B” nodes, respectively. This is for the edges connecting the “punctured bit” nodes to the “parity check B” nodes. Their degree

distributions will be L (x) = Σ i = 1
∞ L

i 
xi , R(x) = Σ i = 1
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It can be proved that the relations
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or equivalently,
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hold.

The  design  rate  can  be  expressed  in  terms  of  degree distributions as

R =
1

1 +
L′  (1)

R′  (1)

Hence,  from  the  Tanner  graph  of  ARA  codes  by  the assumption  that  the  fraction  of  bits  involved  in  finite-length cycles
vanishes as the block length tends to infinity, the fixed point density evolution satisfies
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Where  p  is  the  erasure  probability  of  the  transmitted codeword  and  x
i
  is  the  fixed  point  erasure  probability  at position

i.

The  recursion  on  (4)  quickly  results  in  very  high  order polynomials as the number of iteration is increased. However, to
understand its behavior for small fixed point values of x

i 
s, it  may  be  effective  to  use  the  stability  and  instability

conditions by taking the derivatives of RHS for x
i
 = 0, 1. As investigated in [6], this gives
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3. Spatially Coupled Ara Codes

In  this  section we  derive  a  closed  form  expression  for  the density  evolution  of  a  spatially  coupled  proto-graph  ARA code
ensemble on a BEC via message passing algorithm.

Consider  a Tanner graph based (q, a, L, w) ARA ensemble,  with a randomized parameter w, as shown in Figure 2, where we
modify the construction as follows:

The set of “punctured bit” nodes is copied q times, interleaved in a spatially coupled form and added modulo-2 in a set of a bits
to produce “parity check B” nodes.

We  also  introduce  a  smoothing  randomized  parameter  w similar to that in [12]. However, the “parity check B” nodes are
considered  to  be  located  at  all  integer  positions  [− ∞, ∞] along with the extended 2L + 1 coupled chain proto-graphs, but only
“parity check B” nodes at position within the interval [0, L + w − 2] actually interact with the “punctured bit” nodes to further
the “symbol bit” nodes.

Let l denotes  the  iteration  number. Referring  to  Figure 2,  let x
a
 and x

f
  denote the probability of erasure messages from the

“parity check A” nodes to the “punctured bit” nodes and vice-versa, let x
b
 and x

e
 denote the probability of erasure messages

from the “punctured bit” nodes to the “parity check B” nodes and vice-versa, let x
c
 and x

d
 denote the probability of erasure

messages from the “parity check B” nodes to the “code bit”
nodes and vice-versa.

The “punctured bit” nodes, the “parity check B” nodes and their  interconnecting edges form the interlaced “repeater-
combiner” stage of an ARA code. We are interested in spatially coupled the “repeater-combiner” stage, so that ARA code
ensembles may inherit many properties.

Without  loss  of  generality  for  fixed  q, a  the  marginal density evolution equations in [6] are modified to be

Figure 2. The Tanner graph based SC-ARA codes
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Where xβ , β = a, b, c, d, e, f  represent the fixed points for the  extrinsic  probability  erasure messages  between  nodes,  as

previously investigated.

Now,  we  can  solve  for  one  of  xβ , β  = a, b, c, d, e, f  variables,  these  variables  are  arbitrary  for  0 ≤ i ≤ (w − 1)

i

(l)

i

(l)

when plugging or substituting into the above set of equations.

Thereby,  the  density  evolution  of  a  proto-graph  based (q, a, L, w) ensemble can be derived as
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Likewise, if we apply the spatially coupling phenomenon in the design of the ensemble of non-systematic irregular repeat-
accumulate (NSIRA) codes [14], then, the DE equation (14) in  [14] will be modified as
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Following  a  similar approach  to  that  is used  for  fixed q, a, in general, when ARA ensembles are characterized by varying order
pairs of degree distributions, i.e. L (x

i
), R (x

i
), λ (x

i
) and ρ (x

i
), for fixed point variable x

i 
, then, the DE equation will be straight-
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forward  as  (4)  except  simply  the  fixed  point variable x
i
 should be replaced by

For  decoding  process  to  finish,  the  fixed  point  at x
i
 = 0 must  be  stable  and  to  get  decoding  process  started,  the  fixed

point at x
i
 = 1 must be unstable. So, for fixed q ≥ 3, a ≥ 3, the ARA  ensembles  are  unconditionally  stable  at x

i
 = 0 but  the

decoding chain reaction may fall in fast ending.

4.  Capacity Achieving Spatially Coupled Ara Ensembles

In  this  section  and  the  next  section  we  will  interpret  a positive effect on the performance of ARA codes by imposing the
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w Σ j = 0

x
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spatially coupled structure on their “repeater-combiner” stage.

We  will  restrict  attention  to  the  case  of  randomized  SC-ARA codes, with a randomized parameter w, of sequences of regular
degree  distributions  that  can  achieve  a  threshold improvement  over  the  BEC  with  bounded  density  per information bit.
The bounded density per information bit of (q, a, L, w) SC-ARA ensembles can be investigated as follows :

First,  the  information  bits  are  pre-coded  with  a  rate-1 accumulator  and  finally,  the  parity  bits  are  computed  at  the output
of a second rate-1 accumulator.

Consider we have a coupled chain of 2L + 1 proto-graphs, then, we have 2L + 1 variable nodes per one proto-graph.

Equivalently, the check nodes are considered to be  located at [−∞, ∞] and there are       check nodes per one proto-gragh.

We  assume  that  each  of  the a connections of the “parity check  B” nodes at position i  actually  interact  with  the “punctured
bit” nodes within the interval [i − w + 1, i],  and each  of  the  q  connections of the “punctured bit” nodes at position i  actually
interact with the “parity check B” nodes within the interval [i, i + w − 1] for − L ≤ i ≤ L.

Let µ be The number of “punctured bit” nodes at position i, then,  there  are       µ  “parity check B” nodes at the equivalent
position.

There  are     µ (2L − w)  “parity check B” nodes actually interact with the “punctured bit” nodes inside  the  interval [− L, L].

q
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q
a

q
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The  necessary  and  sufficient  condition  that  the  bit  erasure probability  converges  to  zero  as  the  block  length  tends  to
infinity is given by

p 2

1 −

⎡
⎣

⎤
⎦ 1

w Σ
j = 0

w − 1

x
i + j − k⎝

⎛
⎠
⎞

q
1 − p

1 − p
⎤
⎦

⎡
⎣

1 −  1
w Σ

j = 0

w − 1

1 −  1
w Σ

j = 0

w − 1
x

i + j − l

q− 1⎡
⎣

2

1 −

⎡
⎣

⎤
⎦ 1

w Σ
j = 0

w − 1

x
i + j − k⎝

⎛
⎠
⎞

q
1 − p

1 − p⎡
⎣

1 −  1
w Σ

j = 0

w − 1

1 −  1
w Σ

j = 0

w − 1
x

i + j − k
⎡
⎣

2

1 − (1 − p)⎡
⎣

x
i  

⎤
⎦

a − 1

⎤
⎦

q− 1⎤
⎦

⎤
⎦

a 2

(9)

(10)

(11)



Journal of Data Processing    Volume  3    Number    4   December   2013                                      149

This  condition  determines  the maximum  (threshold)  value of  the  channel  erasure  probability  for  the  non-trivial  fixed point
system,. i.e. (x := x

i
, −L ≤ i ≤ L), x ≠ 0, p ∈ [0, 1],  of successful decoding.

Let x be  a  fixed  point  system,  then  the  average  message entropy of x, i.e. Entro (x) is defined as [12]

Entro (x) =
2L + 1

1 ∑
i = − L

 L

x
i

In the next section a procedure of establishing the existence of  special  fixed  points  for  many  different  entropy  values  is
repeated  to  produce  a  very  useful  curve,  i.e.  the  extended EXIT curve, as a projected plot of these fixed points.

The spatial coupling idea is exploited for ARA ensembles to gain  in  convergence  thresholds  than  conventional  ARA
ensembles.

After  a  predetermined maximum  number  of  iterations,  the fixed point system values of x, substituted in (11), collapse for all
p < p

threshold
 where p

threshold
 is  the message-passing BP decoding  threshold  closed  to  its  underlying  MAP  threshold and to

the Shannon limit over the BEC.
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and  represent  new  degree  distributions  after  the  graph reduction  method  [6]  for the “punctured bit” nodes and the “parity
check B” nodes, respectively.

A  nice  symmetry  between  information  and  parity  bits  can be obtained by swapping ρ with 1 − ρ.

In  general,  the  original  degree  distribution  pair  (λ (x
i
), ρ (x

i
)) (i.e.,  the  original  pair  before  the  graph reduction) can be

expressed in terms of the (λ (x
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)) pair after some calculus as
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such that L (x
i
 = 1) =  = 1

∫
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To obtain capacity achieving ARA ensembles with bounded complexity per information bit of a candidate degree distribution
pair (λ (x

i
), ρ (x

i
)),  given  a  bounded  distribution λ (x

i
)  (here,  a  regular  distribution),  after  calculating λ (x

i
) from (16), an

algorithm to solve for ρ (x
i
) in terms of λ (x

i
) (or doing  the  inverse  via  symmetry  property)  for  a  certain ρ can be established

following a similar robust work as in [6].

This algorithm tests the non-negativity of the resulting power series expansions of  ρ (x
i
)  and  its  corresponding original ρ (x

i
)

around zero and determines the threshold value of ρ that  can  be  used  to  construct  an  ensemble  of  capacity achieving.

If  this is indeed the case, a  bounded  complexity  per information bit is obtained by truncating the degree distribution ρ (x
i
) (or

both λ (x
i
) and ρ (x

i
))  such  that  the  effect  of  each  truncation is negligible as the distribution ρ (x

i
) has powers go to  infinity

(for  a  regular  distribution ρ (x
i
),  the  power  of  the maximum value of relative weight in ρ (x

i
) is selected to be the value of q).

5.  Simulation Results

In this section, we demonstrate the decoding performance of randomly  SC-ARA ensembles and compare them at finite lengths
with simulations of ARA ensembles constructed from self-matched LDPC codes [6].

We  also  draw  the  extended  message-passing  BP EXIT curve for the coupled ensemble, we apply (7) to each section i, −L ≤
i ≤ L taking  into  account  of  the  spatial  structure  of the code.

We then compute the extrinsic symbol estimate for each section and the corresponding message-passing extrinsic bit entropy.
The extended message-passing BP EXIT curve of the SC  ensemble  is  finally  obtained  by  averaging  over  the  2L entropies
of the chain.

∼

∼

∼

∼

Consider a comparative example of rate (q, a = , 16, w)
q

2

1

2
ensembles of block  lengths 8184 with  spatially  coupling  and 8192

without,  respectively,  where  q  represents  the  average weight  distribution  of  q (x)  and  we  use  q = 8  for  regular distribution.

In  Figure 3, we plot  the  extended message-passing BP EXIT curve of the SC (8, 4, L, w = L) ensembles, for different values of
L.

It  follows  that  the  message-passing  BP  threshold  point ρ
threshold

 is the point at which the left-most cliff edge of the curve
vertically drops and for a large value of L it is very close to ½. However, there exists a small gap.

At the cliff edge there are some wiggles. The wiggle size decreases by increasing the randomized parameter w.

In Figure 4, we show the erasure decoding performance of (8, 4, 16, L, w = L) SC-ARA ensemble of  length 8184 which requires
a slightly higher rate than the self-matched ARA ensemble of length 8192 [6].

It is observed from the figure that the SC-ARA ensemble exhibits a better performance than the self-matched one especially
throughout the waterfall region and as well as a better threshold.

It can be shown that SC-ARA ensemble can achieve a similar decoding threshold as the self-matched one with a higher rate.

Since the ensemble averaged performance (the entropy convergence performance) is simulated, high-rate outer codes are used
to avoid cycles of length four and to lower the severe error floor due to small stopping sets. These outer codes are chosen
uniformly at random from the ensemble of the binary linear block codes and their rate loss is neglected (rate-1codes).

_ _
_

__
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Figure 3. The extended message-passing BP EXIT curve of
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The complexity of these schemes are significantly bounded by the proper selection in part of λ (x), ρ (x), a and q such that (7) is
satisfied.

6.  Conclusion

In this paper, we provided a closed form relation for the density evolution message-passing  analysis of capacity-achieving
spatially-coupled  ARA  ensembles  with  bounded density and complexity under the BEC.

We also introduced an equivalent low density parity check code scheme for a SC-ARA code via graph reduction method under
the BEC.

We further investigated the extended message-passing BP EXIT curve for the coupled ensemble. There exists a very small gap
between message-passing BP threshold and the Shannon limit caused by wiggles.

Simulation results show that the performance of SC-ARA ensembles outperform the self-matched ARA ones in [6].
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