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ABSTRACT: In this paper a new family of accumulate repeat accumulate codes are established by a collection of
interconnected proto-graphs in a spatially coupled manner. Alittle modification in the repeater-combiner stage of an
accumulate repeat accumulate code emphasizes this development. Spatially coupled low density parity check (SC-
LDPC) codes appear to approach the capacity universally acrossthe binary-input memoryless (BMS) channels. However,
the maximum degree distribution is unbounded and this leads to computational complexity problems at encoders and
decoders. Accumulate repeat accumulate (ARA) codes could introduce bounded complexity ensembles that asymptotically
achieve capacity on the binary erasure channels (BEC).

So, we provide a density evolution (DE) analysis for systematic SC-ARA proto-graphs over the binary erasurechannels
(BEC). We also discuss the stability conditions for them. Smulation results show that over the BEC spatially coupling of

ensembles of ARA codes drives the message-passing belief propagation decoding threshold (BP) to be closed to the
maximum a posterior (MAP) threshold of the underlying codes.
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1. Introduction

The capacity achieving error correcting codes attract much attention by the past ten years of research as they represent an

optimal utilization of the channel codingreliability. Luby et al. [1] and Shokrollahi [2] introduced capacity achieving low
density parity check (LDPC) codeswhose complexitiesarelinear intheir block lengths on BEC.
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Later, Jinetal.[3] initiated irregular repeat-accumulate (IRA) codes with lower encoding and decoding complexities over BEC.
These codes still have unbounded complexity (per information bit) as the gap to capacity vanishes.

In[4], [5], Khandekar and McEliece discussed the decoding complexity of capacity approaching ensembles of irregular LDPC
and IRA codesfor the BEC. In [6], the authors conjecture capacity achieving ARA codes on BEC with bounded density and
complexity per information bit. Thisresult is achieved by puncturing bits and thereby retaining state nodes to represent the
code.

The concept of spatially coupling was introduced in [7] for convergence-threshold improvement. The detailed convergence
analysisof spatially coupled LDPC codes over BEC has been carried out in [8]. Further investigation and generalization
can beshown in [9-10], [11]. Recently, thoseideas are analytically investigated by Kudekar et al.In [12] where the authors
coupletogether copies of a standardindividual LDPC ensemble to construct a new chain-like ensemble. The chain hasbeen
terminated efficiently in[13].

In this paper we provide closed form DE equations for systematic SC-ARA codes from their proto-graphs. In general, ARA
codes exhibit an outstanding performance over BEC at moderate block lengths. The spatially coupling approach isextended
to these codes and threshold results are derived using DE equations. Then, we demonstrate the superiority of the performance
for this construction emphasizing that theencoding and decoding density and complexity per information bit remains bounded
as the gap to capacity vanishes.

The structure of the paper isasfollows: Section |1 provides a preliminary on proto-graph ARA codes and their DE analysisfor
the BEC. Section 11l introducesthe SC-ARA codesandtheir DE analysis viamessage passing algorithm. Section 1V presents
an explicit construction of capacity achieving SC-ARA codes with bounded density and complexity. Computer simulations
exemplify our resultsin section V. Then, in section VI we conclude the paper.
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Figure 1. A proto-graph model of an ARA code and the chain connection
2. Preliminaries

2.1Construction of ARA Codes

ARA codes can be considered as interleaved serially concatenated codes. An example of a proto-graph model of an ARA code
isshowninfigurel. In this model thereisone messagebit node, apunctured bit node, at thetop, acheck nodebitinthe middle,
aparity bit node at the bottom. A coupled chain of 2L + 1 proto-graphs can be formed from the main proto-graph by connecting
each punctured bit to | protograghsto the left and another | proto-graghsto theright. It is essential to add extra 2| parity check
nodes to avoid degree-1 check nodes.

ARA codes have alow complexity encoding process. This processisachieved by the serial concatenation of an accumulator,
arepetition code, an interleaver, acombiner and another accumulator.

For the coupled structure, the parity bit node at the ithlocation can be made to connect only message bits in the ith
and previous locations.

2.2 Density Evolution of SystematicARA Codesand Sability Conditions
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Asprevioudly considered by Henry D. Pfister et al [6], the density evolution of a systematic ARA code on BEC with the fixed
point analysis under iterative message-passing decoder could be obtained as follows:

LetL,,R, A4, p, bethefraction of “punctured bit” nodeswith degree-i, thefraction of “parity check B” nodeswith degree-i, the
fraction of edges connected to degree-i “punctured bit” nodes and the fraction of edges connected to degree-i “parity check
B” nodes, respectively. Thisisfor the edges connecting the “ punctured bit” nodes to the “ parity check B” nodes. Their degree

distributionswill beL () =X_ L X, R =22, RX, A =X 2, 4 X p () =7, p. X 7, respectively.

It can be proved that the relations L’ ) R®
;L(X):m 'p(x)_R/ (1) (1)
or equivalently,
X X
XL gp(t)dt
L=y R0, @
J.),(t)dt jp(t)dt
3 0
hold.

The design rate can be expressed in terms of degree distributions as

1
R 1w ®
1+ L")
R(1)
Hence, from the Tanner graph of ARA codes by theassumption that the fraction of bits involved in finite-length cycles
vanishes as the block length tends to infinity, the fixed point density evolution satisfies

P (1 - ) o)

X = ) @

|:1—(1—p) L(l—(l_;;(f_xi) )p (1—Xi))]

Where p is the erasure probability of the transmitted codeword and x; is the fixed point erasure probability at position
i

The recursion on (4) quickly results in very high order polynomials as the number of iteration isincreased. However, to
understand its behavior for small fixed point values of x; s, it may be effective to use the stability and instability
conditions by taking the derivatives of RHSfor x =0, 1. Asinvestigated in [6], this gives

2pR” (1)
PZAZ(P/(]-)"' 1_p )<1 (5)
2 2( 4, 2(1-pL"(1) 6
(1-p?p (a @+ )71 ©)

for x, = 0 to be stable and x, = 1 to be unstable, respectively.

Note that p,, A, are the second coefficients of the distributions p (x), 4 (x) respectively.
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Figure 2. The Tanner graph based SC-ARA codes

3. Spatially Coupled AraCodes

In this sectionwe derive a closed form expression for thedensity evolution of a spatialy coupled proto-graph ARA code
ensemble on aBEC viamessage passing algorithm.

Consider aTanner graph based (q, a, L, w) ARA ensemble, with arandomized parameter w, as shown in Figure 2, where we
modify the construction as follows:

Theset of “ punctured bit” nodesis copied g times, interleaved in aspatially coupled form and added modulo-2 in aset of abits
to produce “parity check B” nodes.

We also introduce a smoothing randomized parameter w similar to that in [12]. However, the “parity check B” nodes are
considered to be located at al integer positions [— <, =] along with the extended 2L + 1 coupled chain proto-graphs, but only
“parity check B” nodes at position within theinterval [0, L + w — 2] actually interact with the “ punctured bit” nodes to further
the “symbol bit” nodes.

Let | denotes the iteration number. Referring to Figure2, let x, and x, denote the probability of erasure messages from the
“parity check A" nodes to the “punctured bit” nodes and vice-versa, let x, and x, denote the probability of erasure messages

from the “punctured bit” nodes to the “parity check B” nodes and vice-versa, let X and x, denote the probability of erasure
messages from the “parity check B" nodes to the “code bit”
nodes and vice-versa.

The “punctured bit” nodes, the “parity check B" nodes and their interconnecting edges form the interlaced “repeater-
combiner” stage of an ARA code. We are interested in spatially coupled the “repeater-combiner” stage, so that ARA code
ensembles may inherit many properties.

Without loss of generality for fixed g, a the marginal density evolution equationsin [6] are modified to be
(l)
X, =1-(1-x"")(1-p)
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Wherex(') B=a,b,c, d e f represent the fixed points for the extrinsic probability erasure messages between nodes, as
prev|ously investigated.

U]

Now, we can solve for one of X ﬁ a, b, c, d, e f variables, these variables are arbitrary for 0<i<(w-1)

when plugging or substituting into the above set of equations.
Thereby, the density evolution of a proto-graph based (q, a, L, w) ensemble can be derived as

a-1
LW 1-p we1 q-1
p [ “w :Z I:l—p(llwz:xujk)q} [l—lex jZ::OXHj—k:l }

= 2 a2 @
1-p w-1 a-1
1-(-p) [1_ Z I: w-1 } 1-1 PIR T } }
[ 1- p(l_ljgaxnjk)q [ W iZo J ]

Likewise, if we apply the spatially coupling phenomenon in the design of the ensemble of non-systematic irregular repeat-
accumulate (NSIRA) codes[14], then, the DE equation (14) in [14] will bemodified as

2 a-1

|1 il - i
’ [1 W]%[l—p(lvj\-/wz:ijk)q}[ VJ{I]Z::O e |:| } X
iz

Following a similar approach to that isused for fixed g, a, in general, when ARA ensembles are characterized by varying order
pairsof degreedistributions, i.e. L (x), R(x), 1 (x) and p (x), for fixed pointvariablex then, the DE equation will be strai ght-

w-1
forward as (4) except simply the fixed point variablex; should be replaced by , Z 0 % |

For decoding process to finish, the fixed point at x, =0 must be stable and to get decoding process started, the fixed

point at x, = 1 must be unstable. So, for fixed q > 3, a> 3, theARA ensembles are unconditionally stable at x, =0 but the
decoding chain reaction may fall in fast ending.

4. Capacity Achieving Spatially Coupled AraEnsembles

In this section and the next section we will interpret apositive effect on the performance of ARA codes by imposing the
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spatially coupled structure on their “repeater-combiner” stage.

We will restrict attention to the case of randomized SC-ARA codes, with arandomized parameter w, of sequences of regular
degree distributions that can achieve a threshold improvement over the BEC with bounded density per information bit.
The bounded density per information bit of (g, a, L, w) SC-ARA ensembles can beinvestigated asfollows :

First, the information bits are pre-coded with a rate-1 accumulator and finally, the parity bits are computed at the output
of asecond rate-1 accumulator.

Consider we have a coupled chain of 2L + 1 proto-graphs, then, we have 2L + 1 variable nodes per one proto-graph.
Equivalently, the check nodes are considered to be located at [—oe, =] and there are g check nodes per one proto-gragh.

We assume that each of the a connections of the “parity check B” nodesat positioni actually interact with the“punctured
bit” nodeswithintheinterval [i —w + 1,i], and each of the q connections of the“punctured bit” nodes at positioni actually

interact with the “ parity check B” nodeswithin theinterval [i, i + w— 1] for —L <i < L.

Let u be The number of “punctured bit” nodes at position i, then, there are g u “parity check B” nodes at the equivalent
position.

There areg u (2L —w) “parity check B” nodes actually interact with the “punctured bit” nodesinside the interval [-L, L].

At the boundary —L there are g y(z?;g 1- (\llfv)a)] average number of “parity check B” nodes actually interact with the
“punctured bit” nodes inside the interval [— L,L] and so is atthe boundary L.

So, we have— M[(ZL W)+2(2W Ly ( ) )] average number of parity check nodes and u[(2L +1) number of variable
nodes.

In thelimit of large L the design coding rateis given as

2L+1
R(g.aL.w)= :
q w-1 j.a
2L+14 (2L—w+2( 2 1-Gy) ))
_ 1 g Lo ©)

1+—
The density is given by a

2L+1

D(g,aL,w)= ul )

R(g,a,L,w) (2L +1) (10)

q
= — ,L—)oo
q@+a)

The necessary and sufficient condition that the bit erasure probability converges to zero as the block length tends to

infinity isgiven by )

a-1
1 z[ =P } 1t q_l}
[ Wi=o 1—p(1—vj\'/:v:_:xi+j—k)q [ w E I ]_l]

2 a

2
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This condition determines the maximum (threshold) valueof the channel erasure probability for the non-trivial fixed point
system,.i.e. (x:=x,-L<i<L),x#0,pe [0,1], of successful decoding.

Let x be a fixed point system, then the average message entropy of X, i.e. Entro (x) isdefined as[12]

L

2% (12
2L+1i=-L

In the next section a procedure of establishing the existence of special fixed points for many different entropy values is
repeated to produce a very useful curve, i.e. the extended EXIT curve, as a projected plot of these fixed points.

Entro (x) =

The spatial coupling idea is exploited for ARA ensembles to gain in convergence thresholds than conventional ARA
ensembles.

After a predetermined maximum number of iterations, thefixed point system valuesof x, substituted in (11), collapsefor all
P < Pyresrold W€ Pyyenorg 1S the message-passing BP decoding threshold closed to its underlying MAP threshold and to
the Shannon limit over the BEC.

Equation (7) can berewritten as Z(l—ﬁ (1- x))=x 13
Where the tilted degree distributions 2 and p aregiven by
a-1
1 w-1
~ pZ(VV(ng' J))
A(x)= 2 (14)
w-1 a
o]
1 w-1 g-1
B (1—p)2(\7v(j§6)(|—1))
p(x)= 2 (15

[(1— JEPLN )ﬂ

and represent new degree distributions after the graph reduction method [6] for the “punctured bit” nodes and the “ parity
check B” nodes, respectively.

A nice symmetry between information and parity bits can be obtained by swapping p with 1 — p.

In general, the original degree distribution pair (A (x), p (X)) (i.e., the origina pair before the graph reduction) can be
expressed interms of the (A (x), — p (X)) pair after some calculusas

A(x)
A(x )= X (16)
[Zod q°
[p+(1—p) (2 ):]
[AGL::
0
p(x)
p(xi): xI (17)

|: [ptydt °
o]
[p)dt
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Xi J.
. 3 A(t)dt _ :
suchthat L (x =1)=7——| =1adR(x=)=7 —— =1
[A@)dt - |
0 0
To obtain capacity achieving ARA ensembles with bounded complexity per information bit of a candidate degree distribution
pair (A (x), p (X)), given a bounded distribution A (x) (here, a regular distribution), after calculating A (x;) from (16), an

agorithmto solvefor p (x) intermsof A (x;) (or doing the inverse via symmetry property) for a certain p can be established
following asimilar robust work asin [6].

Thisagorithm teststhe non-negativity of the resulting power seriesexpansionsof p (x) and its corresponding original p (x)
around zero and determines the threshold value of p that can be used to construct an ensemble of capacity achieving.

If thisisindeed the case, a bounded complexity per information bit is obtained by truncating the degree distribution p (x) (or
both A (x) and p (x)) such that the effect of each truncation isnegligible asthe distribution p (x) has powersgoto infinity
(for a regular distribution p (x), the power of themaximum valueof relativeweightin p (x) isselected to bethe value of g).

5. Simulation Results

In this section, we demonstrate the decoding performance of randomly SC-ARA ensembles and compare them at finite lengths
with simulations of ARA ensembles constructed from self-matched L DPC codes|[6].

We also draw the extended message-passing BPEXIT curvefor the coupled ensemble, we apply (7) to each sectioni, —L <
i <L taking into account of the spatial structure of the code.

We then compute the extrinsic symbol estimate for each section and the corresponding message-passing extrinsic bit entropy.
The extended message-passing BP EXIT curve of the SC ensemble is finally obtained by averaging over the 2L entropies
of the chain.

Consider acomparative example of rate% (0, a= q , 16, w) ensembles of block lengths 8184 with spatially coupling and 8192
2

without, respectively, where q represents the averageweight distribution of q(x) and we use =38 for regular distribution.

In Figure3, weplot the extended message-passing BP EXIT curve of the SC (8, 4, L, w=L) ensembles, for different values of
L.

It follows that the message-passing BP threshold point p, . ., isthe point at which the |eft-most cliff edge of the curve
vertically dropsand for alargevalue of L it isvery closeto %. However, there existsasmall gap.

At the cliff edge there are some wiggles. The wiggle size decreases by increasing the randomized parameter w.

In Figure 4, we show the erasure decoding performance of (8, 4, 16, L, w=L) SC-ARA ensembleof |ength 8184 which requires
adlightly higher rate than the self-matched ARA ensemble of length 8192 [6].

It is observed from the figure that the SC-ARA ensemble exhibits a better performance than the self-matched one especially
throughout the waterfall region and as well as a better threshold.

It can be shown that SC-ARA ensembl e can achieve asimilar decoding threshold as the self-matched one with a higher rate.
Since the ensembl e averaged performance (the entropy convergence performance) is simulated, high-rate outer codes are used

to avoid cycles of length four and to lower the severe error floor due to small stopping sets. These outer codes are chosen
uniformly at random from the ensemble of the binary linear block codes and their rate lossis neglected (rate-1codes).
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The complexity of these schemes are significantly bounded by the proper selectionin part of A (x), p (X), aand g suchthat (7) is
satisfied.

6. Conclusion

In this paper, we provided a closed form relation for the density evolution message-passing analysis of capacity-achieving
spatialy-coupled ARA ensembles with bounded density and complexity under the BEC.

We also introduced an equivalent low density parity check code scheme for a SC-ARA code via graph reduction method under
theBEC.

We further investigated the extended message-passing BPEXIT curvefor the coupled ensemble. There existsavery small gap
between message-passing BP threshold and the Shannon limit caused by wiggles.

Simulation results show that the performance of SC-ARA ensembles outperform the self-matched ARA onesin [6].
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